Anomaly classification based on network traffic features is an important task to monitor and detect network intrusion attacks.Network-based intrusion detection systems(NIDSs)using machine learning(ML)methods are effec...Anomaly classification based on network traffic features is an important task to monitor and detect network intrusion attacks.Network-based intrusion detection systems(NIDSs)using machine learning(ML)methods are effective tools for protecting network infrastructures and services from unpredictable and unseen attacks.Among several ML methods,random forest(RF)is a robust method that can be used in ML-based network intrusion detection solutions.However,the minimum number of instances for each split and the number of trees in the forest are two key parameters of RF that can affect classification accuracy.Therefore,optimal parameter selection is a real problem in RF-based anomaly classification of intrusion detection systems.In this paper,we propose to use the genetic algorithm(GA)for selecting the appropriate values of these two parameters,optimizing the RF classifier and improving the classification accuracy of normal and abnormal network traffics.To validate the proposed GA-based RF model,a number of experiments is conducted on two public datasets and evaluated using a set of performance evaluation measures.In these experiments,the accuracy result is compared with the accuracies of baseline ML classifiers in the recent works.Experimental results reveal that the proposed model can avert the uncertainty in selection the values of RF’s parameters,improving the accuracy of anomaly classification in NIDSs without incurring excessive time.展开更多
Voice classification is important in creating more intelligent systems that help with student exams,identifying criminals,and security systems.The main aim of the research is to develop a system able to predicate and ...Voice classification is important in creating more intelligent systems that help with student exams,identifying criminals,and security systems.The main aim of the research is to develop a system able to predicate and classify gender,age,and accent.So,a newsystem calledClassifyingVoice Gender,Age,and Accent(CVGAA)is proposed.Backpropagation and bagging algorithms are designed to improve voice recognition systems that incorporate sensory voice features such as rhythm-based features used to train the device to distinguish between the two gender categories.It has high precision compared to other algorithms used in this problem,as the adaptive backpropagation algorithm had an accuracy of 98%and the Bagging algorithm had an accuracy of 98.10%in the gender identification data.Bagging has the best accuracy among all algorithms,with 55.39%accuracy in the voice common dataset and age classification and accent accuracy in a speech accent of 78.94%.展开更多
For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs)....For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs).One type of feasible approaches for EMOPs is to introduce the computationally efficient surrogates for reducing the number of function evaluations.Inspired from ensemble learning,this paper proposes a multiobjective evolutionary algorithm with an ensemble classifier(MOEA-EC)for EMOPs.More specifically,multiple decision tree models are used as an ensemble classifier for the pre-selection,which is be more helpful for further reducing the function evaluations of the solutions than using single inaccurate model.The extensive experimental studies have been conducted to verify the efficiency of MOEA-EC by comparing it with several advanced multiobjective expensive optimization algorithms.The experimental results show that MOEA-EC outperforms the compared algorithms.展开更多
Aiming at the difficulty of accurately constructing the dynamic model of subtropical high, based on the potential height field time series over 500 hPa layer of T106 numerical forecast products, by using EOF(empirica...Aiming at the difficulty of accurately constructing the dynamic model of subtropical high, based on the potential height field time series over 500 hPa layer of T106 numerical forecast products, by using EOF(empirical orthogonal function) temporal-spatial separation technique, the disassembled EOF time coefficients series were regarded as dynamical model variables, and dynamic system retrieval idea as well as genetic algorithm were introduced to make dynamical model parameters optimization search, then, a reasonable non-linear dynamic model of EOF time-coefficients was established. By dynamic model integral and EOF temporal-spatial components assembly, a mid-/long-term forecast of subtropical high was carried out. The experimental results show that the forecast results of dynamic model are superior to that of general numerical model forecast results. A new modeling idea and forecast technique is presented for diagnosing and forecasting such complicated weathers as subtropical high.展开更多
The non-linear inversion of rock mechanics parameters based on genetic algorithm is presented. The principIe and step of genetic algorithm is also given. A brief discussion of this method and an application example is...The non-linear inversion of rock mechanics parameters based on genetic algorithm is presented. The principIe and step of genetic algorithm is also given. A brief discussion of this method and an application example is presented at the end of this paper. From the satisfied result, quick, convenient and practical new approach is developed to solve this kind of problems.展开更多
