To study rock damage characteristics under long-term freeze-thaw cycles and loads,rock freeze-thaw and creep damage factors were defined based on nuclear magnetic resonance porosity and volume strain,respectively.The ...To study rock damage characteristics under long-term freeze-thaw cycles and loads,rock freeze-thaw and creep damage factors were defined based on nuclear magnetic resonance porosity and volume strain,respectively.The damage factor is introduced into the basic rheological element,and the non-linear creep damage constitutive model and freeze-thaw rock equation are established to describe non-linear creep characteristics under a constant load.Simultaneously,the creep test of freeze-thaw rock under step loading is performed.Based on the test data,the applicability and accuracy of the creep damage freeze-thaw rock model are analyzed and verified.The results show that freeze-thaw cycles result in continuous rock pore structure damage and deterioration,and nuclear magnetic resonance porosity enhancement.The constant load induces increasing rock plastic deformation,volume,and creep aging damage.As the loading stress increases,the instantaneous rock elastic parameters increase,and the rheological elastic and viscosity parameters decrease.Furthermore,the damage degradation of freeze-thaw cycles weakens the rock viscoplasticity,resulting in a rapid decrease in the viscosity parameter with an increase in freeze-thaw cycles.Generally,the continuous damage of the rock is degraded,and the long-term strength decreases continuously.展开更多
Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,...Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation.展开更多
This research work aims at modeling the creep behavior of a material by a non-linear schapery’s viscoelastic model. We started with analytical part where three powerful methods of creep modeling have been developed a...This research work aims at modeling the creep behavior of a material by a non-linear schapery’s viscoelastic model. We started with analytical part where three powerful methods of creep modeling have been developed and compared. That is the Heaviside, the Nordin and Varna and lastly our own proposed methods. From this preliminary study, it came out that our method is different to the two others because we took into account the loading time at the creep beginning. Besides we studied several loading programs and retained a five order non-linear polynomial which is the program that gave us satisfactory results. The other loading functions led to divergent results and wasn’t present here as consequence. In the second part of this work, we devoted ourselves to the determination of non-linear parameters in the schapery’s viscoelasticity equation, through a well developed and illustrated methodology. From this study, it is straight forward that non-linear parameters are stress dependent;confirming the results of several authors that preceded us in this studying field.展开更多
For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical a...For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location.展开更多
To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloadin...To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloading confining pressure conditions.Experimental results show that the salt sample deforms more significantly with the increase of applied temperature and deviatoric loading.The accelerated creep phase is not occurring until the applied temperature reaches 130℃,and higher temperature is beneficial to the occurrence of accelerated creep.To describe the specific creep behavior,a novel three-dimensional(3D)creep constitutive model is developed that incorporates the thermal and mechanical variables into mechanical elements.Subsequently,the standard particle swarm optimization(SPSO)method is adopted to fit the experimental data,and the sensibility of key model parameters is analyzed to further illustrate the model function.As a result,the model can accurately predict the creep behavior of salt under the coupled thermo-mechanical effect in deep-buried condition.Based on the research results,the creep mechanical behavior of wellbore shrinkage is predicted in deep drilling projects crossing salt layer,which has practical implications for deep rock mechanics problems.展开更多
Stability analysis of underground constructions requires a model study of rock masses’ long-term performance. Creep tests under different stress conditions was conducted on intact granite and granite samples fracture...Stability analysis of underground constructions requires a model study of rock masses’ long-term performance. Creep tests under different stress conditions was conducted on intact granite and granite samples fractured at 30° and 45° angles. The experimental results indicate that the steady creep strain rates of intact and fractured rock present an exponential increase trend with the increase of stress level. A nonlinear creep model is developed based on the experimental results, in which the initial damage caused by fracture together with the damage caused by constant load have been taken into consideration. The fitting analysis results indicated that the model proposed is more accurate at identifying the full creep regions in fractured granite, especially the accelerated stage of creep deformation. The least-square fit error of the proposed creep model is significantly lower than that of Nishihara model by almost an order of magnitude. An analysis of the effects of elastic modulus, viscosity coefficient, and damage factors on fractured rock strain rate and creep strain is conducted. If no consideration is given to the effects of the damage, the proposed nonlinear creep model can degenerate into to the classical Nishihara model.展开更多
The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional the...The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional thermo-mechanical treatment was modified via the replacement of hot-rolling with cold rolling,i.e.,normalizing,cold rolling,and tempering (NCT),which was developed to improve the creep strength of the FGHAZ in G115 steel weldments.The NCT treatment effectively promoted the dissolution of preformed M_(23)C_(6)particles and relieved the boundary segregation of C and Cr during welding thermal cycling,which accelerated the dispersed reprecipitation of M_(23)C_(6) particles within the fresh reaustenitized grains during post-weld heat treatment.In addition,the precipitation of Cu-rich phases and MX particles was promoted evidently due to the deformation-induced dislocations.As a result,the interacting actions between precipitates,dislocations,and boundaries during creep were reinforced considerably.Following this strategy,the creep rupture life of the FGHAZ in G115 steel weldments can be prolonged by 18.6%,which can further push the application of G115 steel in USC power plants.展开更多
