Ensuring a sufficient energy supply is essential to a country. Natural gas constitutes a vital part in energy supply and therefore forecasting natural gas consumption reliably and accurately is an essential part of a ...Ensuring a sufficient energy supply is essential to a country. Natural gas constitutes a vital part in energy supply and therefore forecasting natural gas consumption reliably and accurately is an essential part of a country's energy policy. Over the years, studies have shown that a combinative model gives better projected results compared to a single model. In this study, we used Polynomial Curve and Moving Average Combination Projection (PCMACP) model to estimate the future natural gas consumption in China from 2009 to 2015. The new proposed PCMACP model shows more reliable and accurate results: its Mean Absolute Percentage Error (MAPE) is less than those of any previous models within the investigated range. According to the PCMACP model, the average annual growth rate will increase for the next 7 years and the amount of natural gas consumption will reach 171600 million cubic meters in 2015 in China.展开更多
Random and fluctuating wind speeds make it difficult to stabilize the wind-power output,which complicates the execution of wind-farm control systems and increases the response frequency.In this study,a novel predictio...Random and fluctuating wind speeds make it difficult to stabilize the wind-power output,which complicates the execution of wind-farm control systems and increases the response frequency.In this study,a novel prediction model for ultrashort-term wind-speed prediction in wind farms is developed by combining a deep belief network,the Elman neural network,and the Hilbert-Huang transform modified using an improved particle swarm optimization algorithm.The experimental results show that the prediction results of the proposed deep neural network is better than that of shallow neural networks.Although the complexity of the model is high,the accuracy of wind-speed prediction and stability are also high.The proposed model effectively improves the accuracy of ultrashort-term wind-speed forecasting in wind farms.展开更多
We propose a model based on the optimal weighted combinational forecasting with constant terms, give formulae of the weights and the average errors as well as a relation of the model and the corresponding model withou...We propose a model based on the optimal weighted combinational forecasting with constant terms, give formulae of the weights and the average errors as well as a relation of the model and the corresponding model without constant terms, and compare these models. Finally an example was given, which showed that the fitting precision has been enhanced.展开更多
Cigarette market is a kind of monopoly market which is closed loop running, it depends on the plan mechanism to schedule producing, supplying and selling, but the “bullwhip effect” still exists. So it has a fundamen...Cigarette market is a kind of monopoly market which is closed loop running, it depends on the plan mechanism to schedule producing, supplying and selling, but the “bullwhip effect” still exists. So it has a fundamental significance to do sales forecasting work. It needs to considerate the double trend characteristics, history sales data and other main factors that affect cigarette sales. This paper depends on the panel data of A province’s cigarette sales, first we established three single forecasting models, after getting the predicted value of these single models, then using the combination forecasting method which based on PLS to predict the province’s cigarette sales of the next year. The results show that the prediction accuracy is good, which could provide a certain reference to cigarette sales forecasting in A province.展开更多
As the acceleration of aged population tendency, building models to forecast Alzheimer’s Disease (AD) is essential. In this article, we surveyed 1157 interviewees. By analyzing the results using three machine learnin...As the acceleration of aged population tendency, building models to forecast Alzheimer’s Disease (AD) is essential. In this article, we surveyed 1157 interviewees. By analyzing the results using three machine learning methods—BP neural network, SVM and random forest, we can derive the accuracy of them in forecasting AD, so that we can compare the methods in solving AD prediction. Among them, random forest is the most accurate method. Moreover, to combine the advantages of the methods, we build a new combination forecasting model based on the three machine learning models, which is proved more accurate than the models singly. At last, we give the conclusion of the connection between life style and AD, and provide several suggestions for elderly people to help them prevent AD.展开更多
