期刊文献+
共找到6,798篇文章
< 1 2 250 >
每页显示 20 50 100
Impact Force Localization and Reconstruction via ADMM-based Sparse Regularization Method
1
作者 Yanan Wang Lin Chen +3 位作者 Junjiang Liu Baijie Qiao Weifeng He Xuefeng Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期170-188,共19页
In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although ... In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although l_(1) regularization can be used to obtain sparse solutions,it tends to underestimate solution amplitudes as a biased estimator.To address this issue,a novel impact force identification method with l_(p) regularization is proposed in this paper,using the alternating direction method of multipliers(ADMM).By decomposing the complex primal problem into sub-problems solvable in parallel via proximal operators,ADMM can address the challenge effectively.To mitigate the sensitivity to regularization parameters,an adaptive regularization parameter is derived based on the K-sparsity strategy.Then,an ADMM-based sparse regularization method is developed,which is capable of handling l_(p) regularization with arbitrary p values using adaptively-updated parameters.The effectiveness and performance of the proposed method are validated on an aircraft skin-like composite structure.Additionally,an investigation into the optimal p value for achieving high-accuracy solutions via l_(p) regularization is conducted.It turns out that l_(0.6)regularization consistently yields sparser and more accurate solutions for impact force identification compared to the classic l_(1) regularization method.The impact force identification method proposed in this paper can simultaneously reconstruct impact time history with high accuracy and accurately localize the impact using an under-determined sensor configuration. 展开更多
关键词 Impact force identification Non-convex sparse regularization Alternating direction method of multipliers Proximal operators
下载PDF
Transfer matrix method for free and forced vibrations of multi-level functionally graded material stepped beams with different boundary conditions
2
作者 Xiaoyang SU Tong HU +3 位作者 Wei ZHANG Houjun KANG Yunyue CONG Quan YUAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期983-1000,共18页
Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore th... Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM. 展开更多
关键词 transfer matrix method(TMM) free vibration forced vibration functionally graded material(FGM) stepped beam
下载PDF
Effect of forced lamina flow on microsegregation simulated by phase field method quantitatively 被引量:4
3
作者 王军伟 王智平 +3 位作者 路阳 朱昌盛 冯力 肖荣振 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期391-397,共7页
The influence of supercooled melt forced lamina flow on microsegregation was investigated. The concentration distribution at solid-liquid boundary of binary alloy Ni-Cu was simulated using phase field model coupled wi... The influence of supercooled melt forced lamina flow on microsegregation was investigated. The concentration distribution at solid-liquid boundary of binary alloy Ni-Cu was simulated using phase field model coupled with flow field. The microsegregation, concentration maximum value, boundary thickness of concentration near upstream dendrite and normal to flow dendrite, and downstream dendrite were studied quantitatively in the case of forced lamia flow. The simulation results show that solute field and flow field interact complexly. Compared with melt without flow, in front of upstream dendrite tip, the concentration boundary thickness is the lowest and the concentration maximum value is the smallest for melt with flow. However, in front of downstream dendrite tip, the results are just the opposite. The zone of poor Cu in upstream dendrite where is the most severely microsegregation and shrinkage cavity is wider and the concentration is lower for melt with flow than that without flow. 展开更多
关键词 computer simulation phase field method solidification forced lamina flow MICROSEGREGATION solute redistribution shrinkage cavity
下载PDF
Phase-field modeling of dendritic growth under forced flow based on adaptive finite element method 被引量:2
4
作者 朱昶胜 雷鹏 +1 位作者 肖荣振 冯力 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期241-248,共8页
A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic gr... A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain. 展开更多
关键词 dendritic growth phase-field model forced flow adaptive finite element method
下载PDF
NON-LINEAR FORCED VIBRATION OF AXIALLY MOVING VISCOELASTIC BEAMS 被引量:17
5
作者 Yang Xiaodong Chen Li-Qun 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第4期365-373,共9页
The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is... The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode. 展开更多
关键词 axially moving beam VISCOELASTICITY non-linear forced vibration method of multiple scales
下载PDF
Base force element method of complementary energy principle for large rotation problems 被引量:8
6
作者 Yijiang Peng Yinghua Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第4期507-515,共9页