In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear programming (GAINLP) problem solving approach has been proposed for solving non-linear programming optimization problems with inexact infor...In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear programming (GAINLP) problem solving approach has been proposed for solving non-linear programming optimization problems with inexact information (inexact non-linear operation programming). GAINLP was developed based on a GA-based inexact quadratic solving method. The Genetic Algorithm Solver of the Global Optimization Toolbox (GASGOT) developed by MATLABTM was adopted as the implementation environment of this study. GAINLP was applied to a municipality solid waste management case. The results from different scenarios indicated that the proposed GA-based heuristic optimization approach was able to generate a solution for a complicated nonlinear problem, which also involved uncertainty.展开更多
At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear globa...At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems.展开更多
Support vector classifier (SVC) has the superior advantages for small sample learning problems with high dimensions, with especially better generalization ability. However there is some redundancy among the high dim...Support vector classifier (SVC) has the superior advantages for small sample learning problems with high dimensions, with especially better generalization ability. However there is some redundancy among the high dimensions of the original samples and the main features of the samples may be picked up first to improve the performance of SVC. A principal component analysis (PCA) is employed to reduce the feature dimensions of the original samples and the pre-selected main features efficiently, and an SVC is constructed in the selected feature space to improve the learning speed and identification rate of SVC. Furthermore, a heuristic genetic algorithm-based automatic model selection is proposed to determine the hyperparameters of SVC to evaluate the performance of the learning machines. Experiments performed on the Heart and Adult benchmark data sets demonstrate that the proposed PCA-based SVC not only reduces the test time drastically, but also improves the identify rates effectively.展开更多
Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of ...Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of this paper is to analyze the respiratory signal of a person to detect the Normal Breathing Activity and the Sleep Apnea(SA)activity.In the proposed method,the time domain and frequency domain features of respiration signal obtained from the PPG device are extracted.These features are applied to the Classification and Regression Tree(CART)-Particle Swarm Optimization(PSO)classifier which classifies the signal into normal breathing signal and sleep apnea signal.The proposed method is validated to measure the performance metrics like sensitivity,specificity,accuracy and F1 score by applying time domain and frequency domain features separately.Additionally,the performance of the CART-PSO(CPSO)classification algorithm is evaluated through comparing its measures with existing classification algorithms.Concurrently,the effect of the PSO algorithm in the classifier is validated by varying the parameters of PSO.展开更多
Word Sense Disambiguation (WSD) is to decide the sense of an ambiguous word on particular context. Most of current studies on WSD only use several ambiguous words as test samples, thus leads to some limitation in prac...Word Sense Disambiguation (WSD) is to decide the sense of an ambiguous word on particular context. Most of current studies on WSD only use several ambiguous words as test samples, thus leads to some limitation in practical application. In this paper, we perform WSD study based on large scale real-world corpus using two unsupervised learning algorithms based on ±n-improved Bayesian model and Dependency Grammar (DG)-improved Bayesian model. ±n-improved classifiers reduce the window size of context of ambiguous words with close-distance feature extraction method, and decrease the jamming of useless features, thus obviously improve the accuracy, reaching 83.18% (in open test). DG-improved classifier can more effectively conquer the noise effect existing in Naive-Bayesian classifier. Experimental results show that this approach does better on Chinese WSD, and the open test achieved an accuracy of 86.27%.展开更多
Objective:To analyze misdiagnosis features in clinical cases of“Classified Medical Cases of Famous Physicians”and“Supplement to Classified Case Records of Celebrated Physicians.”Materials and Methods:Two hundred a...Objective:To analyze misdiagnosis features in clinical cases of“Classified Medical Cases of Famous Physicians”and“Supplement to Classified Case Records of Celebrated Physicians.”Materials and Methods:Two hundred and five ancient misdiagnosed cases were analyzed in aspects of locations(exterior-interior type,qi-blood type and Zang‑Fu organs type)and patterns(heat-cold type and deficiency-excess type)by Apriori Algorithm Method.Results:The main types of misdiagnosis in those medical casesare as follows::Zang‑Fu location misjudgment,misjudging the interior as the exterior,misjudging deficiency pattern as excess pattern,and misjudging cold pattern as heat pattern.Among them,the most outstanding type is the misjudgment of deficiency–cold pattern as excess–heat pattern.Conclusions:(1)Accurate judgment of location and differentiation of deficiency and excess patterns are the key points in diagnosing the diseases correctly.The confusion of true deficiency–cold and pseudo‑excess–heat pattern should be taken seriously.(2)Data mining on ancient clinical cases offers a new methodology for assisting clinical diagnosis of traditional Chinese medicine.展开更多
