Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers ar...Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers are renowned for their good mechanical properties,abundance,and short cycle growth.As beams are one of the fundamental structural components and are susceptible to mechanical loads in engineering applications,this paper performs a study on the free vibration and buckling responses of bamboo fiber reinforced composite(BFRC)beams on the elastic foundation.Three different functionally graded(FG)layouts and a uniform one are the considered distributions for unidirectional long bamboo fibers across the thickness.The elastic properties of the composite are determined with the law of mixture.Employing Hamilton’s principle,the governing equations of motion are obtained.The generalized differential quadrature method(GDQM)is then applied to the equations to obtain the results.The achieved outcomes exhibit that the natural frequency and buckling load values vary as the fiber volume fractions and distributions,elastic foundation stiffness values,and boundary conditions(BCs)and slenderness ratio of the beam change.Furthermore,a comparative study is conducted between the derived analysis outcomes for BFRC and homogenous polymer beams to examine the effectiveness of bamboo fibers as reinforcement materials,demonstrating the significant enhancements in both vibration and buckling responses,with the exception of natural frequencies for cantilever beams on the Pasternak foundation with the FG-◇fiber distribution.Eventually,the obtained analysis results of BFRC beams are also compared with those for carbon nanotube reinforced composite(CNTRC)beams found in the literature,indicating that the buckling loads and natural frequencies of BFRC beams are lower than those of CNTRC beams.展开更多
Thin spherical pressure hulls are used as a human occupancy in deep water applications.DNV and other standards specify the imperfection allowed for pressure hulls.Numerical analyses are carried out to find the bucklin...Thin spherical pressure hulls are used as a human occupancy in deep water applications.DNV and other standards specify the imperfection allowed for pressure hulls.Numerical analyses are carried out to find the buckling pressure for both perfect and imperfect thin spherical pressure hulls,considering the geometric and material non-linearities.It is observed that there is a huge variation in the elastic and inelastic buckling pressure in perfect spherical pressure hulls.Moreover,if the manufacturing imperfections are considered in the inelastic numerical analysis,still there is a reduction in the buckling pressure.Design criteria,for deep water pressure hulls,is that both buckling pressure and yield pressure must be greater than the design pressure.In the elastic analysis,if t/D>0.006 buckling pressure is always greater than the yield pressure whereas in the inelastic analysis,the buckling pressure is falling below the yield pressure for all t/D ratios.Hence,inelastic numerical analysis with manufacturing imperfection has to considered in the design of deep water spherical pressure hulls of manned submersibles.展开更多
The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite ...The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite element method. The effects of gravity and torques on the buckling are included in the analyses and the calculated results are well compared with existing solutions. It is shown that the buckling only occurs at the lower portion of the tubing where the axial load is the largest, and the contact force of the well, the bending moment of the tubing and the buckling displacement of this portion vary periodically. The buckling spreads upwards from the bit with the increase of axial load. There is no buckling at the upper portion of the tubing where the bending moment is zero. And the contact force of this section increases only slightly with the increase of the axial load. With the increase of the deviation angle, the length of buckling portion and buckling displacement amplitude decrease, the contact force increases with the increase of load at the upper portion and its amplitude decreases at the lower buckling section, the bending moment remains zero at the upper portion and its amplitude decreases at the lower buckling portion. The buckling displacement increases with the increase of the torque, but the increment is very small.展开更多
The rigid central buckle employed in the Runyang Suspension Bridge (RSB) was the first time it was used in a suspension bridge in China. By using a spectral representation method and FFT technique combined with measur...The rigid central buckle employed in the Runyang Suspension Bridge (RSB) was the first time it was used in a suspension bridge in China. By using a spectral representation method and FFT technique combined with measured data,a 3D fluctuating wind field considering the tower wind effect is simulated. A novel FE model for buffeting analysis is then presented,in which a specific user-defined Matrix27 element in ANSYS is employed to simulate the aeroelastic forces and its stiffness or damping matrices are parameterized by wind velocity and vibration frequency. A nonlinear time history analysis is carried out to study the influence of the rigid central buckle on the wind-induced buffeting response of a long-span suspension bridge. The results can be used as a reference for wind resistance design of long-span suspension bridges with a rigid central buckle in the future.展开更多
A method named interval analysis method, which solves the buckling load of composite laminate with uncertainties, is presented. Based on interval mathematics and Taylor series expansion, the interval analysis method i...A method named interval analysis method, which solves the buckling load of composite laminate with uncertainties, is presented. Based on interval mathematics and Taylor series expansion, the interval analysis method is used to deal with uncertainties. Not necessarily knowing the probabilistic statistics characteristics of the uncertain variables, only little information on physical properties of material is needed in the interval analysis method, that is, the upper bound and lower bound of the uncertain variable. So the interval of response of the structure can be gotten through less computational efforts. The interval analysis method is efficient under the condition that probability approach cannot work well because of small samples and deficient statistics characteristics. For buckling load of a special cross-ply laminates and antisymmetric angle-ply laminates with all edges simply supported, calculations and comparisons between interval analysis method and probability method are performed.展开更多