Using the concept of the base forces, a new finite element method (base force element method, BFEM) based on the complementary energy principle is presented for accurate modeling of structures with large displacemen... Using the concept of the base forces, a new finite element method (base force element method, BFEM) based on the complementary energy principle is presented for accurate modeling of structures with large displacements and large rotations. First, the complementary energy of an element is described by taking the base forces as state variables, and is then separated into deformation and rotation parts for the case of large deformation. Second, the control equations of the BFEM based on the complementary energy principle are derived using the Lagrange multiplier method. Nonlinear procedure of the BFEM is then developed. Finally, several examples are analyzed to illustrate the reliability and accuracy of the BFEM. 展开更多
关键词 Base force element method (BFEM) Complementary energy principle Lagrange multiplier method Geometrically nonlinear Large rotation
下载PDF
Rolling Force and Rolling Moment in Spline Cold Rolling Using Slip-line Field Method 被引量:9
7
作者 ZHANG Dawei LI Yongtang +1 位作者 FU Jianhua ZHENG Quangang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期688-695,共8页
Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination o... Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination of them depends on experience. In the present study, the mathematical models of rolling force and rolling moment are established based on stress field theory of slip-line. And the isotropic hardening is used to improve the yield criterion. Based on MATLAB program language environment, calculation program is developed according to mathematical models established. The rolling force and rolling moment could be predicted quickly via the calculation program, and then the reliability of the models is validated by FEM. Within the range of module of spline m=0.5-1.5 mm, pressure angle of reference circle α=30.0°-45.0°, and number of spline teeth Z=19-54, the rolling force and rolling moment in rolling process (finishing rolling is excluded) are researched by means of virtualizing orthogonal experiment design. The results of the present study indicate that: the influences of module and number of spline teeth on the maximum rolling force and rolling moment in the process are remarkable; in the case of pressure angle of reference circle is little, module of spline is great, and number of spline teeth is little, the peak value of rolling force in rolling process may appear in the midst of the process; the peak value of rolling moment in rolling process appears in the midst of the process, and then oscillator weaken to a stable value. The results of the present study may provide guidelines for the determination of power of the motor and the design of hydraulic system of special machine, and provide basis for the farther researches on the precise forming process of external spline cold rolling. 展开更多
关键词 external spline cold rolling slip-line field method rolling force rolling moment
下载PDF
Mixed finite element and differential quadrature method for free and forced vibration and buckling analysis of rectangular plates 被引量:6
8
作者 S. A. EFTEKHARI A. A. JAFARI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第1期81-98,共18页
This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the... This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the geometry flexibility of the FEM and the high accuracy and efficiency of the DQM. The accuracy of the present method is demonstrated by comparing the obtained results with those available in the literature. It is shown that highly accurate results can be obtained by using a small number of finite elements and DQM sample points. The proposed method is suitable for the problems considered due to its simplicity and potential for further development. 展开更多
关键词 finite element method (FEM) differential quadrature method (DQM) rectangular plate free and forced vibration buckling analysis
下载PDF
Safety evaluation for railway vehicles using an improved indirect measurement method of wheel–rail forces 被引量:8
9
作者 Jing Zeng Lai Wei Pingbo Wu 《Journal of Modern Transportation》 2016年第2期114-123,共10页
The wheel-rail force measurement is of great importance to the condition monitoring and safety evaluation of railway vehicles. In this paper, an improved indirect method for wheel-rail force measurement is proposed to... The wheel-rail force measurement is of great importance to the condition monitoring and safety evaluation of railway vehicles. In this paper, an improved indirect method for wheel-rail force measurement is proposed to evaluate the running safety of railway vehicles. In this method, the equilibrium equations of a suspended wheelset are derived and the wheel-rail forces are then be obtained from measured suspension and inertia forces. This indirect method avoids structural modifications to the wheelset and is applicable to the long-term operation of railway vehicles. As the wheel-rail lateral forces at two sides of the wheelset are difficult to separate, a new derailment criterion by combined use of wheelset derailment coefficient and wheel unloading ratio is proposed. To illustrate its effectiveness, the indirect method is applied to safety evaluation of rail- way vehicles in different scenarios, such as the cross wind safety of a high-speed train and the safety of a metro vehicle with hunting motions. Then, the feasibility of using this method to identify wheel-rail forces for low-floor light rail vehicles with resilient wheels is discussed. The values identified by this method is compared with that by Simpack simulation for the same low-floor vehicle, which shows a good coincidence between them in the time domain of the wheelset lateral force and the wheel-rail vertical force. In addition, use of the method to determine the high-frequency wheel-rail interaction forces reveals that it is possible to identify the high-frequency wheel-rail forces through the accelerations on the axle box. 展开更多