An operating rule classification system based on learning classifier system (LCS), which learns through credit assignment (bucket brigade algorithm, BBA) and rule discovery (genetic algorithm, GA), is establishe...An operating rule classification system based on learning classifier system (LCS), which learns through credit assignment (bucket brigade algorithm, BBA) and rule discovery (genetic algorithm, GA), is established to extract water-supply reservoir operating rules. The proposed system acquires an online identification rate of 95% for training samples and an offline rate of 85% for testing samples in a case study. The performances of the rule classification system are discussed from the rationality of the obtained rules, the impact of training samples on rule extraction, and a comparison between the rule classification system and the artificial neural network (ANN). The results indicate that the LCS is feasible and effective for the system to obtain the reservoir supply operating rules.展开更多
Due to our increased dependence on Internet and growing number of intrusion incidents, building effective intrusion detection systems are essential for protecting Internet resources and yet it is a great challenge. In...Due to our increased dependence on Internet and growing number of intrusion incidents, building effective intrusion detection systems are essential for protecting Internet resources and yet it is a great challenge. In literature, many researchers utilized Artificial Neural Networks (ANN) in supervised learning based intrusion detection successfully. Here, ANN maps the network traffic into predefined classes i.e. normal or specific attack type based upon training from label dataset. However, for ANN-based IDS, detection rate (DR) and false positive rate (FPR) are still needed to be improved. In this study, we propose an ensemble approach, called MANNE, for ANN-based IDS that evolves ANNs by Multi Objective Genetic algorithm to solve the problem. It helps IDS to achieve high DR, less FPR and in turn high intrusion detection capability. The procedure of MANNE is as follows: firstly, a Pareto front consisting of a set of non-dominated ANN solutions is created using MOGA, which formulates the base classifiers. Subsequently, based upon this pool of non-dominated ANN solutions as base classifiers, another Pareto front consisting of a set of non-dominated ensembles is created which exhibits classification tradeoffs. Finally, prediction aggregation is done to get final ensemble prediction from predictions of base classifiers. Experimental results on the KDD CUP 1999 dataset show that our proposed ensemble approach, MANNE, outperforms ANN trained by Back Propagation and its ensembles using bagging & boosting methods in terms of defined performance metrics. We also compared our approach with other well-known methods such as decision tree and its ensembles using bagging & boosting methods.展开更多
A novel adaptive non-linear mapping (ANLM), integrating an adaptive mapping error (AME) with a chaosgenetic algorithm (CGA) including chaotic variable, was proposed to overcome the deficiencies of non-linear map...A novel adaptive non-linear mapping (ANLM), integrating an adaptive mapping error (AME) with a chaosgenetic algorithm (CGA) including chaotic variable, was proposed to overcome the deficiencies of non-linear mapping (NLM). The value of AME weight factor is determined according to the relative deviation square of distance between the two mapping points and the corresponding original objects distance. The larger the relative deviation square between two distances is, the larger the value of the corresponding weight factor is. Due to chaotic mapping operator, the evolutional process of CGA makes the individuals of subgenerations distributed ergodieally in the defined space and circumvents the premature of the individuals of subgenerations. The comparison results demonstrated that the whole performance of CGA is better than that of traditional genetic algorithm. Furthermore, a typical example of mapping eight-dimenslonal olive oil samples onto two-dimensional plane was employed to verify the effectiveness of ANLM. The results showed that the topology-preserving map obtained by ANLM can well represent the classification of original objects and is much better than that obtained by NLM.展开更多
A novel nonlinear gray transform method is proposed to enhance the contrast of a typhoon cloud image.Generally,the typhoon cloud image obtained by a satellite cannot be directly used to make an accurate prediction of ...A novel nonlinear gray transform method is proposed to enhance the contrast of a typhoon cloud image.Generally,the typhoon cloud image obtained by a satellite cannot be directly used to make an accurate prediction of the typhoon's center or intensity because the contrast of the received typhoon cloud image may be bad.Our aim is to extrude the typhoon's eye in the typhoon cloud image.A normalized arc-tangent transformation operation is designed to enhance global contrast of the typhoon cloud image.Differential evolution algorithm is used to choose the optimal nonlinear transform parameter.Finally,geodesic activity contour model is used to extract the typhoon's eye to verify the performance of the proposed method.Experimental results show that the proposed method can efficiently enhance the global contrast of the typhoon cloud image while greatly extruding the typhoon's eye.展开更多