The welding buckling distortions of thin plated structures were investigated based on finite element methods.An engineering treatment method for predicationg the buckling distortion was proposed.The equivalent applie...The welding buckling distortions of thin plated structures were investigated based on finite element methods.An engineering treatment method for predicationg the buckling distortion was proposed.The equivalent applied thermal load was used to simulate the welding residual stress,thus the calculation of complex welding distortion can be transformed into 3D elastic structural applied load analyses,which can reduce the quantities of calculating work effectively.The validation of the method was verified by comparison of the numerical calculation with experimental results.The prediction of buckling distortion for side walled structures of passenger train was performed and the calculation was in agreement with measuring results in general.It is shown that the main factors for producing the buckling are the intermittent fillet and plug weld during welding the stiffened beams and columns to the panel.展开更多
This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the...This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the geometry flexibility of the FEM and the high accuracy and efficiency of the DQM. The accuracy of the present method is demonstrated by comparing the obtained results with those available in the literature. It is shown that highly accurate results can be obtained by using a small number of finite elements and DQM sample points. The proposed method is suitable for the problems considered due to its simplicity and potential for further development.展开更多
Pipelines in geological disaster regions typically suffer the risk of local buckling failure because of slender structure and complex load. This paper is meant to reveal the local buckling behavior of buried pipelines...Pipelines in geological disaster regions typically suffer the risk of local buckling failure because of slender structure and complex load. This paper is meant to reveal the local buckling behavior of buried pipelines with a large diameter and high strength, which are under different conditions, including pure bending and bending combined with internal pressure. Finite element analysis was built according to previous data to study local buckling behavior of pressurized and unpressurized pipes under bending conditions and their differences in local buckling failure modes. In parametric analysis, a series of parameters,including pipe geometrical dimension, pipe material properties and internal pressure, were selected to study their influences on the critical bending moment, critical compressive stress and critical compressive strain of pipes.Especially the hardening exponent of pipe material was introduced to the parameter analysis by using the Ramberg–Osgood constitutive model. Results showed that geometrical dimensions, material and internal pressure can exert similar effects on the critical bending moment and critical compressive stress, which have different, even reverse effects on the critical compressive strain. Based on these analyses, more accurate design models of critical bending moment and critical compressive stress have been proposed for high-strength pipelines under bendingconditions, which provide theoretical methods for highstrength pipeline engineering.展开更多
In order to avoid the curing effects of paraffin on the transport process and reduce the transport difficulty,usually high temperature and high pressure are used in the transportation of oil and gas.The differences of...In order to avoid the curing effects of paraffin on the transport process and reduce the transport difficulty,usually high temperature and high pressure are used in the transportation of oil and gas.The differences of temperature and pressure cause additional stress along the pipeline,due to the constraint of the foundation soil,the additional stress can not release freely,when the additional stress is large enough to motivate the submarine pipelines buckle.In this work,the energy method is introduced to deduce the analytical solution which is suitable for the global buckling modes of idealized subsea pipeline and analyze the relationship between the critical buckling temperature,buckling length and amplitude under different high-order global lateral buckling modes.To obtain a consistent formulation of the problem,the principles of virtual displacements and the variation calculus for variable matching points are applied.The finite element method based on elasto-plastic theory is used to simulate the lateral global buckling of the pipelines under high temperature and pressure.The factors influencing the lateral buckling of pipelines are further studied.Based upon some actual engineering projects,the finite element results are compared with the analytical ones,and then the influence of thermal stress,the section rigidity of pipeline,the soil properties and the trigging force to the high order lateral buckling are discussed.The method of applying the small trigging force on pipeline is reliable in global buckling numerical analysis.In practice,increasing the section rigidity of a pipeline is an effective measure to improve the ability to resist the global buckling.展开更多