关键词 Wheel-rail force Safety evaluation - Indirect method Union safety domain Wheelset derailment coefficient Hunting motions Cross wind Low-floor vehicle
下载PDF
Determination of initial cable force of cantilever casting concrete arch bridge using stress balance and influence matrix methods 被引量:7
10
作者 TIAN Zhong-chu PENG Wen-ping +2 位作者 ZHANG Jian-ren JIANG Tian-yong DENG Yang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3140-3155,共16页
Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and inf... Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and influence matrix methods were developed to determine the initial cable force of cantilever casting concrete arch bridge.The stress balance equation and influence matrix of arch rib critical section were established,and the buckle cable force range was determined by the allowable stress of arch rib critical section.Then a group of buckle cable forces were selected and substituted into the stress balance equation,and the reasonable initial buckle cable force was determined through iteration.Based on the principle of force balance,the initial anchor cable force was determined.In an engineering application example,it is shown that the stress balance and influence matrix methods for the determination of initial cable force are feasible and reliable.The initial cable forces of arch rib segments only need to be adjusted once in the corresponding construction process,which improves the working efficiency and reduces the construction risk.It is found that the methods have great advantages for determining initial cable force in cantilever casting construction process of concrete arch bridge. 展开更多
关键词 concrete arch bridge cantilever casting initial cable force stress balance method influence matrix method
下载PDF
DUAL RECIPROCITY HYBRID BOUNDARY NODE METHOD FOR THREE-DIMENSIONAL ELASTICITY WITH BODY FORCE 被引量:3
11
作者 Fei Yan Yuanhan Wang Yu Miao Fei Tan 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第3期267-277,共11页
Combining Dual Reciprocity Method (DRM) with Hybrid Boundary Node Method (HBNM), the Dual Reciprocity Hybrid Boundary Node Method (DRHBNM) is developed for three-dimensional linear elasticity problems with body ... Combining Dual Reciprocity Method (DRM) with Hybrid Boundary Node Method (HBNM), the Dual Reciprocity Hybrid Boundary Node Method (DRHBNM) is developed for three-dimensional linear elasticity problems with body force. This method can be used to solve the elasticity problems with body force without domain integral, which is inevitable by HBNM. To demonstrate the versatility and the fast convergence of this method, some numerical examples of 3-D elasticity problems with body forces are examined. The computational results show that the present method is effective and can be widely applied in solving practical engineering problems. 展开更多
关键词 hybrid boundary node method dual reciprocity method body force radial basis function
下载PDF
Force Control Compensation Method with Variable Load Stiffness and Damping of the Hydraulic Drive Unit Force Control System 被引量:10
12
作者 KONG Xiangdong BA Kaixian +3 位作者 YU Bin CAO Yuan ZHU Qixin ZHAO Hualong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期454-464,共11页
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force... Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness. 展开更多
关键词 quadruped robot force control system hydraulic drive unit force control compensation method variable load stiffness and damping simulation
下载PDF
Simulation of faceted dendrite growth of non-isothermal alloy in forced flow by phase field method 被引量:5
13
作者 陈志 郝丽梅 陈长乐 《Journal of Central South University》 SCIE EI CAS 2011年第6期1780-1788,共9页
Numerical simulation based on a new regularized phase field model was presented to simulate the dendritic shape of a non-isothermal alloy with strong anisotropy in a forced flow. The simulation results show that a cry... Numerical simulation based on a new regularized phase field model was presented to simulate the dendritic shape of a non-isothermal alloy with strong anisotropy in a forced flow. The simulation results show that a crystal nucleus grows into a symmetric dendrite in a free flow and into an asymmetry dendrite in a forced flow. As the forced flow velocity is increased, both of the promoting effect on the upstream arm and the inhibiting effects on the downstream and perpendicular arms are intensified, and the perpendicular arm tilts to the upstream direction. With increasing the anisotropy value to 0.14, all of the dendrite arms tip velocities are gradually stabilized and finally reach their relative saturation values. In addition, the effects of an undercooling parameter and a forced compound flow on the faceted dendrite growth were also investigated. 展开更多
关键词 phase field method forced flow strong anisotropy faceted dendrite steady state tip velocity
下载PDF
Seismic stability of reinforced soil walls under bearing capacity failure by pseudo-dynamic method 被引量:6
14
作者 阮晓波 孙树林 《Journal of Central South University》 SCIE EI CAS 2013年第9期2593-2598,共6页