Mg-Gd-Zn based alloys have better creep resistance than other Mg alloys and attract more attention at elevated temperatures.However,the multiple alloying elements and various heat treatment conditions,combined with co...Mg-Gd-Zn based alloys have better creep resistance than other Mg alloys and attract more attention at elevated temperatures.However,the multiple alloying elements and various heat treatment conditions,combined with complex microstructural evolution during creep tests,bring great challenges in understanding and predicting creep behaviors.In this study,we proposed to predict the creep properties and reveal the creep mechanisms of Mg-Gd-Zn based alloys by machine learning.On the one hand,the minimum creep rates were effectively predicted by using a support vector regression model.The complex and nonmonotonic effects of test temperature,test stress,alloying elements,and heat treatment conditions on the creep properties were revealed.On the other hand,the creep stress exponents and creep activation energies were calculated by machine learning to analyze the variation of creep mechanisms,based on which the constitutive equations of Mg-Gd-Zn based alloys were obtained.This study introduces an efficient method to comprehend creep behaviors through machine learning,offering valuable insights for the future design and selection of Mg alloys.展开更多
In this study,the tensile creep behavior of a hot-rolled Mg-4Y-3.5Nd alloy subjected to different prior thermo-mechanical treatments was investigated at 220℃.Five groups of samples were prepared using different combi...In this study,the tensile creep behavior of a hot-rolled Mg-4Y-3.5Nd alloy subjected to different prior thermo-mechanical treatments was investigated at 220℃.Five groups of samples were prepared using different combinations of the solid solution(S),aging treatment at 220℃ for 30 h(A),and hot compression at 490℃ to a true strain of 0.25(C).The abbreviations for the samples are S,SA,SC,SAC,and SCA.Upon examining the yield strength and creep resistance,it was found that creep resistance could not be directly predicted by the yield strength.The stability of the deformation bands(DBs)induced by prior thermo-mechanical treatment plays an important role in determining the creep resistance.The dislocation of the DBs and demonstrated the best creep resistance in the SAC sample,which were prepared using a solid solution,aging treatment,and subsequent hot compression.However,despite the highest yield strength,frequent dislocation motions destroyed the stability of the DBs and deteriorated the creep resistance of the SCA sample,which were prepared using a solid solution,hot compression,and subsequent aging treatment.Among the thermo-mechanical treatments used in this study,the application of aging treatment was important to obtain the resultant creep resistance.When the aging treatment was performed prior to hot compression,the creep resistance could be further enhanced based only on hot compression.Accordingly,the sequence from the strongest to the weakest creep resistance was SAC>SC>S>SCA>SA.展开更多
To ensure the long-term safety and stability of bridge pile foundations in permafrost regions,it is necessary to investigate the rheological effects on the pile tip and pile side bearing capacities.The creep character...To ensure the long-term safety and stability of bridge pile foundations in permafrost regions,it is necessary to investigate the rheological effects on the pile tip and pile side bearing capacities.The creep characteristics of the pile-frozen soil interface are critical for determining the long-term stability of permafrost pile foundations.This study utilized a self-developed large stress-controlled shear apparatus to investigate the shear creep characteristics of the frozen silt-concrete interface,and examined the influence of freezing temperatures(−1,−2,and−5°C),contact surface roughness(0,0.60,0.75,and 1.15 mm),normal stress(50,100,and 150 kPa),and shear stress on the creep characteristics of the contact surface.By incorporating the contact surface’s creep behavior and development trends,we established a creep constitutive model for the frozen silt-concrete interface based on the Nishihara model,introducing nonlinear elements and a damage factor.The results revealed significant creep effects on the frozen silt-concrete interface under constant load,with creep displacement at approximately 2-15 times the instantaneous displacement and a failure creep displacement ranging from 6 to 8 mm.Under different experimental conditions,the creep characteristics of the frozen silt-concrete interface varied.A larger roughness,lower freezing temperatures,and higher normal stresses resulted in a longer sample attenuation creep time,a lower steady-state creep rate,higher long-term creep strength,and stronger creep stability.Building upon the Nishihara model,we considered the influence of shear stress and time on the viscoelastic viscosity coefficient and introduced a damage factor to the viscoplasticity.The improved model effectively described the entire creep process of the frozen silt-concrete interface.The results provide theoretical support for the interaction between pile and soil in permafrost regions.展开更多
G115 steel was jointly developed by China Iron & Steel Research Institute Group Co.,Ltd.and Baosteel for usage in 600-650 ℃ ultrasupercritical boiler tubes.Using a hot extruded G115 tube,creep tests were conducte...G115 steel was jointly developed by China Iron & Steel Research Institute Group Co.,Ltd.and Baosteel for usage in 600-650 ℃ ultrasupercritical boiler tubes.Using a hot extruded G115 tube,creep tests were conducted under a constant stress of 130 MPa and temperatures of 625,650 and 675 ℃.Comparing creep curves under different temperatures,it is observed that the creep performance of a G115 tube is more sensitive to temperature than stress.Steady-state creep rates of creep specimens are significantly increased by enhancing the temperature.A micro-structural analysis of ruptured creep specimens under a stress of 130 MPa and temperatures of 650 ℃ and 675 ℃ was performed;the fracture mechanism of creep specimens under these two temperatures mainly included the appearance of creep holes on the grain boundary and a decrease in the martensite lath density.展开更多