An analytical solution for buckling of an eccentrically stiffened sandwich truncated conical shell is investigated. The shell consists of two functionally graded material (FGM) coating layers and a core layer which ...An analytical solution for buckling of an eccentrically stiffened sandwich truncated conical shell is investigated. The shell consists of two functionally graded material (FGM) coating layers and a core layer which are metal or ceramic subjected to an axial compressive load and an external uniform pressure. Shells are reinforced by stringers and rings, in which the material properties of shells and stiffeners are graded in the thickness direction following a general sigmoid law distribution. Two models of coated shell-stiffener arrangements are investigated. The change of the spacing between stringers in the meridional direction is taken into account. A couple set of three-variable- coefficient partial differential equations in terms of displacement components are solved by the Galerkin method. A closed-form expression for determining the buckling load is obtained. The numerical examples are presented and compared with previous works.展开更多
Thermal buckling response of functionally graded plates is presented in this paper using sinusoidal shear deformation plate theory (SPT). The material properties of the plate are assumed to vary according to a power l...Thermal buckling response of functionally graded plates is presented in this paper using sinusoidal shear deformation plate theory (SPT). The material properties of the plate are assumed to vary according to a power law form in the thickness direction. Equilibrium and stability equations are derived based on the SPT. The non-linear governing equations are solved for plates subjected to simply supported boundary conditions. The buckling analysis of a functionally graded plate under various types of thermal loads is carried out. The influences of many plate parameters on buckling temperature difference will be investigated. Numerical results are presented for the SPT, demonstrating its importance and accuracy in comparison to other theories.展开更多
The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elas...The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elasticity theories using the differential quadrature method (DQM) is presented. Main advantages of the MCST over the classical theory (CT) are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter. Based on the nonlinear von Karman assumption, the governing equations of equilibrium for the micro-classical plate consid- ering midplane displacements are derived based on the minimum principle of potential energy. Using the DQM, the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained. Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature. A parametric study is conducted to show the effects of the aspect ratio, the side-to-thickness ratio, Eringen's nonlocal parameter, the material length scale parameter, Young's modulus of the surface layer, the surface residual stress, the polymer matrix coefficients, and various boundary conditions on the dimensionless uniaxial, biaxial, and shear critical buckling loads. The results indicate that the critical buckling loads are strongly sensitive to Eringen's nonlocal parameter, the material length scale parameter, and the surface residual stress effects, while the effect of Young's modulus of the surface layer on the critical buckling load is negligible. Also, considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate. The results show that the critical biaxial buckling load increases with an increase in G12/E2 and vice versa for E1/E2. It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude. Because of the most lightweight micro-composite materials with high strength/weight and stiffness/weight ratios, it is anticipated that the results of the present work are useful in experimental characterization of the mechanical properties of micro-composite plates in the aircraft industry and other engineering applications.展开更多
The central post is one of the critical components for the low aspect ratio tokamak, which endures not only a tremendous ohmic heating because it carries a rather high current, but also a large neutron heating and irr...The central post is one of the critical components for the low aspect ratio tokamak, which endures not only a tremendous ohmic heating because it carries a rather high current, but also a large neutron heating and irradiation owing to the plasma operation. The DS copper alloy Glidcop AL-25[8] was chosen as the conductor material for its adequate mechanical properties and physics properties. The central post has a cylindrical structure with lots of cooling channels. The length of the central post for the next generation of nuclear fusion spherical tokamaks will be more than 10 m or 20 m. The structural stability is very crucial. When the applied load is larger than the structure critical buckling load, the device will lose its stability and collapse. In order to calculate the critical buckling load, a 1/6-segment finite element model was used and the force acting on the central post was simulated. The results showed that the vertical compressive stresses mainly affect the stability of the central post. The linear buckling analysis results with finite element method based on small deformation theory were given in this paper. The relation curves and functions for buckling factor, depending on the different lengths and the radius of the central post, the diameter of cooling channel and the maximum allowable current density, were also shown.展开更多
Steel frames equipped with buckling restrained braces(BRBs)have been increasingly applied in earthquake-prone areas given their excellent capacity for resisting lateral forces.Therefore,special attention has been paid...Steel frames equipped with buckling restrained braces(BRBs)have been increasingly applied in earthquake-prone areas given their excellent capacity for resisting lateral forces.Therefore,special attention has been paid to the seismic risk assessment(SRA)of such structures,e.g.,seismic fragility analysis.Conventional approaches,e.g.,nonlinear finite element simulation(NFES),are computationally inefficient for SRA analysis particularly for large-scale steel BRB frame structures.In this study,amachine learning(ML)-based seismic fragility analysis framework is established to effectively assess the risk to structures under seismic loading conditions.An optimal artificial neural network model can be trained using calculated damage and intensity measures,a technique which will be used to compute the fragility curves of a steel BRB frame instead of employing NFES.Numerical results show that a highly efficient instantaneous failure probability assessment can be made with the proposed framework for realistic large-scale building structures.展开更多