Managing physical objects in the network’s periphery is made possible by the Internet of Things(IoT),revolutionizing human life.Open attacks and unauthorized access are possible with these IoT devices,which exchange ...Managing physical objects in the network’s periphery is made possible by the Internet of Things(IoT),revolutionizing human life.Open attacks and unauthorized access are possible with these IoT devices,which exchange data to enable remote access.These attacks are often detected using intrusion detection methodologies,although these systems’effectiveness and accuracy are subpar.This paper proposes a new voting classifier composed of an ensemble of machine learning models trained and optimized using metaheuristic optimization.The employed metaheuristic optimizer is a new version of the whale optimization algorithm(WOA),which is guided by the dipper throated optimizer(DTO)to improve the exploration process of the traditionalWOA optimizer.The proposed voting classifier categorizes the network intrusions robustly and efficiently.To assess the proposed approach,a dataset created from IoT devices is employed to record the efficiency of the proposed algorithm for binary attack categorization.The dataset records are balanced using the locality-sensitive hashing(LSH)and Synthetic Minority Oversampling Technique(SMOTE).The evaluation of the achieved results is performed in terms of statistical analysis and visual plots to prove the proposed approach’s effectiveness,stability,and significance.The achieved results confirmed the superiority of the proposed algorithm for the task of network intrusion detection.展开更多
The necessity of on-time cancer detection is extremely high in the recent days as it becomes a threat to human life.The skin cancer is considered as one of the dangerous diseases among other types of cancer since it c...The necessity of on-time cancer detection is extremely high in the recent days as it becomes a threat to human life.The skin cancer is considered as one of the dangerous diseases among other types of cancer since it causes severe health impacts on human beings and hence it is highly mandatory to detect the skin cancer in the early stage for providing adequate treatment.Therefore,an effective image processing approach is employed in this present study for the accurate detection of skin cancer.Initially,the dermoscopy images of skin lesions are retrieved and processed by eliminating the noises with the assistance of Gaborfilter.Then,the pre-processed dermoscopy image is segmented into multiple regions by implementing cascaded Fuzzy C-Means(FCM)algorithm,which involves in improving the reliability of cancer detection.The A Gabor Response Co-occurrence Matrix(GRCM)is used to extract melanoma parameters in an effi-cient manner.A hybrid Particle Swarm Optimization(PSO)-Whale Optimization is then utilized for efficiently optimizing the extracted features.Finally,the fea-tures are significantly classified with the assistance of Probabilistic Neural Net-work(PNN)classifier for classifying the stages of skin lesion in an optimal manner.The whole work is stimulated in MATLAB and the attained outcomes have proved that the introduced approach delivers optimal results with maximal accuracy of 97.83%.展开更多
Autism Spectrum Disorder (ASD) refers to a neuro-disorder wherean individual has long-lasting effects on communication and interaction withothers.Advanced information technologywhich employs artificial intelligence(AI...Autism Spectrum Disorder (ASD) refers to a neuro-disorder wherean individual has long-lasting effects on communication and interaction withothers.Advanced information technologywhich employs artificial intelligence(AI) model has assisted in early identify ASD by using pattern detection.Recent advances of AI models assist in the automated identification andclassification of ASD, which helps to reduce the severity of the disease.This study introduces an automated ASD classification using owl searchalgorithm with machine learning (ASDC-OSAML) model. The proposedASDC-OSAML model majorly focuses on the identification and classificationof ASD. To attain this, the presentedASDC-OSAML model follows minmaxnormalization approach as a pre-processing stage. Next, the owl searchalgorithm (OSA)-based feature selection (OSA-FS) model is used to derivefeature subsets. Then, beetle swarm antenna search (BSAS) algorithm withIterative Dichotomiser 3 (ID3) classification method was implied for ASDdetection and classification. The design of BSAS algorithm helps to determinethe parameter values of the ID3 classifier. The performance analysis of theASDC-OSAML model is performed using benchmark dataset. An extensivecomparison study highlighted the supremacy of the ASDC-OSAML modelover recent state of art approaches.展开更多