The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formabilit...The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formability of Al-Cu-Li alloy is vital.A thorough comparison of the effects of cryo-deformation and ambient temperature large pre-deformation(LPD)on the creep ageing response in the 2195 alloy sheet at 160℃with different stresses has been made.The evolution of dislocations and precipitates during creep ageing of LPD alloys are revealed by X-ray diffraction and transmission electron microscopy.High-quality 2195 alloy sheet largely pre-deformed by 80%without edge-cracking is obtained by cryo-rolling at liquid nitrogen temperature,while severe edge-cracking occurs during room temperature rolling.The creep formability and strength of the 2195 alloy are both enhanced by introducing pre-existing dislocations with a density over 1.4×10^(15)m^(−2).At 160℃and 150 MPa,creep strain and creep-aged strength generally increases by 4−6 times and 30−50 MPa in the LPD sample,respectively,compared to conventional T3 alloy counterpart.The elongation of creep-aged LPD sample is low but remains relevant for application.The high-density dislocations,though existing in the form of dislocation tangles,promote the formation of refined T1 precipitates with a uniform dispersion.展开更多
Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.Th...Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary.However,in the case of tubular concrete structures,where air inlet and outlet are relatively limited,the internal air temperature does not dissipate promptly to the external environment as it rises.To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces during construction,we establish an air–concrete coupled heat transfer model according to the principles of conjugate heat transfer,and the accuracy of the model is verified through experiments.Furthermore,we conduct a case study to analyze the impact of airflow within the ship lock corridor on concrete temperature and creep stress.The results demonstrate that enhancing airflow within the corridor can significantly reduce the maximum concrete temperature.Compared with cases in which airflow within the corridor is neglected,the maximum concrete temperature and maximum tensile stress can be reduced by 12.5℃ and 0.7 MPa,respectively,under a wind speed of 4 m/s.The results of the traditional calculation method are relatively close to those obtained at a wind speed of 1 m/s.However,the temperature reduction process in the traditional method is faster,and the method yields greater tensile stress values for the corridor location.展开更多
Establishment of a creep model is an important method to analyze the relationship between soil creep deformation and time,and the element model is widely used for studying soil creep.However,the element creep model is...Establishment of a creep model is an important method to analyze the relationship between soil creep deformation and time,and the element model is widely used for studying soil creep.However,the element creep model is employed for fitting saturated soil,and the mechanical element model is generally linear,which cannot well fit the nonlinear deformation of the soil with time in practice.The creep process of the soil is not only time-dependent,but also related to the deviatoric stress level.Therefore,the fractional calculus theory and a parameter n reflecting the effect of deviatoric stress level on the creep properties of the soil were introduced into the element model,and the fractional qBurgers creep model was established by using the fractional Koeller dashpot and Caputo fractional calculus.The proposed model was used to fit the triaxial test data of reticulated red clay under different net confining pressures and matric suctions by unsaturated triaxial apparatus.The proposed model can well describe the nonlinearity of unsaturated reticulated red clay,has memory and global correlation to the creep development process of unsaturated reticulated red clay,and has clear physical meaning.The functional relationships of the model parameters with the matric suction,net confining pressure and deviatoric stress level were deduced,so that the creep curves of unsaturated reticulated red clay can be obtained for any conditions,which is of great value for the study of unsaturated soils.展开更多
The three largest earthquakes in northern California since 1849 were preceded by increased decadal activity for moderate-size shocks along surrounding nearby faults. Increased seismicity, double-difference precise loc...The three largest earthquakes in northern California since 1849 were preceded by increased decadal activity for moderate-size shocks along surrounding nearby faults. Increased seismicity, double-difference precise locations of earthquakes since 1968, geodetic data and fault offsets for the 1906 great shock are used to re-examine the timing and locations of possible future large earthquakes. The physical mechanisms of regional faults like the Calaveras, Hayward and Sargent, which exhibit creep, differ from those of the northern San Andreas, which is currently locked and is not creeping. Much decadal forerunning activity occurred on creeping faults. Moderate-size earthquakes along those faults became more frequent as stresses in the region increased in the latter part of the cycle of stress restoration for major and great earthquakes along the San Andreas. They may be useful for decadal forecasts. Yearly to decadal forecasts, however, are based on only a few major to great events. Activity along closer faults like that in the two years prior to the 1989 Loma Prieta shock needs to be examined for possible yearly forerunning changes to large plate boundary earthquakes. Geodetic observations are needed to focus on identifying creeping faults close to the San Andreas. The distribution of moderate-size earthquakes increased significantly since 1990 along the Hayward fault but not adjacent to the San Andreas fault to the south of San Francisco compared to what took place in the decades prior to the three major historic earthquakes in the region. It is now clear from a re-examination of the 1989 mainshock that the increased level of moderate-size shocks in the one to two preceding decades occurred on nearby East Bay faults. Double-difference locations of small earthquakes provide structural information about faults in the region, especially their depths. The northern San Andreas fault is divided into several strongly coupled segments based on differences in seismicity.展开更多