In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by c... In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by considering different parameters,such as horizontal and vertical seismic acceleration coefficients,ratio of reinforcement length to wall height,back fill friction angle,foundation soil friction angle,soil reinforcement interface friction angle and surcharge.The parametric study shows that the seismic safety factor increases by 24-fold when the foundation soil friction angle varies from 25°to 45°,and increases by 2-fold when the soil reinforcement interface friction angle varies from 0 to 30°.That is to say,the bigger values the foundation soil and/or soil reinforcement interface friction angles have,the safer the reinforced soil walls become in the seismic design.The results were also compared with those obtained from pseudo-static method.It is found that there is a higher value of the safety factor by the present work. 展开更多
关键词 reinforced soil walls seismic stability against bearing capacity seismic active force pseudo-dynamic method
下载PDF
A Slip-Line Method for Calculating Extrusion Force of Steel Helmet with Cold Extrusion Moulding 被引量:2
15
作者 Guo Jinji Zhao Sheng +1 位作者 Xing Haoxu(Department of Applied Mechanics and Engineering, Zhongshan University,Guangzhou 510275, P. R. China)Guan Guifen Liu Zhijian(The Iron Steel Research institute of Guangdong,Guangzhou 510275, P. R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1999年第2期75-81,共7页
This paper presents the elastic and plastic deformation of the steel helmet with coldextrusion moulding. The plastic streamline of the plastic mould-making process for ellipse thinplate is described. The distribution ... This paper presents the elastic and plastic deformation of the steel helmet with coldextrusion moulding. The plastic streamline of the plastic mould-making process for ellipse thinplate is described. The distribution of slip-line is established based on the plastic streamline. Theextrusion force of plastic moulding of the steel helmet is calculated by using of slip-line method.Furthermore, an applied example is given. 展开更多
关键词 Steel helmet Cold extrusion Plastic streamline slip-line method Extrusion force.
下载PDF
Forced propagation method for Monte Carlo fission source convergence acceleration in the RMC 被引量:3
16
作者 Ze-Guang Li Kan Wang +1 位作者 Yu-Chuan Guo Xiao-Yu Guo 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第3期52-62,共11页
In loosely coupled or large-scale problems with high dominance ratios,slow fission source convergence can take extremely long time,reducing Monte Carlo(MC)criticality calculation efficiency.Although various accelerati... In loosely coupled or large-scale problems with high dominance ratios,slow fission source convergence can take extremely long time,reducing Monte Carlo(MC)criticality calculation efficiency.Although various acceleration methods have been developed,some methods cannot reduce convergence times,whereas others have been limited to specific problem geometries.In this study,a new fission source convergence acceleration(FSCA)method,the forced propagation(FP)method,has been proposed,which forces the fission source to propagate and accelerate fission source convergence.Additionally,some stabilization techniques have been designed to render the method more practical.The resulting stabilized method was then successfully implemented in the MC transport code,and its feasibility and effectiveness were tested using the modified OECD/NEA,one-dimensional slab benchmark,and the Hoogenboom full-core problem.The comparison results showed that the FP method was able to achieve efficient FSCA. 展开更多
关键词 Fission source convergence acceleration Monte Carlo method forced propagation method RMC code
下载PDF
Effect mechanism of seepage force on the hydraulic fracture propagation
17
作者 Haiyang Wang Desheng Zhou +1 位作者 Yi Zou Peng Zheng 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期223-240,共18页
The flow of fluid through the porous matrix of a reservoir rock applies a seepage force to the solid rock matrix.Although the seepage force exerted by fluid flow through the porous matrix of a reservoir rock has a not... The flow of fluid through the porous matrix of a reservoir rock applies a seepage force to the solid rock matrix.Although the seepage force exerted by fluid flow through the porous matrix of a reservoir rock has a notable influence on rock deformation and failure,its effect on hydraulic fracture(HF)propagation remains ambiguous.Therefore,in this study,we improved a traditional fluid–solid coupling method by incorporating the role of seepage force during the fracturing fluid seepage,using the discrete element method.First,we validated the simulation results of the improved method by comparing them with an analytical solution of the seepage force and published experimental results.Next,we conducted numerical simulations in both homogeneous and heterogeneous sandstone formations to investigate the influence of seepage force on HF propagation.Our results indicate that fluid viscosity has a greater impact on the magnitude and extent of seepage force compared to injection rate,and that lower viscosity and injection rate correspond to shorter hydraulic fracture lengths.Furthermore,seepage force influences the direction of HF propagation,causing HFs to deflect towards the side of the reservoir with weaker cementation and higher permeability. 展开更多