Equal Salt Deposit Density (ESDD) is a main factor to classify contamination severity and draw pollution distribution map. The precise ESDD forecasting plays an important role in the safety, economy and reliability of...Equal Salt Deposit Density (ESDD) is a main factor to classify contamination severity and draw pollution distribution map. The precise ESDD forecasting plays an important role in the safety, economy and reliability of power system. To cope with the problems existing in the ESDD predicting by multivariate linear regression (MLR), back propagation (BP) neural network and least squares support vector machines (LSSVM), a nonlinear combination forecasting model based on wavelet neural network (WNN) for ESDD is proposed. The model is a WNN with three layers, whose input layer has three neurons and output layer has one neuron, namely, regarding the ESDD forecasting results of MLR, BP and LSSVM as the inputs of the model and the observed value as the output. In the interest of better reflection of the influence of each single forecasting model on ESDD and increase of the accuracy of ESDD prediction, Morlet wavelet is used to con-struct WNN, error backpropagation algorithm is adopted to train the network and genetic algorithm is used to determine the initials of the parameters. Simulation results show that the accuracy of the proposed combina-tion ESDD forecasting model is higher than that of any single model and that of traditional linear combina-tion forecasting (LCF) model. The model provides a new feasible way to increase the accuracy of pollution distribution map of power network.展开更多
It has been shown in recent economic and statistical studies that combining forecasts may produce more accurate forecasts than individual ones. However, the literature on combining forecasts has almost exclusively foc...It has been shown in recent economic and statistical studies that combining forecasts may produce more accurate forecasts than individual ones. However, the literature on combining forecasts has almost exclusively focused on linear combining forecasts. In this paper, a new nonlinear combination forecasting method based on fuzzy inference system is present to overcome the difficulties and drawbacks in linear combination modeling of non-stationary time series. Furthermore, the optimization algorithm based on a hierarchical structure of learning automata is used to identify the parameters of the fuzzy system. Experiment results related to numerical examples demonstrate that the new technique has excellent identification performances and forecasting accuracy superior to other existing linear combining forecasts.展开更多
To solve the medium and long term power load forecasting problem,the combination forecasting method is further expanded and a weighted combination forecasting model for power load is put forward.This model is divided ...To solve the medium and long term power load forecasting problem,the combination forecasting method is further expanded and a weighted combination forecasting model for power load is put forward.This model is divided into two stages which are forecasting model selection and weighted combination forecasting.Based on Markov chain conversion and cloud model,the forecasting model selection is implanted and several outstanding models are selected for the combination forecasting.For the weighted combination forecasting,a fuzzy scale joint evaluation method is proposed to determine the weight of selected forecasting model.The percentage error and mean absolute percentage error of weighted combination forecasting result of the power consumption in a certain area of China are 0.7439%and 0.3198%,respectively,while the maximum values of these two indexes of single forecasting models are 5.2278%and 1.9497%.It shows that the forecasting indexes of proposed model are improved significantly compared with the single forecasting models.展开更多
This paper depends on the panel data of Anhui province and its 17 cities’ cigarette sales. First we established three single forecasting models (Holter-Wintel Season product model, Time series model decomposing model...This paper depends on the panel data of Anhui province and its 17 cities’ cigarette sales. First we established three single forecasting models (Holter-Wintel Season product model, Time series model decomposing model and Partial least square regression model), after getting the predicted value of cigarette sales from these single models, we then employ the combination forecasting method based on Time Series method and PLS to predict the province and its 17 cities’ cigarette sales of the next year. The results show that the accuracy of prediction is good which could provide a reliable reference to cigarette sales forecasting in Anhui province and its 17 cities.展开更多
In order to enhance forecasting precision of problems about nonlinear time series in a complex industry system,a new nonlinear fuzzy adaptive variable weight combined forecasting model was established by using concept...In order to enhance forecasting precision of problems about nonlinear time series in a complex industry system,a new nonlinear fuzzy adaptive variable weight combined forecasting model was established by using conceptions of the relative error,the change tendency of the forecasted object,gray basic weight and adaptive control coefficient on the basis of the method of fuzzy variable weight.Based on Visual Basic 6.0 platform,a fuzzy adaptive variable weight combined forecasting and management system was developed.The application results reveal that the forecasting precisions from the new nonlinear combined forecasting model are higher than those of other single combined forecasting models and the combined forecasting and management system is very powerful tool for the required decision in complex industry system.展开更多