Crowd Anomaly Detection has become a challenge in intelligent video surveillance system and security.Intelligent video surveillance systems make extensive use of data mining,machine learning and deep learning methods....Crowd Anomaly Detection has become a challenge in intelligent video surveillance system and security.Intelligent video surveillance systems make extensive use of data mining,machine learning and deep learning methods.In this paper a novel approach is proposed to identify abnormal occurrences in crowded situations using deep learning.In this approach,Adaptive GoogleNet Neural Network Classifier with Multi-Objective Whale Optimization Algorithm are applied to predict the abnormal video frames in the crowded scenes.We use multiple instance learning(MIL)to dynamically develop a deep anomalous ranking framework.This technique predicts higher anomalous values for abnormal video frames by treating regular and irregular video bags and video sections.We use the multi-objective whale optimization algorithm to optimize the entire process and get the best results.The performance parameters such as accuracy,precision,recall,and F-score are considered to evaluate the proposed technique using the Python simulation tool.Our simulation results show that the proposed method performs better than the conventional methods on the public live video dataset.展开更多
文摘Anomaly classification based on network traffic features is an important task to monitor and detect network intrusion attacks.Network-based intrusion detection systems(NIDSs)using machine learning(ML)methods are effective tools for protecting network infrastructures and services from unpredictable and unseen attacks.Among several ML methods,random forest(RF)is a robust method that can be used in ML-based network intrusion detection solutions.However,the minimum number of instances for each split and the number of trees in the forest are two key parameters of RF that can affect classification accuracy.Therefore,optimal parameter selection is a real problem in RF-based anomaly classification of intrusion detection systems.In this paper,we propose to use the genetic algorithm(GA)for selecting the appropriate values of these two parameters,optimizing the RF classifier and improving the classification accuracy of normal and abnormal network traffics.To validate the proposed GA-based RF model,a number of experiments is conducted on two public datasets and evaluated using a set of performance evaluation measures.In these experiments,the accuracy result is compared with the accuracies of baseline ML classifiers in the recent works.Experimental results reveal that the proposed model can avert the uncertainty in selection the values of RF’s parameters,improving the accuracy of anomaly classification in NIDSs without incurring excessive time.
文摘Voice classification is important in creating more intelligent systems that help with student exams,identifying criminals,and security systems.The main aim of the research is to develop a system able to predicate and classify gender,age,and accent.So,a newsystem calledClassifyingVoice Gender,Age,and Accent(CVGAA)is proposed.Backpropagation and bagging algorithms are designed to improve voice recognition systems that incorporate sensory voice features such as rhythm-based features used to train the device to distinguish between the two gender categories.It has high precision compared to other algorithms used in this problem,as the adaptive backpropagation algorithm had an accuracy of 98%and the Bagging algorithm had an accuracy of 98.10%in the gender identification data.Bagging has the best accuracy among all algorithms,with 55.39%accuracy in the voice common dataset and age classification and accent accuracy in a speech accent of 78.94%.
文摘For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs).One type of feasible approaches for EMOPs is to introduce the computationally efficient surrogates for reducing the number of function evaluations.Inspired from ensemble learning,this paper proposes a multiobjective evolutionary algorithm with an ensemble classifier(MOEA-EC)for EMOPs.More specifically,multiple decision tree models are used as an ensemble classifier for the pre-selection,which is be more helpful for further reducing the function evaluations of the solutions than using single inaccurate model.The extensive experimental studies have been conducted to verify the efficiency of MOEA-EC by comparing it with several advanced multiobjective expensive optimization algorithms.The experimental results show that MOEA-EC outperforms the compared algorithms.
基金Project supported by the National Natural Science Foundation of China (No.40375019) the Tropical Marine and Meteorology Science Foundation (No.200609) the Jiangsu Key Laboratory of Meteorological Disaster Foundation (No.KLME0507)
文摘Aiming at the difficulty of accurately constructing the dynamic model of subtropical high, based on the potential height field time series over 500 hPa layer of T106 numerical forecast products, by using EOF(empirical orthogonal function) temporal-spatial separation technique, the disassembled EOF time coefficients series were regarded as dynamical model variables, and dynamic system retrieval idea as well as genetic algorithm were introduced to make dynamical model parameters optimization search, then, a reasonable non-linear dynamic model of EOF time-coefficients was established. By dynamic model integral and EOF temporal-spatial components assembly, a mid-/long-term forecast of subtropical high was carried out. The experimental results show that the forecast results of dynamic model are superior to that of general numerical model forecast results. A new modeling idea and forecast technique is presented for diagnosing and forecasting such complicated weathers as subtropical high.
文摘The non-linear inversion of rock mechanics parameters based on genetic algorithm is presented. The principIe and step of genetic algorithm is also given. A brief discussion of this method and an application example is presented at the end of this paper. From the satisfied result, quick, convenient and practical new approach is developed to solve this kind of problems.
