The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ...The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.展开更多
A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL...A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.展开更多
In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed metho...In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.展开更多
It is interesting yet nontrivial to achieve given control precision within user-assignable time for uncertain nonlinear systems.The underlying problem becomes even more challenging if the transient behavior also needs...It is interesting yet nontrivial to achieve given control precision within user-assignable time for uncertain nonlinear systems.The underlying problem becomes even more challenging if the transient behavior also needs to be accommodated and only system output is available for feedback.Several key design innovations are proposed to circumvent the aforementioned technical difficulties,including the employment of state estimation filters with event-triggered mechanism,the construction of a novel performance scaling function and an error transformation.In contrast to most existing performance based works where the stability is contingent on initial conditions and the maximum allowable steady-state tracking precision can only be guaranteed at some unknown(theoretically infinite)time,in this work the output of the system is ensured to synchronize with the desired trajectory with arbitrarily pre-assignable convergence rate and arbitrarily pre-specified precision within prescribed time,using output only with lower cost of sensing and communication.In addition,all the closed-loop signals are ensured to be globally uniformly bounded under the proposed control method.The merits of the designed control scheme are confirmed by numerical simulation on a ship model.展开更多
This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results...This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination.展开更多
This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe in...This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe internal model approach and the adaptive control technique, a distributed adaptive internal model isconstructed for each agent. Then, based on this internal model, a fully distributed ETC strategy composed ofa distributed event-triggered adaptive output feedback control law and a distributed dynamic event-triggeringmechanism is proposed, in which each agent updates its control input at its own triggering time instants. It isshown that under the proposed ETC strategy, the robust cooperative output regulation problem can be solvedwithout requiring either the global information associated with the communication topology or the bounds ofthe uncertain or unknown parameters in each agent and the exosystem. A numerical example is provided toillustrate the effectiveness of the proposed control strategy.展开更多
This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of sys...This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of system state and mode information,an asynchronous output-feedback sliding sur-face is adopted in the case of incompletely available state and non-synchronization phenomenon.The holonomic dynamics of the sliding mode are characterized by a descriptor system in which the switching surface is regarded as the fast subsystem and the system dynamics are viewed as the slow subsystem.Based upon the co-occurrence of two subsystems,the sufficient stochastic admissibility criterion of the holonomic dynamics is derived by utilizing the characteristics of cumulative distribution functions.Furthermore,a recursive learning controller is formulated to guarantee the reachability of the sliding manifold and realize the chattering reduction of the asynchronous switching and sliding motion.Finally,the proposed theoretical method is substantia-ted through two numerical simulations with the practical contin-uous stirred tank reactor and F-404 aircraft engine model,respectively.展开更多
This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the sl...This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the slow and fast characteristics among system states,the interconnected SPS is decomposed into the slow time-scale dynamics and the fast timescale dynamics through singular perturbation theory.For the fast time-scale dynamics with interconnections,we devise a decentralized optimal control strategy by selecting appropriate weight matrices in the cost function.For the slow time-scale dynamics with unknown system parameters,an off-policy RL algorithm with convergence guarantee is given to learn the optimal control strategy in terms of measurement data.By combining the slow and fast controllers,we establish the composite decentralized adaptive optimal output regulator,and rigorously analyze the stability and optimality of the closed-loop system.The proposed decomposition design not only bypasses the numerical stiffness but also alleviates the high-dimensionality.The efficacy of the proposed methodology is validated by a load-frequency control application of a two-area power system.展开更多
In this paper, a combination of model based adaptive design along with adaptive linear output feedback controller is used to compensate for robotic manipulator with output deadzone nonlinearity. The deadzone dynamics ...In this paper, a combination of model based adaptive design along with adaptive linear output feedback controller is used to compensate for robotic manipulator with output deadzone nonlinearity. The deadzone dynamics are utilized to adaptively estimate the deadzone parameter and a switching function is designed to eliminate the error produced in the adaptive observer dynamics. The overall design of the closed loop system ensures stability in the BIBO criterion.展开更多