In order to discuss the buckling stability of super-long rock-socketed filling piles widely used in bridge engineering in soft soil area such as Dongting Lake, the second stability type was adopted instead of traditio...In order to discuss the buckling stability of super-long rock-socketed filling piles widely used in bridge engineering in soft soil area such as Dongting Lake, the second stability type was adopted instead of traditional first type, and a newly invented numerical analysis method, i.e. the element-free Galerkin method (EFGM), was introduced to consider the non-concordant deformation and nonlinearity of the pile-soil interface. Then, based on the nonlinear elastic-ideal plastic pile-soil interface model, a nonlinear iterative algorithm was given to analyze the pile-soil interaction, and a program for buckling analysis of piles by the EFGM (PBAP-EFGM) and arc length method was worked out as well. The application results in an engineering example show that, the shape of pile top load-settlement curve obtained by the program agrees well with the measured one, of which the difference may be caused mainly by those uncertain factors such as possible initial defects of pile shaft and the eccentric loading during the test process. However, the calculated critical load is very close with the measured ultimate load of the test pile, and the corresponding relative error is only 5.6%, far better than the calculated values by linear and nonlinear incremental buckling analysis (with a greater relative error of 37.0% and 15.4% respectively), which also verifies the rationality and feasibility of the present method.展开更多
In this paper,the stresses and buckling behaviors of a thick-walled mi-cro sandwich panel with a flexible foam core and carbon nanotube reinforced composite(CNTRC)face sheets are considered based on the high-order she...In this paper,the stresses and buckling behaviors of a thick-walled mi-cro sandwich panel with a flexible foam core and carbon nanotube reinforced composite(CNTRC)face sheets are considered based on the high-order shear deformation theory(HSDT)and the modified couple stress theory(MCST).The governing equations of equi-librium are obtained based on the total potential energy principle.The effects of various parameters such as the aspect ratio,elastic foundation,temperature changes,and volume fraction of the canbon nanotubes(CNTs)on the critical buckling loads,normal stress,shear stress,and deflection of the thick-walled micro cylindrical sandwich panel consider-ing different distributions of CNTs are examined.The results are compared and validated with other studies,and showing an excellent compatibility.CNTs have become very use-ful and common candidates in sandwich structures,and they have been extensively used in many applications including nanotechnology,aerospace,and micro-structures.This paper also extends further applications of reinforced sandwich panels by providing the modified equations and formulae.展开更多
The vacuum vessel of the HT-7U superconducting Tokamak is designed as an allmetal welded double-wall structure with a number of radial and vertical ports. With characteristicsof ultrahigh vacuum and thin shell, the an...The vacuum vessel of the HT-7U superconducting Tokamak is designed as an allmetal welded double-wall structure with a number of radial and vertical ports. With characteristicsof ultrahigh vacuum and thin shell, the analysis on stability is very important to the design. Toachieve a successful final design, a threedimension buckling model has been performed using thefinite element program CoSMOS/M2.0. For all the cases having been considered, a 1/16 segmentof the whole toric shell are used to calculate the linear critical buckling load (Pc.,,) under auniform and nonwhform external pressure. As expected, the structure has a good capability ofwithstanding the applied loads.展开更多
Elastic critical buckling load of a column depends on various parameters,such as boundary conditions,material,and crosssection geometry.The main purpose of this work is to present a new method for investigating the bu...Elastic critical buckling load of a column depends on various parameters,such as boundary conditions,material,and crosssection geometry.The main purpose of this work is to present a new method for investigating the buckling load of tapered columns subjected to axial force.The proposed method is based on modified buckling mode shape of tapered structure and perturbation theory.The mode shape of the damaged structure can be expressed as a linear combination of mode shapes of the intact structure.Variations in length in piecewise form can be positive or negative.The method can be used for single-span and continuous columns.Comparison of results with those of finite element and Timoshenko methods shows the high accuracy and efficiency of the proposed method for detecting buckling load.展开更多
On the basis of the general theory of perforated thin plates under large deflections, variational principles with deflection w and stress function F as variables are stated in detail.Based on these princi- ples,finite...On the basis of the general theory of perforated thin plates under large deflections, variational principles with deflection w and stress function F as variables are stated in detail.Based on these princi- ples,finite element method is established for analysing the buckling and post-buckling of perforated thin plates. It is found that the property of element is very complicated,owing to the multiple connexity of the region.展开更多