This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results...This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination.展开更多
Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxi...Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal.展开更多
By the methods of uniaxial single-stage loading and graded incremental cyclic loading, the creep experiments were performed on the deep saturated rock from Dongguashan Mine, and the creep curves of saturated rock unde...By the methods of uniaxial single-stage loading and graded incremental cyclic loading, the creep experiments were performed on the deep saturated rock from Dongguashan Mine, and the creep curves of saturated rock under different loading stresses were obtained. By comparing with the creep rule of dry rock in the same location, the creep rule of deep saturated rock was analyzed. Based on the united rheological mechanical model, the rheological model of deep saturated rock was recognized, and the parameters of the model were determined. The results show that the creep curves are very smooth under low stress, but the phenomena of wave and catastrophe turn up under high stress, and the bearing capacity of rock is weakening over time. The rheological properties of saturated and dry rocks are very different under tlie condition of deep high stress, especially when unloading, degradation and damage of rock quality is more serious, and the effect of water cannot be neglected. The H--HIN--NJS model (Schofield-Scott-Blair model) was selected to represent the rheology rule of deep saturated rock, and the fitting curves of model agree well with the experiment data, so the selected model is reasonable.展开更多
A set of uniaxial tensile creep tests at different pre-deformations, aging temperatures and stress levels were carried out for Al-Li-S4 alloy, and the creep behavior and the effects of pre-deformation on mechanical pr...A set of uniaxial tensile creep tests at different pre-deformations, aging temperatures and stress levels were carried out for Al-Li-S4 alloy, and the creep behavior and the effects of pre-deformation on mechanical properties and microstructures were determined under basic thermodynamics conditions of aging forming. The results show that pre-deformation shortens the time of primary creep and raises the second steady-state creep rate. Then, the total creep strain is greater, but in the range of test parameters it is still smaller than that without pre-deformation. In addition, transmission electron microscopy(TEM) observation shows that pre-deformation promotes the formation of T1 phase and θ′ phase and makes them distribute more dispersively, while inhibits the generation of δ′ phase, which leads to the improvement of mechanical properties of the alloy. A unified constitutive model reflecting the effects of aging mechanism, stress levels and different pre-deformations was established. The fitting results agree with the experimental data well.展开更多
In order to investigate the springback rules, the variation characteristics of physical property and microstructure in bending creep age forming process, a series of creep forming tests of 2124 aluminum alloy were con...In order to investigate the springback rules, the variation characteristics of physical property and microstructure in bending creep age forming process, a series of creep forming tests of 2124 aluminum alloy were conducted based on three kinds of single and double curvature forming tools. The results show that the spingback rate would be the minimum under the optimal coupling conditions among the temperature, aging time and internal stress state of material. Difference exists in the two directions of the formed sample with double curvature, but the curvature variation keeps the same. Yield strength, ultimate tensile strength and fracture toughness of the double curvature formed sample appear to be higher than those of the single curvature formed sample under the same aging condition, but the elongation and the anisotropy are opposite.展开更多
基金Projects(41502327,51474252,51774323)supported by the National Natural Science Foundation of ChinaProject(2020JJ4712)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(CX20190221)supported by the Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(ZJRMG-2018-Z03)supported by the Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province,China。
文摘To study rock damage characteristics under long-term freeze-thaw cycles and loads,rock freeze-thaw and creep damage factors were defined based on nuclear magnetic resonance porosity and volume strain,respectively.The damage factor is introduced into the basic rheological element,and the non-linear creep damage constitutive model and freeze-thaw rock equation are established to describe non-linear creep characteristics under a constant load.Simultaneously,the creep test of freeze-thaw rock under step loading is performed.Based on the test data,the applicability and accuracy of the creep damage freeze-thaw rock model are analyzed and verified.The results show that freeze-thaw cycles result in continuous rock pore structure damage and deterioration,and nuclear magnetic resonance porosity enhancement.The constant load induces increasing rock plastic deformation,volume,and creep aging damage.As the loading stress increases,the instantaneous rock elastic parameters increase,and the rheological elastic and viscosity parameters decrease.Furthermore,the damage degradation of freeze-thaw cycles weakens the rock viscoplasticity,resulting in a rapid decrease in the viscosity parameter with an increase in freeze-thaw cycles.Generally,the continuous damage of the rock is degraded,and the long-term strength decreases continuously.