This article explores the impact of the three-dimensional cultivation mode on the development of the Suzhou tea industry,focusing on the diversified estimation of the value of output per acre and sales mode.It introdu...This article explores the impact of the three-dimensional cultivation mode on the development of the Suzhou tea industry,focusing on the diversified estimation of the value of output per acre and sales mode.It introduces the history and traditional cultivation practices of tea in Suzhou,as well as the current challenges and problems faced by the industry.An in-depth analysis was conducted on the overview and improvement plans of the three-dimensional cultivation mode,covering relevant technical methods.Based on this analysis,the impact of the three-dimensional cultivation on the value of output per acre was studied and predicted.Its potential and advantages were explored and compared with the effectiveness of traditional cultivation models.Additionally,the impact of the three-dimensional cultivation mode on sales was analyzed,examining its market adaptability and competitiveness,as well as its advantages in expanding sales channels and market coverage.The study also focused on the promoting effect of diversified sales models on the Suzhou tea industry,including direct consumption market development,tea processing product development and promotion,and the integration of tea culture and the tourism industry.To ensure sustainable development,the article evaluates the environmental impact,economic feasibility,social benefits,and farmer benefits of the three-dimensional cultivation model.Finally,the prospects for the development of the Suzhou tea industry were discussed,and the positioning and response strategies of the threedimensional cultivation model were proposed.展开更多
Prediction of power output plays a vital role in the installation and operation of photovoltaic modules.In this paper,two photovoltaic module technologies,amorphous silicon and copper indium gallium selenide installed...Prediction of power output plays a vital role in the installation and operation of photovoltaic modules.In this paper,two photovoltaic module technologies,amorphous silicon and copper indium gallium selenide installed outdoors on the rooftop of the University of Dodoma,located at 6.5738°S and 36.2631°E in Tanzania,were used to record the power output during the winter season.The average data of ambient temperature,module temperature,solar irradiance,relative humidity,and wind speed recorded is used to predict the power output using a non-linear autoregressive artificial neural network.We consider the Levenberg-Marquardt optimization,Bayesian regularization,resilient propagation,and scaled conjugate gradient algorithms to understand their abilities in training,testing and validating the data.A comparison with reference to the performance indices:coefficient of determination,root mean square error,mean absolute percentage error,and mean absolute bias error is drawn for both modules.According to the findings of our investigation,the predicted results are in good agreement with the experimental results.All the algorithms performed better,and the predicted power out of both modules using the Bayesian regularization algorithm is observed to exhibit good processing capabilities compared to the other three algorithms that are evident from the measured performance indices.展开更多
Creation of arbitrary features with high resolution is critically important in the fabrication of nano-optoelectronic devices.Here,sub-50 nm surface structuring is achieved directly on Sb2S3 thin films via microsphere...Creation of arbitrary features with high resolution is critically important in the fabrication of nano-optoelectronic devices.Here,sub-50 nm surface structuring is achieved directly on Sb2S3 thin films via microsphere femtosecond laser irradi-ation in far field.By varying laser fluence and scanning speed,nano-feature sizes can be flexibly tuned.Such small patterns are attributed to the co-effect of microsphere focusing,two-photons absorption,top threshold effect,and high-repetition-rate femtosecond laser-induced incubation effect.The minimum feature size can be reduced down to~30 nm(λ/26)by manipulating film thickness.The fitting analysis between the ablation width and depth predicts that the feature size can be down to~15 nm at the film thickness of~10 nm.A nano-grating is fabricated,which demonstrates desirable beam diffraction performance.This nano-scale resolution would be highly attractive for next-generation laser nano-lithography in far field and in ambient air.展开更多
This article addresses the leader-following output consensus problem of heterogeneous linear multi-agent systems with unknown agent parameters under directed graphs.The dynamics of followers are allowed to be non-mini...This article addresses the leader-following output consensus problem of heterogeneous linear multi-agent systems with unknown agent parameters under directed graphs.The dynamics of followers are allowed to be non-minimum phase with unknown arbitrary individual relative degrees.This is contrary to many existing works on distributed adaptive control schemes where agent dynamics are required to be minimum phase and often of the same relative degree.A distributed adaptive pole placement control scheme is developed,which consists of a distributed observer and an adaptive pole placement control law.It is shown that under the proposed distributed adaptive control scheme,all signals in the closed-loop system are bounded and the outputs of all the followers track the output of the leader asymptotically.The effectiveness of the proposed scheme is demonstrated by one practical example and one numerical example.展开更多
In this paper,we investigate the peaking issue of extended state observers and the anti-disturbance control problem of tethered aircraft systems subject to the unstable flight of the main aircraft,airflow disturbances...In this paper,we investigate the peaking issue of extended state observers and the anti-disturbance control problem of tethered aircraft systems subject to the unstable flight of the main aircraft,airflow disturbances and deferred output constraints.Independent of exact initial values,a modified extended state observer is constructed from a shifting function such that not only the peaking issue inherently in the observer is circumvented completely but also the accurate estimation of the lumped disturbance is guaranteed.Meanwhile,to deal with deferred output constraints,an improved output constrained controller is employed by integrating the shifting function into the barrier Lyapunov function.Then,by combining the modified observer and the improved controller,an anti-disturbance control scheme is presented,which ensures that the outputs with any bounded initial conditions satisfy the constraints after a pre-specified finite time,and the tethered aircraft tracks the desired trajectory accurately.Finally,both a theoretical proof and simulation results verify the effectiveness of the proposed control scheme.展开更多