文摘In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear programming (GAINLP) problem solving approach has been proposed for solving non-linear programming optimization problems with inexact information (inexact non-linear operation programming). GAINLP was developed based on a GA-based inexact quadratic solving method. The Genetic Algorithm Solver of the Global Optimization Toolbox (GASGOT) developed by MATLABTM was adopted as the implementation environment of this study. GAINLP was applied to a municipality solid waste management case. The results from different scenarios indicated that the proposed GA-based heuristic optimization approach was able to generate a solution for a complicated nonlinear problem, which also involved uncertainty.
基金supported by the National Natural Science Foundation of China(No.41374123)
文摘At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems.
基金the National Natural Science of China (50675167)a Foundation for the Author of National Excellent Doctoral Dissertation of China(200535)
文摘Support vector classifier (SVC) has the superior advantages for small sample learning problems with high dimensions, with especially better generalization ability. However there is some redundancy among the high dimensions of the original samples and the main features of the samples may be picked up first to improve the performance of SVC. A principal component analysis (PCA) is employed to reduce the feature dimensions of the original samples and the pre-selected main features efficiently, and an SVC is constructed in the selected feature space to improve the learning speed and identification rate of SVC. Furthermore, a heuristic genetic algorithm-based automatic model selection is proposed to determine the hyperparameters of SVC to evaluate the performance of the learning machines. Experiments performed on the Heart and Adult benchmark data sets demonstrate that the proposed PCA-based SVC not only reduces the test time drastically, but also improves the identify rates effectively.
文摘Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of this paper is to analyze the respiratory signal of a person to detect the Normal Breathing Activity and the Sleep Apnea(SA)activity.In the proposed method,the time domain and frequency domain features of respiration signal obtained from the PPG device are extracted.These features are applied to the Classification and Regression Tree(CART)-Particle Swarm Optimization(PSO)classifier which classifies the signal into normal breathing signal and sleep apnea signal.The proposed method is validated to measure the performance metrics like sensitivity,specificity,accuracy and F1 score by applying time domain and frequency domain features separately.Additionally,the performance of the CART-PSO(CPSO)classification algorithm is evaluated through comparing its measures with existing classification algorithms.Concurrently,the effect of the PSO algorithm in the classifier is validated by varying the parameters of PSO.
基金Supported by the National Natural Science Foundation of China (No.60435020).
文摘Word Sense Disambiguation (WSD) is to decide the sense of an ambiguous word on particular context. Most of current studies on WSD only use several ambiguous words as test samples, thus leads to some limitation in practical application. In this paper, we perform WSD study based on large scale real-world corpus using two unsupervised learning algorithms based on ±n-improved Bayesian model and Dependency Grammar (DG)-improved Bayesian model. ±n-improved classifiers reduce the window size of context of ambiguous words with close-distance feature extraction method, and decrease the jamming of useless features, thus obviously improve the accuracy, reaching 83.18% (in open test). DG-improved classifier can more effectively conquer the noise effect existing in Naive-Bayesian classifier. Experimental results show that this approach does better on Chinese WSD, and the open test achieved an accuracy of 86.27%.
基金Budget Foundation of Shanghai University of TCM(A1-GY010130)Philosophy and Social Science Foundation of Shanghai(2019BTQ005)。
文摘Objective:To analyze misdiagnosis features in clinical cases of“Classified Medical Cases of Famous Physicians”and“Supplement to Classified Case Records of Celebrated Physicians.”Materials and Methods:Two hundred and five ancient misdiagnosed cases were analyzed in aspects of locations(exterior-interior type,qi-blood type and Zang‑Fu organs type)and patterns(heat-cold type and deficiency-excess type)by Apriori Algorithm Method.Results:The main types of misdiagnosis in those medical casesare as follows::Zang‑Fu location misjudgment,misjudging the interior as the exterior,misjudging deficiency pattern as excess pattern,and misjudging cold pattern as heat pattern.Among them,the most outstanding type is the misjudgment of deficiency–cold pattern as excess–heat pattern.Conclusions:(1)Accurate judgment of location and differentiation of deficiency and excess patterns are the key points in diagnosing the diseases correctly.The confusion of true deficiency–cold and pseudo‑excess–heat pattern should be taken seriously.(2)Data mining on ancient clinical cases offers a new methodology for assisting clinical diagnosis of traditional Chinese medicine.