关键词 Hydraulic fracturing Seepage force Fracture propagation Discrete element method Reservoir heterogeneity
下载PDF
Application of the state space model to the system of wave energy conversion Analytical method for wave forces on singleoscillating rectangular buoy 被引量:1
18
作者 ZHENGYonghong SUNXiaoyan +2 位作者 YOUYage SHENYongming WUBijun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2004年第4期757-765,共9页
A new analytical method is proposed to analyze the force acting on a rectangular oscillating buoy due to linear waves.In the method a new analytical expression for the diffraction velocity potential is obtained first ... A new analytical method is proposed to analyze the force acting on a rectangular oscillating buoy due to linear waves.In the method a new analytical expression for the diffraction velocity potential is obtained first by use of theeigenfunction expansion method and then the wave excitation force is calculated by use of the known incident wavepotential and the diffraction potential. Compared with the classical analytical method, it can be seen that the presentmethod is simpler for a two-dimensional problem due to the comparable effort needed for the computation ofdiffraction potential and for that of radiated potential. To verify the correctness of the method, a classical example inthe reference is recomputed and the obtained results are in good accordance with those by use of other methods,which shows that the present method is correct. 展开更多
关键词 state space model oscillating buoy device HEAVE wave force analytical method
下载PDF
Approximate Solutions of Primary Resonance for Forced Duffing Equation by Means of the Homotopy Analysis Method 被引量:1
19
作者 YUAN Peixin LI Yongqiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第3期501-506,共6页
Nonlinear dynamic equation is a common engineering model.There is not precise analytical solution for most of nonlinear differential equations.These nonlinear differential equations should be solved by using approxima... Nonlinear dynamic equation is a common engineering model.There is not precise analytical solution for most of nonlinear differential equations.These nonlinear differential equations should be solved by using approximate methods.Classical perturbation methods such as LP method,KBM method,multi-scale method and the averaging method on weakly nonlinear vibration system is effective,while the strongly nonlinear system is difficult to apply.Approximate solutions of primary resonance for forced Duffing equation is investigated by means of homotopy analysis method (HAM).Different from other approximate computational method,the HAM is totally independent of small physical parameters,and thus is suitable for most nonlinear problems.The HAM provides a great freedom to choose base functions of solution series,so that a nonlinear problem may be approximated more effectively.The HAM provides us a simple way to adjust and control the convergence region of the series solution by means of an auxiliary parameter and the auxiliary function.Therefore,HAM not only may solve the weakly non-linear problems but also may be suitable for the strong non-linear problem.Through the approximate solution of forced Duffing equation with cubic non-linearity,the HAM and fourth order Runge-Kutta method of numerical solution were compared,the results show that the HAM not only can solve the steady state solution,but also can calculate the unsteady state solution,and has the good computational accuracy. 展开更多
关键词 homotopy analysis method(HAM) series solution forced Duffing equation numerical solution
下载PDF
Calculation method of ship collision force on bridge using artificial neural network 被引量:4
20
作者 Wei FAN Wan-cheng YUAN Qi-wu FAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第5期614-623,共10页
Ship collision on bridge is a dynamic process featured by high nonlinearity and instantaneity. Calculating ship-bridge collision force typically involves either the use of design-specification-stipulated equivalent st... Ship collision on bridge is a dynamic process featured by high nonlinearity and instantaneity. Calculating ship-bridge collision force typically involves either the use of design-specification-stipulated equivalent static load, or the use of finite element method (FEM) which is more time-consuming and requires supercomputing resources. In this paper, we proposed an alternative approach that combines FEM with artificial neural network (ANN). The radial basis function neural network (RBFNN) employed for calculating the impact force in consideration of ship-bridge collision mechanics. With ship velocity and mass as the input vectors and ship collision force as the output vector, the neural networks for different network parameters are trained by the learning samples obtained from finite element simulation results. The error analyses of the learning and testing samples show that the proposed RBFNN is accurate enough to calculate ship-bridge collision force. The input-output relationship obtained by the RBFNN is essentially consistent with the typical empirical formulae. Finally, a special toolbox is developed for calculation efficiency in application using MATLAB software. 展开更多
关键词 Ship-bridge collision force Finite element method (FEM) Artificial neural network (ANN) Radial basis function neural network (RBFNN)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部