As a typical energetic composite,polytetrafluoroethylene(PTFE)/aluminum(Al)has been widely applied in explosives,pyrotechnics,and propellants due to its ultra-high energy density and intense exothermic reaction.In thi...As a typical energetic composite,polytetrafluoroethylene(PTFE)/aluminum(Al)has been widely applied in explosives,pyrotechnics,and propellants due to its ultra-high energy density and intense exothermic reaction.In this work,the radial gradient(RG)structure of PTFE/Al cylinders with three different PTFE morphologies(200 nm and 5μm particles and 5μm fiber)and content changes are prepared by 3D printing technology.The effect of radial gradient structure on the pressure output of PTFE/Al has been studied.Compared with the morphology change of PTFE,the change of component content in the gradient structure has an obvious effect on the pressure output of the PTFE/Al cylinder.Furthermore,the relationships of the morphology,content of PTFE and the combustion reaction of the PTFE/Al cylinder reveal that the cylinder shows a more complex flame propagation process than others.These results could provide a strategy to improve the combustion and pressure output of PTFE/Al.展开更多
This paper considers the mean square output containment control problem for heterogeneous multi-agent systems(MASs)with randomly switching topologies and nonuniform distributed delays.By modeling the switching topolog...This paper considers the mean square output containment control problem for heterogeneous multi-agent systems(MASs)with randomly switching topologies and nonuniform distributed delays.By modeling the switching topologies as a continuous-time Markov process and taking the distributed delays into consideration,a novel distributed containment observer is proposed to estimate the convex hull spanned by the leaders'states.A novel distributed output feedback containment controller is then designed without using the prior knowledge of distributed delays.By constructing a novel switching Lyapunov functional,the output containment control problem is then solved in the sense of mean square under an easily-verifiable sufficient condition.Finally,two numerical examples are given to show the effectiveness of the proposed controller.展开更多
The study of local stability of thermal engines modeled as an endoreversible Curzon and Ahlborn cycle is shown. It is assumed a non-linear heat transfer for heat fluxes in the system (engine + environments). A semisum...The study of local stability of thermal engines modeled as an endoreversible Curzon and Ahlborn cycle is shown. It is assumed a non-linear heat transfer for heat fluxes in the system (engine + environments). A semisum of two expressions of the efficiency found in the literature of finite time thermodynamics for the maximum power output regime is considered in order to make the analysis. Expression of variables for local stability and power output is found even graphic results for important parameters in the analysis of stability, and a phase plane portrait is shown.展开更多
Cyber-Physical Systems are very vulnerable to sparse sensor attacks.But current protection mechanisms employ linear and deterministic models which cannot detect attacks precisely.Therefore,in this paper,we propose a n...Cyber-Physical Systems are very vulnerable to sparse sensor attacks.But current protection mechanisms employ linear and deterministic models which cannot detect attacks precisely.Therefore,in this paper,we propose a new non-linear generalized model to describe Cyber-Physical Systems.This model includes unknown multivariable discrete and continuous-time functions and different multiplicative noises to represent the evolution of physical processes and randomeffects in the physical and computationalworlds.Besides,the digitalization stage in hardware devices is represented too.Attackers and most critical sparse sensor attacks are described through a stochastic process.The reconstruction and protectionmechanisms are based on aweighted stochasticmodel.Error probability in data samples is estimated through different indicators commonly employed in non-linear dynamics(such as the Fourier transform,first-return maps,or the probability density function).A decision algorithm calculates the final reconstructed value considering the previous error probability.An experimental validation based on simulation tools and real deployments is also carried out.Both,the new technology performance and scalability are studied.Results prove that the proposed solution protects Cyber-Physical Systems against up to 92%of attacks and perturbations,with a computational delay below 2.5 s.The proposed model shows a linear complexity,as recursive or iterative structures are not employed,just algebraic and probabilistic functions.In conclusion,the new model and reconstructionmechanism can protect successfully Cyber-Physical Systems against sparse sensor attacks,even in dense or pervasive deployments and scenarios.展开更多
This paper investigates the problem of robust output regulation control with prospected transient property for strict feedback systems.By employing the internal model principle,the robust output regulation problem wit...This paper investigates the problem of robust output regulation control with prospected transient property for strict feedback systems.By employing the internal model principle,the robust output regulation problem with a prospected property can be transformed to a robust stabilization problem with a new output constraint.Then,by constructing the speed function and adopting barrier Lyapunov function technique,the dynamic feedback controller can be designed not only to drive error output of the closed-loop system entering into a prescribed performance bound within a given finite time,but also to achieve that the error output converges to zero asymptotically.The effectiveness of the results is illustrated by a simulation example.展开更多