文摘An operating rule classification system based on learning classifier system (LCS), which learns through credit assignment (bucket brigade algorithm, BBA) and rule discovery (genetic algorithm, GA), is established to extract water-supply reservoir operating rules. The proposed system acquires an online identification rate of 95% for training samples and an offline rate of 85% for testing samples in a case study. The performances of the rule classification system are discussed from the rationality of the obtained rules, the impact of training samples on rule extraction, and a comparison between the rule classification system and the artificial neural network (ANN). The results indicate that the LCS is feasible and effective for the system to obtain the reservoir supply operating rules.
文摘Due to our increased dependence on Internet and growing number of intrusion incidents, building effective intrusion detection systems are essential for protecting Internet resources and yet it is a great challenge. In literature, many researchers utilized Artificial Neural Networks (ANN) in supervised learning based intrusion detection successfully. Here, ANN maps the network traffic into predefined classes i.e. normal or specific attack type based upon training from label dataset. However, for ANN-based IDS, detection rate (DR) and false positive rate (FPR) are still needed to be improved. In this study, we propose an ensemble approach, called MANNE, for ANN-based IDS that evolves ANNs by Multi Objective Genetic algorithm to solve the problem. It helps IDS to achieve high DR, less FPR and in turn high intrusion detection capability. The procedure of MANNE is as follows: firstly, a Pareto front consisting of a set of non-dominated ANN solutions is created using MOGA, which formulates the base classifiers. Subsequently, based upon this pool of non-dominated ANN solutions as base classifiers, another Pareto front consisting of a set of non-dominated ensembles is created which exhibits classification tradeoffs. Finally, prediction aggregation is done to get final ensemble prediction from predictions of base classifiers. Experimental results on the KDD CUP 1999 dataset show that our proposed ensemble approach, MANNE, outperforms ANN trained by Back Propagation and its ensembles using bagging & boosting methods in terms of defined performance metrics. We also compared our approach with other well-known methods such as decision tree and its ensembles using bagging & boosting methods.
基金Supported by the National Natural Science Foun-dation of China (20506003) the National Basic Research ProgramofChina (973 Program2002CB312200) the ShangHai Science andTechnology of Phosphor of China (04QMX1433)
文摘A novel adaptive non-linear mapping (ANLM), integrating an adaptive mapping error (AME) with a chaosgenetic algorithm (CGA) including chaotic variable, was proposed to overcome the deficiencies of non-linear mapping (NLM). The value of AME weight factor is determined according to the relative deviation square of distance between the two mapping points and the corresponding original objects distance. The larger the relative deviation square between two distances is, the larger the value of the corresponding weight factor is. Due to chaotic mapping operator, the evolutional process of CGA makes the individuals of subgenerations distributed ergodieally in the defined space and circumvents the premature of the individuals of subgenerations. The comparison results demonstrated that the whole performance of CGA is better than that of traditional genetic algorithm. Furthermore, a typical example of mapping eight-dimenslonal olive oil samples onto two-dimensional plane was employed to verify the effectiveness of ANLM. The results showed that the topology-preserving map obtained by ANLM can well represent the classification of original objects and is much better than that obtained by NLM.
基金supported by National Natural Science Foundation of China (No. 40805048,No. 11026226)Typhoon Research Foundation of Shanghai Typhoon Institute/China Meteorological Administration (No. 2008ST01)+1 种基金Research Foundation of State Key Laboratory of Remote Sensing Science,Jointly sponsored by the Instituteof Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University (No. 2009KFJJ013)Research Foundation of State Key Laboratory of Severe Weather/Chinese Academy of Meteorological Sciences (No. 2008LASW-B03)
文摘A novel nonlinear gray transform method is proposed to enhance the contrast of a typhoon cloud image.Generally,the typhoon cloud image obtained by a satellite cannot be directly used to make an accurate prediction of the typhoon's center or intensity because the contrast of the received typhoon cloud image may be bad.Our aim is to extrude the typhoon's eye in the typhoon cloud image.A normalized arc-tangent transformation operation is designed to enhance global contrast of the typhoon cloud image.Differential evolution algorithm is used to choose the optimal nonlinear transform parameter.Finally,geodesic activity contour model is used to extract the typhoon's eye to verify the performance of the proposed method.Experimental results show that the proposed method can efficiently enhance the global contrast of the typhoon cloud image while greatly extruding the typhoon's eye.