基金funded by the National Natural Science Foundation of China(Grant Nos.U22A20166 and 12172230)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515012654)+1 种基金funded by the National Natural Science Foundation of China(Grant Nos.U22A20166 and 12172230)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515012654)。
文摘Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation.
文摘This research work aims at modeling the creep behavior of a material by a non-linear schapery’s viscoelastic model. We started with analytical part where three powerful methods of creep modeling have been developed and compared. That is the Heaviside, the Nordin and Varna and lastly our own proposed methods. From this preliminary study, it came out that our method is different to the two others because we took into account the loading time at the creep beginning. Besides we studied several loading programs and retained a five order non-linear polynomial which is the program that gave us satisfactory results. The other loading functions led to divergent results and wasn’t present here as consequence. In the second part of this work, we devoted ourselves to the determination of non-linear parameters in the schapery’s viscoelasticity equation, through a well developed and illustrated methodology. From this study, it is straight forward that non-linear parameters are stress dependent;confirming the results of several authors that preceded us in this studying field.
基金Supported by Youth Elite Project of CNNC and Modular HTGR Super-critical Power Generation Technology Collaborative Project between CNNC and Tsinghua University Project of China(Grant No.ZHJTIZYFGWD20201).
文摘For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location.
基金This research was financially supported by the Scientific and technological research projects in Sichuan province(Grant Nos.2022YFSY0007 and 2021YFH0010)the National Scientific Science Foundation of China(Grant No.U20A20266).
文摘To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloading confining pressure conditions.Experimental results show that the salt sample deforms more significantly with the increase of applied temperature and deviatoric loading.The accelerated creep phase is not occurring until the applied temperature reaches 130℃,and higher temperature is beneficial to the occurrence of accelerated creep.To describe the specific creep behavior,a novel three-dimensional(3D)creep constitutive model is developed that incorporates the thermal and mechanical variables into mechanical elements.Subsequently,the standard particle swarm optimization(SPSO)method is adopted to fit the experimental data,and the sensibility of key model parameters is analyzed to further illustrate the model function.As a result,the model can accurately predict the creep behavior of salt under the coupled thermo-mechanical effect in deep-buried condition.Based on the research results,the creep mechanical behavior of wellbore shrinkage is predicted in deep drilling projects crossing salt layer,which has practical implications for deep rock mechanics problems.
基金supported by the National Natural Science Foundation of China(No.42307258)the technological research projects in Sichuan Province(No.2022YFSY0007)the China Atomic Energy Authority(CAEA)through the Geological Disposal Program.
文摘Stability analysis of underground constructions requires a model study of rock masses’ long-term performance. Creep tests under different stress conditions was conducted on intact granite and granite samples fractured at 30° and 45° angles. The experimental results indicate that the steady creep strain rates of intact and fractured rock present an exponential increase trend with the increase of stress level. A nonlinear creep model is developed based on the experimental results, in which the initial damage caused by fracture together with the damage caused by constant load have been taken into consideration. The fitting analysis results indicated that the model proposed is more accurate at identifying the full creep regions in fractured granite, especially the accelerated stage of creep deformation. The least-square fit error of the proposed creep model is significantly lower than that of Nishihara model by almost an order of magnitude. An analysis of the effects of elastic modulus, viscosity coefficient, and damage factors on fractured rock strain rate and creep strain is conducted. If no consideration is given to the effects of the damage, the proposed nonlinear creep model can degenerate into to the classical Nishihara model.
基金financially supported by the National Key R&D Program of China(No.2022YFB3705300)the National Natural Science Foundation of China(Nos.U1960204 and 51974199)the Postdoctoral Fellowship Program of CPSF(No.GZB20230515)。
文摘The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional thermo-mechanical treatment was modified via the replacement of hot-rolling with cold rolling,i.e.,normalizing,cold rolling,and tempering (NCT),which was developed to improve the creep strength of the FGHAZ in G115 steel weldments.The NCT treatment effectively promoted the dissolution of preformed M_(23)C_(6)particles and relieved the boundary segregation of C and Cr during welding thermal cycling,which accelerated the dispersed reprecipitation of M_(23)C_(6) particles within the fresh reaustenitized grains during post-weld heat treatment.In addition,the precipitation of Cu-rich phases and MX particles was promoted evidently due to the deformation-induced dislocations.As a result,the interacting actions between precipitates,dislocations,and boundaries during creep were reinforced considerably.Following this strategy,the creep rupture life of the FGHAZ in G115 steel weldments can be prolonged by 18.6%,which can further push the application of G115 steel in USC power plants.