A method of localization is proposed to lower the high order of equations in FEM calcula- tion for the stability of a complex thin-walled structure.The localized analysis enables us to obtain both the upper and lower ...A method of localization is proposed to lower the high order of equations in FEM calcula- tion for the stability of a complex thin-walled structure.The localized analysis enables us to obtain both the upper and lower limits for the bifurcating point in a whole linear elastic structural system,as well as an ap- proximate solution to asymptotic post-buckling problem.Some numerical examples are included.展开更多
文摘Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers are renowned for their good mechanical properties,abundance,and short cycle growth.As beams are one of the fundamental structural components and are susceptible to mechanical loads in engineering applications,this paper performs a study on the free vibration and buckling responses of bamboo fiber reinforced composite(BFRC)beams on the elastic foundation.Three different functionally graded(FG)layouts and a uniform one are the considered distributions for unidirectional long bamboo fibers across the thickness.The elastic properties of the composite are determined with the law of mixture.Employing Hamilton’s principle,the governing equations of motion are obtained.The generalized differential quadrature method(GDQM)is then applied to the equations to obtain the results.The achieved outcomes exhibit that the natural frequency and buckling load values vary as the fiber volume fractions and distributions,elastic foundation stiffness values,and boundary conditions(BCs)and slenderness ratio of the beam change.Furthermore,a comparative study is conducted between the derived analysis outcomes for BFRC and homogenous polymer beams to examine the effectiveness of bamboo fibers as reinforcement materials,demonstrating the significant enhancements in both vibration and buckling responses,with the exception of natural frequencies for cantilever beams on the Pasternak foundation with the FG-◇fiber distribution.Eventually,the obtained analysis results of BFRC beams are also compared with those for carbon nanotube reinforced composite(CNTRC)beams found in the literature,indicating that the buckling loads and natural frequencies of BFRC beams are lower than those of CNTRC beams.
基金The authors gratefully acknowledge the support extended by the Ministry of Earth Science,Government of India,in funding this researchThe authors would like to express sin-cere thanks to the Director of National Institute of Ocean Technology for his continued support of research activities.
文摘Thin spherical pressure hulls are used as a human occupancy in deep water applications.DNV and other standards specify the imperfection allowed for pressure hulls.Numerical analyses are carried out to find the buckling pressure for both perfect and imperfect thin spherical pressure hulls,considering the geometric and material non-linearities.It is observed that there is a huge variation in the elastic and inelastic buckling pressure in perfect spherical pressure hulls.Moreover,if the manufacturing imperfections are considered in the inelastic numerical analysis,still there is a reduction in the buckling pressure.Design criteria,for deep water pressure hulls,is that both buckling pressure and yield pressure must be greater than the design pressure.In the elastic analysis,if t/D>0.006 buckling pressure is always greater than the yield pressure whereas in the inelastic analysis,the buckling pressure is falling below the yield pressure for all t/D ratios.Hence,inelastic numerical analysis with manufacturing imperfection has to considered in the design of deep water spherical pressure hulls of manned submersibles.
文摘The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite element method. The effects of gravity and torques on the buckling are included in the analyses and the calculated results are well compared with existing solutions. It is shown that the buckling only occurs at the lower portion of the tubing where the axial load is the largest, and the contact force of the well, the bending moment of the tubing and the buckling displacement of this portion vary periodically. The buckling spreads upwards from the bit with the increase of axial load. There is no buckling at the upper portion of the tubing where the bending moment is zero. And the contact force of this section increases only slightly with the increase of the axial load. With the increase of the deviation angle, the length of buckling portion and buckling displacement amplitude decrease, the contact force increases with the increase of load at the upper portion and its amplitude decreases at the lower buckling section, the bending moment remains zero at the upper portion and its amplitude decreases at the lower buckling portion. The buckling displacement increases with the increase of the torque, but the increment is very small.
基金The Key Project of the National Natural Science Foundation of China Under Grant No.50538020 the National Science Fund for Distinguished Young Scholars Under Grant No.50725828+2 种基金 the National Natural Science Foundation of China Under Grant No.50978056the National Natural Science Foundation of China for Young Scholars Under Grant No.50908046 the Ph.D.Programs Foundation of Ministry of Education of China (No.200802861012)
文摘The rigid central buckle employed in the Runyang Suspension Bridge (RSB) was the first time it was used in a suspension bridge in China. By using a spectral representation method and FFT technique combined with measured data,a 3D fluctuating wind field considering the tower wind effect is simulated. A novel FE model for buffeting analysis is then presented,in which a specific user-defined Matrix27 element in ANSYS is employed to simulate the aeroelastic forces and its stiffness or damping matrices are parameterized by wind velocity and vibration frequency. A nonlinear time history analysis is carried out to study the influence of the rigid central buckle on the wind-induced buffeting response of a long-span suspension bridge. The results can be used as a reference for wind resistance design of long-span suspension bridges with a rigid central buckle in the future.