This paper proposes artificial neural networks (ANN) as a tool for nonlinear combination of forecasts. In this study, three forecasting models are used for individual forecasts, and then two linear combining methods a...This paper proposes artificial neural networks (ANN) as a tool for nonlinear combination of forecasts. In this study, three forecasting models are used for individual forecasts, and then two linear combining methods are used to compare with the ANN combining method. The comparative experiment using real--world data shows that the prediction by the ANN method outperforms those by linear combining methods. The paper suggests that the ANN combining method can be used as- an alternative to conventional linear combining methods to achieve greater forecasting accuracy.展开更多
Two kinds of parameter estimation methods (I) and (II) of combining forecasting based on harmontic mean are proposed and compared through a lot of simulation forecasting examples. A very helpful conclusion is obtained...Two kinds of parameter estimation methods (I) and (II) of combining forecasting based on harmontic mean are proposed and compared through a lot of simulation forecasting examples. A very helpful conclusion is obtained, which can lay solid foundations for correct application of the above methods.展开更多
A new kind of combining forecasting model based on the generalized weighted functional proportional mean is proposed and the parameter estimation method of its weighting coefficients by means of the algorithm of quadr...A new kind of combining forecasting model based on the generalized weighted functional proportional mean is proposed and the parameter estimation method of its weighting coefficients by means of the algorithm of quadratic programming is given. This model has extensive representation. It is a new kind of aggregative method of group forecasting. By taking the suitable combining form of the forecasting models and seeking the optimal parameter, the optimal combining form can be obtained and the forecasting accuracy can be improved. The effectiveness of this model is demonstrated by an example.展开更多
Forecasting returns for the Artificial Intelligence and Robotics Index is of great significance for financial market stability,and the development of the artificial intelligence industry.To provide investors with a mo...Forecasting returns for the Artificial Intelligence and Robotics Index is of great significance for financial market stability,and the development of the artificial intelligence industry.To provide investors with a more reliable reference in terms of artificial intelligence index investment,this paper selects the NASDAQ CTA Artificial Intelligence and Robotics(AIRO)Index as the research target,and proposes innovative hybrid methods to forecast returns by considering its multiple structural characteristics.Specifically,this paper uses the ensemble empirical mode decomposition(EEMD)method and the modified iterative cumulative sum of squares(ICSS)algorithm to decompose the index returns and identify the structural breakpoints.Furthermore,it combines the least-square support vector machine approach with the particle swarm optimization method(PSO-LSSVM)and the generalized autoregressive conditional heteroskedasticity(GARCH)type models to construct innovative hybrid forecasting methods.On the one hand,the empirical results indicate that the AIRO index returns have complex structural characteristics,and present time-varying and nonlinear characteristics with high complexity and mutability;on the other hand,the newly proposed hybrid forecasting method(i.e.,the EEMD-PSO-LSSVM-ICSS-GARCH models)which considers these complex structural characteristics,can yield the optimal forecasting performance for the AIRO index returns.展开更多
基金supported by the Youth Fund of Chinese Academy of Sciences Knowledge Innovation Program area frontier projects (No. S200603)the Innovation Team Project of Education Department of Liaoning Province (No. 2007T050)
文摘Ensuring a sufficient energy supply is essential to a country. Natural gas constitutes a vital part in energy supply and therefore forecasting natural gas consumption reliably and accurately is an essential part of a country's energy policy. Over the years, studies have shown that a combinative model gives better projected results compared to a single model. In this study, we used Polynomial Curve and Moving Average Combination Projection (PCMACP) model to estimate the future natural gas consumption in China from 2009 to 2015. The new proposed PCMACP model shows more reliable and accurate results: its Mean Absolute Percentage Error (MAPE) is less than those of any previous models within the investigated range. According to the PCMACP model, the average annual growth rate will increase for the next 7 years and the amount of natural gas consumption will reach 171600 million cubic meters in 2015 in China.
基金This study was supported by the Research and Application of Key Technologies in the Design of Large Onshore Smart Wind Power Base(Grant No.XBY-ZDKJ-2020-05)the Scientific Research Project of the China Electric Power Construction Corporation:Research and Application of Key Technologies in the Design of an Onshore Smart Wind Power Base(Grant No.DJ-ZDXM-2020-52)+2 种基金the Danish Energy Agency(Grant No.64013-0405)the Fundamental Research Funds for the Central Universities(Grant No.B210201018)the Jiangsu Province Policy Guidance Program(Grant No.BZ2021019).