基金supported by the National Science and Technology Major Project(Grant number J2019-VI-0004-0118)the National Natural Science Foundation of China(Grant number 51771152)+2 种基金the National Key R&D Program of China(Grant number 2018YFB1106800)supported by the Brain Pool Program through the National Research Foundation of Korea(NRF)(Grant No.RS-2023-00304296)supported by the Brain Pool Program through National Research Foundation of Korea(NRF)(Grant No.RS-2023-00222130).
文摘Mg-Gd-Zn based alloys have better creep resistance than other Mg alloys and attract more attention at elevated temperatures.However,the multiple alloying elements and various heat treatment conditions,combined with complex microstructural evolution during creep tests,bring great challenges in understanding and predicting creep behaviors.In this study,we proposed to predict the creep properties and reveal the creep mechanisms of Mg-Gd-Zn based alloys by machine learning.On the one hand,the minimum creep rates were effectively predicted by using a support vector regression model.The complex and nonmonotonic effects of test temperature,test stress,alloying elements,and heat treatment conditions on the creep properties were revealed.On the other hand,the creep stress exponents and creep activation energies were calculated by machine learning to analyze the variation of creep mechanisms,based on which the constitutive equations of Mg-Gd-Zn based alloys were obtained.This study introduces an efficient method to comprehend creep behaviors through machine learning,offering valuable insights for the future design and selection of Mg alloys.
基金support received from the National Key Research and Development Program of China(Grant No.2022YFE0109600)the National Natural Science Foundation of China(Grant Nos.51974376 and 52071344)+1 种基金the Natural Science Foundation of Hunan Province(Grant No.2021JJ20063)the Distinguished Professor Project of Central South University(Grant No.202045009).
文摘In this study,the tensile creep behavior of a hot-rolled Mg-4Y-3.5Nd alloy subjected to different prior thermo-mechanical treatments was investigated at 220℃.Five groups of samples were prepared using different combinations of the solid solution(S),aging treatment at 220℃ for 30 h(A),and hot compression at 490℃ to a true strain of 0.25(C).The abbreviations for the samples are S,SA,SC,SAC,and SCA.Upon examining the yield strength and creep resistance,it was found that creep resistance could not be directly predicted by the yield strength.The stability of the deformation bands(DBs)induced by prior thermo-mechanical treatment plays an important role in determining the creep resistance.The dislocation of the DBs and demonstrated the best creep resistance in the SAC sample,which were prepared using a solid solution,aging treatment,and subsequent hot compression.However,despite the highest yield strength,frequent dislocation motions destroyed the stability of the DBs and deteriorated the creep resistance of the SCA sample,which were prepared using a solid solution,hot compression,and subsequent aging treatment.Among the thermo-mechanical treatments used in this study,the application of aging treatment was important to obtain the resultant creep resistance.When the aging treatment was performed prior to hot compression,the creep resistance could be further enhanced based only on hot compression.Accordingly,the sequence from the strongest to the weakest creep resistance was SAC>SC>S>SCA>SA.
基金financial support from the National Natural Science Foundation of China(41902272)Gansu Province Basic Research Innovation Group Project(21JR7RA347).
文摘To ensure the long-term safety and stability of bridge pile foundations in permafrost regions,it is necessary to investigate the rheological effects on the pile tip and pile side bearing capacities.The creep characteristics of the pile-frozen soil interface are critical for determining the long-term stability of permafrost pile foundations.This study utilized a self-developed large stress-controlled shear apparatus to investigate the shear creep characteristics of the frozen silt-concrete interface,and examined the influence of freezing temperatures(−1,−2,and−5°C),contact surface roughness(0,0.60,0.75,and 1.15 mm),normal stress(50,100,and 150 kPa),and shear stress on the creep characteristics of the contact surface.By incorporating the contact surface’s creep behavior and development trends,we established a creep constitutive model for the frozen silt-concrete interface based on the Nishihara model,introducing nonlinear elements and a damage factor.The results revealed significant creep effects on the frozen silt-concrete interface under constant load,with creep displacement at approximately 2-15 times the instantaneous displacement and a failure creep displacement ranging from 6 to 8 mm.Under different experimental conditions,the creep characteristics of the frozen silt-concrete interface varied.A larger roughness,lower freezing temperatures,and higher normal stresses resulted in a longer sample attenuation creep time,a lower steady-state creep rate,higher long-term creep strength,and stronger creep stability.Building upon the Nishihara model,we considered the influence of shear stress and time on the viscoelastic viscosity coefficient and introduced a damage factor to the viscoplasticity.The improved model effectively described the entire creep process of the frozen silt-concrete interface.The results provide theoretical support for the interaction between pile and soil in permafrost regions.