文摘A method named interval analysis method, which solves the buckling load of composite laminate with uncertainties, is presented. Based on interval mathematics and Taylor series expansion, the interval analysis method is used to deal with uncertainties. Not necessarily knowing the probabilistic statistics characteristics of the uncertain variables, only little information on physical properties of material is needed in the interval analysis method, that is, the upper bound and lower bound of the uncertain variable. So the interval of response of the structure can be gotten through less computational efforts. The interval analysis method is efficient under the condition that probability approach cannot work well because of small samples and deficient statistics characteristics. For buckling load of a special cross-ply laminates and antisymmetric angle-ply laminates with all edges simply supported, calculations and comparisons between interval analysis method and probability method are performed.
文摘The welding buckling distortions of thin plated structures were investigated based on finite element methods.An engineering treatment method for predicationg the buckling distortion was proposed.The equivalent applied thermal load was used to simulate the welding residual stress,thus the calculation of complex welding distortion can be transformed into 3D elastic structural applied load analyses,which can reduce the quantities of calculating work effectively.The validation of the method was verified by comparison of the numerical calculation with experimental results.The prediction of buckling distortion for side walled structures of passenger train was performed and the calculation was in agreement with measuring results in general.It is shown that the main factors for producing the buckling are the intermittent fillet and plug weld during welding the stiffened beams and columns to the panel.
文摘This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the geometry flexibility of the FEM and the high accuracy and efficiency of the DQM. The accuracy of the present method is demonstrated by comparing the obtained results with those available in the literature. It is shown that highly accurate results can be obtained by using a small number of finite elements and DQM sample points. The proposed method is suitable for the problems considered due to its simplicity and potential for further development.
基金supported by the National ScienceTechnology Support Plan Projects of China, under Award No. 2015BAK16B02
文摘Pipelines in geological disaster regions typically suffer the risk of local buckling failure because of slender structure and complex load. This paper is meant to reveal the local buckling behavior of buried pipelines with a large diameter and high strength, which are under different conditions, including pure bending and bending combined with internal pressure. Finite element analysis was built according to previous data to study local buckling behavior of pressurized and unpressurized pipes under bending conditions and their differences in local buckling failure modes. In parametric analysis, a series of parameters,including pipe geometrical dimension, pipe material properties and internal pressure, were selected to study their influences on the critical bending moment, critical compressive stress and critical compressive strain of pipes.Especially the hardening exponent of pipe material was introduced to the parameter analysis by using the Ramberg–Osgood constitutive model. Results showed that geometrical dimensions, material and internal pressure can exert similar effects on the critical bending moment and critical compressive stress, which have different, even reverse effects on the critical compressive strain. Based on these analyses, more accurate design models of critical bending moment and critical compressive stress have been proposed for high-strength pipelines under bendingconditions, which provide theoretical methods for highstrength pipeline engineering.
基金Project(51021004)supported by Innovative Research Groups of the National Natural Science Foundation of ChinaProject(NCET-11-0370)supported by Program for New Century Excellent Talents in Universities of China+1 种基金Project(40776055)supported by the National Natural Science Foundation of ChinaProject(1002)supported by State Key Laboratory of Ocean Engineering Foundation,China
文摘In order to avoid the curing effects of paraffin on the transport process and reduce the transport difficulty,usually high temperature and high pressure are used in the transportation of oil and gas.The differences of temperature and pressure cause additional stress along the pipeline,due to the constraint of the foundation soil,the additional stress can not release freely,when the additional stress is large enough to motivate the submarine pipelines buckle.In this work,the energy method is introduced to deduce the analytical solution which is suitable for the global buckling modes of idealized subsea pipeline and analyze the relationship between the critical buckling temperature,buckling length and amplitude under different high-order global lateral buckling modes.To obtain a consistent formulation of the problem,the principles of virtual displacements and the variation calculus for variable matching points are applied.The finite element method based on elasto-plastic theory is used to simulate the lateral global buckling of the pipelines under high temperature and pressure.The factors influencing the lateral buckling of pipelines are further studied.Based upon some actual engineering projects,the finite element results are compared with the analytical ones,and then the influence of thermal stress,the section rigidity of pipeline,the soil properties and the trigging force to the high order lateral buckling are discussed.The method of applying the small trigging force on pipeline is reliable in global buckling numerical analysis.In practice,increasing the section rigidity of a pipeline is an effective measure to improve the ability to resist the global buckling.