文摘Random and fluctuating wind speeds make it difficult to stabilize the wind-power output,which complicates the execution of wind-farm control systems and increases the response frequency.In this study,a novel prediction model for ultrashort-term wind-speed prediction in wind farms is developed by combining a deep belief network,the Elman neural network,and the Hilbert-Huang transform modified using an improved particle swarm optimization algorithm.The experimental results show that the prediction results of the proposed deep neural network is better than that of shallow neural networks.Although the complexity of the model is high,the accuracy of wind-speed prediction and stability are also high.The proposed model effectively improves the accuracy of ultrashort-term wind-speed forecasting in wind farms.
基金Supported by the Natural Science Foundation of Henan Province(994053200)
文摘We propose a model based on the optimal weighted combinational forecasting with constant terms, give formulae of the weights and the average errors as well as a relation of the model and the corresponding model without constant terms, and compare these models. Finally an example was given, which showed that the fitting precision has been enhanced.
文摘Cigarette market is a kind of monopoly market which is closed loop running, it depends on the plan mechanism to schedule producing, supplying and selling, but the “bullwhip effect” still exists. So it has a fundamental significance to do sales forecasting work. It needs to considerate the double trend characteristics, history sales data and other main factors that affect cigarette sales. This paper depends on the panel data of A province’s cigarette sales, first we established three single forecasting models, after getting the predicted value of these single models, then using the combination forecasting method which based on PLS to predict the province’s cigarette sales of the next year. The results show that the prediction accuracy is good, which could provide a certain reference to cigarette sales forecasting in A province.
文摘As the acceleration of aged population tendency, building models to forecast Alzheimer’s Disease (AD) is essential. In this article, we surveyed 1157 interviewees. By analyzing the results using three machine learning methods—BP neural network, SVM and random forest, we can derive the accuracy of them in forecasting AD, so that we can compare the methods in solving AD prediction. Among them, random forest is the most accurate method. Moreover, to combine the advantages of the methods, we build a new combination forecasting model based on the three machine learning models, which is proved more accurate than the models singly. At last, we give the conclusion of the connection between life style and AD, and provide several suggestions for elderly people to help them prevent AD.
文摘Equal Salt Deposit Density (ESDD) is a main factor to classify contamination severity and draw pollution distribution map. The precise ESDD forecasting plays an important role in the safety, economy and reliability of power system. To cope with the problems existing in the ESDD predicting by multivariate linear regression (MLR), back propagation (BP) neural network and least squares support vector machines (LSSVM), a nonlinear combination forecasting model based on wavelet neural network (WNN) for ESDD is proposed. The model is a WNN with three layers, whose input layer has three neurons and output layer has one neuron, namely, regarding the ESDD forecasting results of MLR, BP and LSSVM as the inputs of the model and the observed value as the output. In the interest of better reflection of the influence of each single forecasting model on ESDD and increase of the accuracy of ESDD prediction, Morlet wavelet is used to con-struct WNN, error backpropagation algorithm is adopted to train the network and genetic algorithm is used to determine the initials of the parameters. Simulation results show that the accuracy of the proposed combina-tion ESDD forecasting model is higher than that of any single model and that of traditional linear combina-tion forecasting (LCF) model. The model provides a new feasible way to increase the accuracy of pollution distribution map of power network.
基金Funded by the Excellent Young Teachers of MOE (350) and Chongqing Education Committee Foundation
文摘It has been shown in recent economic and statistical studies that combining forecasts may produce more accurate forecasts than individual ones. However, the literature on combining forecasts has almost exclusively focused on linear combining forecasts. In this paper, a new nonlinear combination forecasting method based on fuzzy inference system is present to overcome the difficulties and drawbacks in linear combination modeling of non-stationary time series. Furthermore, the optimization algorithm based on a hierarchical structure of learning automata is used to identify the parameters of the fuzzy system. Experiment results related to numerical examples demonstrate that the new technique has excellent identification performances and forecasting accuracy superior to other existing linear combining forecasts.