文摘G115 steel was jointly developed by China Iron & Steel Research Institute Group Co.,Ltd.and Baosteel for usage in 600-650 ℃ ultrasupercritical boiler tubes.Using a hot extruded G115 tube,creep tests were conducted under a constant stress of 130 MPa and temperatures of 625,650 and 675 ℃.Comparing creep curves under different temperatures,it is observed that the creep performance of a G115 tube is more sensitive to temperature than stress.Steady-state creep rates of creep specimens are significantly increased by enhancing the temperature.A micro-structural analysis of ruptured creep specimens under a stress of 130 MPa and temperatures of 650 ℃ and 675 ℃ was performed;the fracture mechanism of creep specimens under these two temperatures mainly included the appearance of creep holes on the grain boundary and a decrease in the martensite lath density.
基金Projects(52274404,52305441,U22A20190)supported by the National Natural Science Foundation of ChinaProjects(2022JJ20065,2023JJ40739)supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2022RC1001)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(2023ZZTS0972)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2021YFB3400903)supported by the National Key R&D Program of China。
文摘The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formability of Al-Cu-Li alloy is vital.A thorough comparison of the effects of cryo-deformation and ambient temperature large pre-deformation(LPD)on the creep ageing response in the 2195 alloy sheet at 160℃with different stresses has been made.The evolution of dislocations and precipitates during creep ageing of LPD alloys are revealed by X-ray diffraction and transmission electron microscopy.High-quality 2195 alloy sheet largely pre-deformed by 80%without edge-cracking is obtained by cryo-rolling at liquid nitrogen temperature,while severe edge-cracking occurs during room temperature rolling.The creep formability and strength of the 2195 alloy are both enhanced by introducing pre-existing dislocations with a density over 1.4×10^(15)m^(−2).At 160℃and 150 MPa,creep strain and creep-aged strength generally increases by 4−6 times and 30−50 MPa in the LPD sample,respectively,compared to conventional T3 alloy counterpart.The elongation of creep-aged LPD sample is low but remains relevant for application.The high-density dislocations,though existing in the form of dislocation tangles,promote the formation of refined T1 precipitates with a uniform dispersion.
基金This work was supported by Construction Simulation and Support Optimization of Hydraulic Tunnel Based on Bonded Block-Synthetic Rock Mass Method and Hubei Province Postdoctoral Innovative Practice Position.
文摘Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary.However,in the case of tubular concrete structures,where air inlet and outlet are relatively limited,the internal air temperature does not dissipate promptly to the external environment as it rises.To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces during construction,we establish an air–concrete coupled heat transfer model according to the principles of conjugate heat transfer,and the accuracy of the model is verified through experiments.Furthermore,we conduct a case study to analyze the impact of airflow within the ship lock corridor on concrete temperature and creep stress.The results demonstrate that enhancing airflow within the corridor can significantly reduce the maximum concrete temperature.Compared with cases in which airflow within the corridor is neglected,the maximum concrete temperature and maximum tensile stress can be reduced by 12.5℃ and 0.7 MPa,respectively,under a wind speed of 4 m/s.The results of the traditional calculation method are relatively close to those obtained at a wind speed of 1 m/s.However,the temperature reduction process in the traditional method is faster,and the method yields greater tensile stress values for the corridor location.
基金supported by the National Science Fund for Distinguished Young Scholars (Grant No.52025085)the National Key Research and Development Program of China (Grant No.2021YFB2600900)the Open Fund of Key Laboratory of Special Environment Road Engineering of Hunan Province,China (Changsha University of Science and Technology) (Grant No.kfj230606).
文摘Establishment of a creep model is an important method to analyze the relationship between soil creep deformation and time,and the element model is widely used for studying soil creep.However,the element creep model is employed for fitting saturated soil,and the mechanical element model is generally linear,which cannot well fit the nonlinear deformation of the soil with time in practice.The creep process of the soil is not only time-dependent,but also related to the deviatoric stress level.Therefore,the fractional calculus theory and a parameter n reflecting the effect of deviatoric stress level on the creep properties of the soil were introduced into the element model,and the fractional qBurgers creep model was established by using the fractional Koeller dashpot and Caputo fractional calculus.The proposed model was used to fit the triaxial test data of reticulated red clay under different net confining pressures and matric suctions by unsaturated triaxial apparatus.The proposed model can well describe the nonlinearity of unsaturated reticulated red clay,has memory and global correlation to the creep development process of unsaturated reticulated red clay,and has clear physical meaning.The functional relationships of the model parameters with the matric suction,net confining pressure and deviatoric stress level were deduced,so that the creep curves of unsaturated reticulated red clay can be obtained for any conditions,which is of great value for the study of unsaturated soils.