基金supported by the Vietnam National Foundation for Science and Technology Development(No.107.02-2015.11)
文摘An analytical solution for buckling of an eccentrically stiffened sandwich truncated conical shell is investigated. The shell consists of two functionally graded material (FGM) coating layers and a core layer which are metal or ceramic subjected to an axial compressive load and an external uniform pressure. Shells are reinforced by stringers and rings, in which the material properties of shells and stiffeners are graded in the thickness direction following a general sigmoid law distribution. Two models of coated shell-stiffener arrangements are investigated. The change of the spacing between stringers in the meridional direction is taken into account. A couple set of three-variable- coefficient partial differential equations in terms of displacement components are solved by the Galerkin method. A closed-form expression for determining the buckling load is obtained. The numerical examples are presented and compared with previous works.
文摘Thermal buckling response of functionally graded plates is presented in this paper using sinusoidal shear deformation plate theory (SPT). The material properties of the plate are assumed to vary according to a power law form in the thickness direction. Equilibrium and stability equations are derived based on the SPT. The non-linear governing equations are solved for plates subjected to simply supported boundary conditions. The buckling analysis of a functionally graded plate under various types of thermal loads is carried out. The influences of many plate parameters on buckling temperature difference will be investigated. Numerical results are presented for the SPT, demonstrating its importance and accuracy in comparison to other theories.
基金supported by the Iranian Nanotechnology Development Committee and the University of Kashan(No.363452/10)
文摘The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elasticity theories using the differential quadrature method (DQM) is presented. Main advantages of the MCST over the classical theory (CT) are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter. Based on the nonlinear von Karman assumption, the governing equations of equilibrium for the micro-classical plate consid- ering midplane displacements are derived based on the minimum principle of potential energy. Using the DQM, the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained. Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature. A parametric study is conducted to show the effects of the aspect ratio, the side-to-thickness ratio, Eringen's nonlocal parameter, the material length scale parameter, Young's modulus of the surface layer, the surface residual stress, the polymer matrix coefficients, and various boundary conditions on the dimensionless uniaxial, biaxial, and shear critical buckling loads. The results indicate that the critical buckling loads are strongly sensitive to Eringen's nonlocal parameter, the material length scale parameter, and the surface residual stress effects, while the effect of Young's modulus of the surface layer on the critical buckling load is negligible. Also, considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate. The results show that the critical biaxial buckling load increases with an increase in G12/E2 and vice versa for E1/E2. It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude. Because of the most lightweight micro-composite materials with high strength/weight and stiffness/weight ratios, it is anticipated that the results of the present work are useful in experimental characterization of the mechanical properties of micro-composite plates in the aircraft industry and other engineering applications.
基金supported by National Natural Science Foundation of China (No.10405024)the Ministry of Education,Culture,Sports,Science and Technology (MEXT) Nuclear Researchers Exchange Programme of Japan
文摘The central post is one of the critical components for the low aspect ratio tokamak, which endures not only a tremendous ohmic heating because it carries a rather high current, but also a large neutron heating and irradiation owing to the plasma operation. The DS copper alloy Glidcop AL-25[8] was chosen as the conductor material for its adequate mechanical properties and physics properties. The central post has a cylindrical structure with lots of cooling channels. The length of the central post for the next generation of nuclear fusion spherical tokamaks will be more than 10 m or 20 m. The structural stability is very crucial. When the applied load is larger than the structure critical buckling load, the device will lose its stability and collapse. In order to calculate the critical buckling load, a 1/6-segment finite element model was used and the force acting on the central post was simulated. The results showed that the vertical compressive stresses mainly affect the stability of the central post. The linear buckling analysis results with finite element method based on small deformation theory were given in this paper. The relation curves and functions for buckling factor, depending on the different lengths and the radius of the central post, the diameter of cooling channel and the maximum allowable current density, were also shown.
基金Financial support received from the Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2019EEEVL05the National Key Research and Development Program of China under Grant No.2016YFC0701106the National Natural Science Foundation of China under Grant No.51578473 are gratefully acknowledged.