文摘To solve the medium and long term power load forecasting problem,the combination forecasting method is further expanded and a weighted combination forecasting model for power load is put forward.This model is divided into two stages which are forecasting model selection and weighted combination forecasting.Based on Markov chain conversion and cloud model,the forecasting model selection is implanted and several outstanding models are selected for the combination forecasting.For the weighted combination forecasting,a fuzzy scale joint evaluation method is proposed to determine the weight of selected forecasting model.The percentage error and mean absolute percentage error of weighted combination forecasting result of the power consumption in a certain area of China are 0.7439%and 0.3198%,respectively,while the maximum values of these two indexes of single forecasting models are 5.2278%and 1.9497%.It shows that the forecasting indexes of proposed model are improved significantly compared with the single forecasting models.
文摘This paper depends on the panel data of Anhui province and its 17 cities’ cigarette sales. First we established three single forecasting models (Holter-Wintel Season product model, Time series model decomposing model and Partial least square regression model), after getting the predicted value of cigarette sales from these single models, we then employ the combination forecasting method based on Time Series method and PLS to predict the province and its 17 cities’ cigarette sales of the next year. The results show that the accuracy of prediction is good which could provide a reliable reference to cigarette sales forecasting in Anhui province and its 17 cities.
基金Project(08SK1002) supported by the Major Project of Science and Technology Department of Hunan Province,China
文摘In order to enhance forecasting precision of problems about nonlinear time series in a complex industry system,a new nonlinear fuzzy adaptive variable weight combined forecasting model was established by using conceptions of the relative error,the change tendency of the forecasted object,gray basic weight and adaptive control coefficient on the basis of the method of fuzzy variable weight.Based on Visual Basic 6.0 platform,a fuzzy adaptive variable weight combined forecasting and management system was developed.The application results reveal that the forecasting precisions from the new nonlinear combined forecasting model are higher than those of other single combined forecasting models and the combined forecasting and management system is very powerful tool for the required decision in complex industry system.
文摘This paper proposes artificial neural networks (ANN) as a tool for nonlinear combination of forecasts. In this study, three forecasting models are used for individual forecasts, and then two linear combining methods are used to compare with the ANN combining method. The comparative experiment using real--world data shows that the prediction by the ANN method outperforms those by linear combining methods. The paper suggests that the ANN combining method can be used as- an alternative to conventional linear combining methods to achieve greater forecasting accuracy.
文摘Two kinds of parameter estimation methods (I) and (II) of combining forecasting based on harmontic mean are proposed and compared through a lot of simulation forecasting examples. A very helpful conclusion is obtained, which can lay solid foundations for correct application of the above methods.
文摘A new kind of combining forecasting model based on the generalized weighted functional proportional mean is proposed and the parameter estimation method of its weighting coefficients by means of the algorithm of quadratic programming is given. This model has extensive representation. It is a new kind of aggregative method of group forecasting. By taking the suitable combining form of the forecasting models and seeking the optimal parameter, the optimal combining form can be obtained and the forecasting accuracy can be improved. The effectiveness of this model is demonstrated by an example.
基金support from National Natural Science Foundation of China(Nos.71774051,72243003)National Social Science Fund of China(No.22AZD128)the seminar participants in Center for Resource and Environmental Management,Hunan University,China.
文摘Forecasting returns for the Artificial Intelligence and Robotics Index is of great significance for financial market stability,and the development of the artificial intelligence industry.To provide investors with a more reliable reference in terms of artificial intelligence index investment,this paper selects the NASDAQ CTA Artificial Intelligence and Robotics(AIRO)Index as the research target,and proposes innovative hybrid methods to forecast returns by considering its multiple structural characteristics.Specifically,this paper uses the ensemble empirical mode decomposition(EEMD)method and the modified iterative cumulative sum of squares(ICSS)algorithm to decompose the index returns and identify the structural breakpoints.Furthermore,it combines the least-square support vector machine approach with the particle swarm optimization method(PSO-LSSVM)and the generalized autoregressive conditional heteroskedasticity(GARCH)type models to construct innovative hybrid forecasting methods.On the one hand,the empirical results indicate that the AIRO index returns have complex structural characteristics,and present time-varying and nonlinear characteristics with high complexity and mutability;on the other hand,the newly proposed hybrid forecasting method(i.e.,the EEMD-PSO-LSSVM-ICSS-GARCH models)which considers these complex structural characteristics,can yield the optimal forecasting performance for the AIRO index returns.