文摘Managing physical objects in the network’s periphery is made possible by the Internet of Things(IoT),revolutionizing human life.Open attacks and unauthorized access are possible with these IoT devices,which exchange data to enable remote access.These attacks are often detected using intrusion detection methodologies,although these systems’effectiveness and accuracy are subpar.This paper proposes a new voting classifier composed of an ensemble of machine learning models trained and optimized using metaheuristic optimization.The employed metaheuristic optimizer is a new version of the whale optimization algorithm(WOA),which is guided by the dipper throated optimizer(DTO)to improve the exploration process of the traditionalWOA optimizer.The proposed voting classifier categorizes the network intrusions robustly and efficiently.To assess the proposed approach,a dataset created from IoT devices is employed to record the efficiency of the proposed algorithm for binary attack categorization.The dataset records are balanced using the locality-sensitive hashing(LSH)and Synthetic Minority Oversampling Technique(SMOTE).The evaluation of the achieved results is performed in terms of statistical analysis and visual plots to prove the proposed approach’s effectiveness,stability,and significance.The achieved results confirmed the superiority of the proposed algorithm for the task of network intrusion detection.
文摘The necessity of on-time cancer detection is extremely high in the recent days as it becomes a threat to human life.The skin cancer is considered as one of the dangerous diseases among other types of cancer since it causes severe health impacts on human beings and hence it is highly mandatory to detect the skin cancer in the early stage for providing adequate treatment.Therefore,an effective image processing approach is employed in this present study for the accurate detection of skin cancer.Initially,the dermoscopy images of skin lesions are retrieved and processed by eliminating the noises with the assistance of Gaborfilter.Then,the pre-processed dermoscopy image is segmented into multiple regions by implementing cascaded Fuzzy C-Means(FCM)algorithm,which involves in improving the reliability of cancer detection.The A Gabor Response Co-occurrence Matrix(GRCM)is used to extract melanoma parameters in an effi-cient manner.A hybrid Particle Swarm Optimization(PSO)-Whale Optimization is then utilized for efficiently optimizing the extracted features.Finally,the fea-tures are significantly classified with the assistance of Probabilistic Neural Net-work(PNN)classifier for classifying the stages of skin lesion in an optimal manner.The whole work is stimulated in MATLAB and the attained outcomes have proved that the introduced approach delivers optimal results with maximal accuracy of 97.83%.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project Under Grant Number(61/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R114)+1 种基金Princess Nourah bint Abdulrahman University,Riyadh,Saudi ArabiaThe authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR26).
文摘Autism Spectrum Disorder (ASD) refers to a neuro-disorder wherean individual has long-lasting effects on communication and interaction withothers.Advanced information technologywhich employs artificial intelligence(AI) model has assisted in early identify ASD by using pattern detection.Recent advances of AI models assist in the automated identification andclassification of ASD, which helps to reduce the severity of the disease.This study introduces an automated ASD classification using owl searchalgorithm with machine learning (ASDC-OSAML) model. The proposedASDC-OSAML model majorly focuses on the identification and classificationof ASD. To attain this, the presentedASDC-OSAML model follows minmaxnormalization approach as a pre-processing stage. Next, the owl searchalgorithm (OSA)-based feature selection (OSA-FS) model is used to derivefeature subsets. Then, beetle swarm antenna search (BSAS) algorithm withIterative Dichotomiser 3 (ID3) classification method was implied for ASDdetection and classification. The design of BSAS algorithm helps to determinethe parameter values of the ID3 classifier. The performance analysis of theASDC-OSAML model is performed using benchmark dataset. An extensivecomparison study highlighted the supremacy of the ASDC-OSAML modelover recent state of art approaches.
文摘Crowd Anomaly Detection has become a challenge in intelligent video surveillance system and security.Intelligent video surveillance systems make extensive use of data mining,machine learning and deep learning methods.In this paper a novel approach is proposed to identify abnormal occurrences in crowded situations using deep learning.In this approach,Adaptive GoogleNet Neural Network Classifier with Multi-Objective Whale Optimization Algorithm are applied to predict the abnormal video frames in the crowded scenes.We use multiple instance learning(MIL)to dynamically develop a deep anomalous ranking framework.This technique predicts higher anomalous values for abnormal video frames by treating regular and irregular video bags and video sections.We use the multi-objective whale optimization algorithm to optimize the entire process and get the best results.The performance parameters such as accuracy,precision,recall,and F-score are considered to evaluate the proposed technique using the Python simulation tool.Our simulation results show that the proposed method performs better than the conventional methods on the public live video dataset.