文摘Steel frames equipped with buckling restrained braces(BRBs)have been increasingly applied in earthquake-prone areas given their excellent capacity for resisting lateral forces.Therefore,special attention has been paid to the seismic risk assessment(SRA)of such structures,e.g.,seismic fragility analysis.Conventional approaches,e.g.,nonlinear finite element simulation(NFES),are computationally inefficient for SRA analysis particularly for large-scale steel BRB frame structures.In this study,amachine learning(ML)-based seismic fragility analysis framework is established to effectively assess the risk to structures under seismic loading conditions.An optimal artificial neural network model can be trained using calculated damage and intensity measures,a technique which will be used to compute the fragility curves of a steel BRB frame instead of employing NFES.Numerical results show that a highly efficient instantaneous failure probability assessment can be made with the proposed framework for realistic large-scale building structures.
基金Project(50378036) supported by the National Natural Science Foundation of China
文摘In order to discuss the buckling stability of super-long rock-socketed filling piles widely used in bridge engineering in soft soil area such as Dongting Lake, the second stability type was adopted instead of traditional first type, and a newly invented numerical analysis method, i.e. the element-free Galerkin method (EFGM), was introduced to consider the non-concordant deformation and nonlinearity of the pile-soil interface. Then, based on the nonlinear elastic-ideal plastic pile-soil interface model, a nonlinear iterative algorithm was given to analyze the pile-soil interaction, and a program for buckling analysis of piles by the EFGM (PBAP-EFGM) and arc length method was worked out as well. The application results in an engineering example show that, the shape of pile top load-settlement curve obtained by the program agrees well with the measured one, of which the difference may be caused mainly by those uncertain factors such as possible initial defects of pile shaft and the eccentric loading during the test process. However, the calculated critical load is very close with the measured ultimate load of the test pile, and the corresponding relative error is only 5.6%, far better than the calculated values by linear and nonlinear incremental buckling analysis (with a greater relative error of 37.0% and 15.4% respectively), which also verifies the rationality and feasibility of the present method.
基金the Iranian Nanotechnology Development Committee for their financial supportthe University of Kashan for supporting this work (No. 891238/11)。
文摘In this paper,the stresses and buckling behaviors of a thick-walled mi-cro sandwich panel with a flexible foam core and carbon nanotube reinforced composite(CNTRC)face sheets are considered based on the high-order shear deformation theory(HSDT)and the modified couple stress theory(MCST).The governing equations of equi-librium are obtained based on the total potential energy principle.The effects of various parameters such as the aspect ratio,elastic foundation,temperature changes,and volume fraction of the canbon nanotubes(CNTs)on the critical buckling loads,normal stress,shear stress,and deflection of the thick-walled micro cylindrical sandwich panel consider-ing different distributions of CNTs are examined.The results are compared and validated with other studies,and showing an excellent compatibility.CNTs have become very use-ful and common candidates in sandwich structures,and they have been extensively used in many applications including nanotechnology,aerospace,and micro-structures.This paper also extends further applications of reinforced sandwich panels by providing the modified equations and formulae.
文摘The vacuum vessel of the HT-7U superconducting Tokamak is designed as an allmetal welded double-wall structure with a number of radial and vertical ports. With characteristicsof ultrahigh vacuum and thin shell, the analysis on stability is very important to the design. Toachieve a successful final design, a threedimension buckling model has been performed using thefinite element program CoSMOS/M2.0. For all the cases having been considered, a 1/16 segmentof the whole toric shell are used to calculate the linear critical buckling load (Pc.,,) under auniform and nonwhform external pressure. As expected, the structure has a good capability ofwithstanding the applied loads.
文摘Elastic critical buckling load of a column depends on various parameters,such as boundary conditions,material,and crosssection geometry.The main purpose of this work is to present a new method for investigating the buckling load of tapered columns subjected to axial force.The proposed method is based on modified buckling mode shape of tapered structure and perturbation theory.The mode shape of the damaged structure can be expressed as a linear combination of mode shapes of the intact structure.Variations in length in piecewise form can be positive or negative.The method can be used for single-span and continuous columns.Comparison of results with those of finite element and Timoshenko methods shows the high accuracy and efficiency of the proposed method for detecting buckling load.
基金Project supported by National Natural Science Foundation of China.
文摘On the basis of the general theory of perforated thin plates under large deflections, variational principles with deflection w and stress function F as variables are stated in detail.Based on these princi- ples,finite element method is established for analysing the buckling and post-buckling of perforated thin plates. It is found that the property of element is very complicated,owing to the multiple connexity of the region.
基金Project supported by National Natural Science Foundation of China
文摘A method of localization is proposed to lower the high order of equations in FEM calcula- tion for the stability of a complex thin-walled structure.The localized analysis enables us to obtain both the upper and lower limits for the bifurcating point in a whole linear elastic structural system,as well as an ap- proximate solution to asymptotic post-buckling problem.Some numerical examples are included.