文摘The three largest earthquakes in northern California since 1849 were preceded by increased decadal activity for moderate-size shocks along surrounding nearby faults. Increased seismicity, double-difference precise locations of earthquakes since 1968, geodetic data and fault offsets for the 1906 great shock are used to re-examine the timing and locations of possible future large earthquakes. The physical mechanisms of regional faults like the Calaveras, Hayward and Sargent, which exhibit creep, differ from those of the northern San Andreas, which is currently locked and is not creeping. Much decadal forerunning activity occurred on creeping faults. Moderate-size earthquakes along those faults became more frequent as stresses in the region increased in the latter part of the cycle of stress restoration for major and great earthquakes along the San Andreas. They may be useful for decadal forecasts. Yearly to decadal forecasts, however, are based on only a few major to great events. Activity along closer faults like that in the two years prior to the 1989 Loma Prieta shock needs to be examined for possible yearly forerunning changes to large plate boundary earthquakes. Geodetic observations are needed to focus on identifying creeping faults close to the San Andreas. The distribution of moderate-size earthquakes increased significantly since 1990 along the Hayward fault but not adjacent to the San Andreas fault to the south of San Francisco compared to what took place in the decades prior to the three major historic earthquakes in the region. It is now clear from a re-examination of the 1989 mainshock that the increased level of moderate-size shocks in the one to two preceding decades occurred on nearby East Bay faults. Double-difference locations of small earthquakes provide structural information about faults in the region, especially their depths. The northern San Andreas fault is divided into several strongly coupled segments based on differences in seismicity.
文摘This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination.
基金supported by the National Natural Science Foundation of China(Nos.52121003,51827901 and 52204110)China Postdoctoral Science Foundation(No.2022M722346)+1 种基金the 111 Project(No.B14006)the Yueqi Outstanding Scholar Program of CUMTB(No.2017A03).
文摘Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal.
基金Project (50774095) supported by the National Natural Science Foundation of ChinaProject (200449) supported by China National Outstanding Doctoral Dissertations Special Funds
文摘By the methods of uniaxial single-stage loading and graded incremental cyclic loading, the creep experiments were performed on the deep saturated rock from Dongguashan Mine, and the creep curves of saturated rock under different loading stresses were obtained. By comparing with the creep rule of dry rock in the same location, the creep rule of deep saturated rock was analyzed. Based on the united rheological mechanical model, the rheological model of deep saturated rock was recognized, and the parameters of the model were determined. The results show that the creep curves are very smooth under low stress, but the phenomena of wave and catastrophe turn up under high stress, and the bearing capacity of rock is weakening over time. The rheological properties of saturated and dry rocks are very different under tlie condition of deep high stress, especially when unloading, degradation and damage of rock quality is more serious, and the effect of water cannot be neglected. The H--HIN--NJS model (Schofield-Scott-Blair model) was selected to represent the rheology rule of deep saturated rock, and the fitting curves of model agree well with the experiment data, so the selected model is reasonable.
基金Project(2014CB046602)supported by the National Basic Research Program of ChinaProject(51235010)supported by the National Natural Science Foundation of China
文摘A set of uniaxial tensile creep tests at different pre-deformations, aging temperatures and stress levels were carried out for Al-Li-S4 alloy, and the creep behavior and the effects of pre-deformation on mechanical properties and microstructures were determined under basic thermodynamics conditions of aging forming. The results show that pre-deformation shortens the time of primary creep and raises the second steady-state creep rate. Then, the total creep strain is greater, but in the range of test parameters it is still smaller than that without pre-deformation. In addition, transmission electron microscopy(TEM) observation shows that pre-deformation promotes the formation of T1 phase and θ′ phase and makes them distribute more dispersively, while inhibits the generation of δ′ phase, which leads to the improvement of mechanical properties of the alloy. A unified constitutive model reflecting the effects of aging mechanism, stress levels and different pre-deformations was established. The fitting results agree with the experimental data well.
基金Project(2010CB731700)supported by the National Basic Research Program of China
文摘In order to investigate the springback rules, the variation characteristics of physical property and microstructure in bending creep age forming process, a series of creep forming tests of 2124 aluminum alloy were conducted based on three kinds of single and double curvature forming tools. The results show that the spingback rate would be the minimum under the optimal coupling conditions among the temperature, aging time and internal stress state of material. Difference exists in the two directions of the formed sample with double curvature, but the curvature variation keeps the same. Yield strength, ultimate tensile strength and fracture toughness of the double curvature formed sample appear to be higher than those of the single curvature formed sample under the same aging condition, but the elongation and the anisotropy are opposite.