The hydraulic servo actuator of heavy vehicle active suspension is investigated to clarify the correlation between system parameters and the control characteristics of active suspension hydraulic servo system.Accordin...The hydraulic servo actuator of heavy vehicle active suspension is investigated to clarify the correlation between system parameters and the control characteristics of active suspension hydraulic servo system.Accordingly, a nonlinear physical model of electro-hydraulic servo active suspension system is built.Compared with the conventional nonlinear modeling, the model in this study considers the asymmetry of working areas caused by single rod hydraulic cylinder in the suspension system.In accordance with the model, a nonlinear output feedback controller based on backstepping is designed, and the effectiveness of the controller is proved based on the experimental platform.The dynamic response curve of the electro-hydraulic servo control system under the change of parameters is generated based on the simulation model.The sensitivity of electro-hydraulic servo control performance to the change of system physical parameters is investigated, and two evaluation indexes are proposed to quantify and compare the effect of all physical parameter changes on position control system.As revealed by the results, the position control characteristics of suspension actuator are more sensitive to the changes of flow gain of the servo valve, system supply oil pressure and effective working areas of cylinder, and the two evaluation indexes are over 10 times higher than other physical parameters.展开更多
基金supported in part by the National Natural Science Foundation of China (62103093)the National Key Research and Development Program of China (2022YFB3305905)+6 种基金the Xingliao Talent Program of Liaoning Province of China (XLYC2203130)the Fundamental Research Funds for the Central Universities of China (N2108003)the Natural Science Foundation of Liaoning Province (2023-MS-087)the BNU Talent Seed Fund,UIC Start-Up Fund (R72021115)the Guangdong Key Laboratory of AI and MM Data Processing (2020KSYS007)the Guangdong Provincial Key Laboratory IRADS for Data Science (2022B1212010006)the Guangdong Higher Education Upgrading Plan 2021–2025 of “Rushing to the Top,Making Up Shortcomings and Strengthening Special Features” with UIC Research,China (R0400001-22,R0400025-21)。
文摘The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.
基金supported by the National Natural Science Foundation of China under Grant 62034002 and 62374026.
文摘A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.
基金supported by the National Science Fund for Distinguished Young Scholars (62225303)the Fundamental Research Funds for the Central Universities (buctrc202201)+1 种基金China Scholarship Council,and High Performance Computing PlatformCollege of Information Science and Technology,Beijing University of Chemical Technology。
文摘In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.
基金supported in part by the National Natural Science Foundation of China(61933012,62273064,61991400,61991403,62250710167,61860206008,62203078)the National Key Research and Development Program of China(2023YFA1011803)+2 种基金the Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0588)the Innovation Support Program for Inter national Students Returning to China(cx2022016)the Central University Project(2022CDJKYJH019).
文摘It is interesting yet nontrivial to achieve given control precision within user-assignable time for uncertain nonlinear systems.The underlying problem becomes even more challenging if the transient behavior also needs to be accommodated and only system output is available for feedback.Several key design innovations are proposed to circumvent the aforementioned technical difficulties,including the employment of state estimation filters with event-triggered mechanism,the construction of a novel performance scaling function and an error transformation.In contrast to most existing performance based works where the stability is contingent on initial conditions and the maximum allowable steady-state tracking precision can only be guaranteed at some unknown(theoretically infinite)time,in this work the output of the system is ensured to synchronize with the desired trajectory with arbitrarily pre-assignable convergence rate and arbitrarily pre-specified precision within prescribed time,using output only with lower cost of sensing and communication.In addition,all the closed-loop signals are ensured to be globally uniformly bounded under the proposed control method.The merits of the designed control scheme are confirmed by numerical simulation on a ship model.
文摘This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination.
基金the National Natural Science Foundation of China(NSFC)-Excellent Young Scientists Fund(Hong Kong and Macao)under Grant 62222318.
文摘This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe internal model approach and the adaptive control technique, a distributed adaptive internal model isconstructed for each agent. Then, based on this internal model, a fully distributed ETC strategy composed ofa distributed event-triggered adaptive output feedback control law and a distributed dynamic event-triggeringmechanism is proposed, in which each agent updates its control input at its own triggering time instants. It isshown that under the proposed ETC strategy, the robust cooperative output regulation problem can be solvedwithout requiring either the global information associated with the communication topology or the bounds ofthe uncertain or unknown parameters in each agent and the exosystem. A numerical example is provided toillustrate the effectiveness of the proposed control strategy.
基金supported in part by the National Science Fund for Excellent Young Scholars of China(62222317)the National Science Foundation of China(62303492)+3 种基金the Major Science and Technology Projects in Hunan Province(2021GK1030)the Science and Technology Innovation Program of Hunan Province(2022WZ1001)the Key Research and Development Program of Hunan Province(2023GK2023)the Fundamental Research Funds for the Central Universities of Central South University(2024ZZTS0116)。
文摘This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of system state and mode information,an asynchronous output-feedback sliding sur-face is adopted in the case of incompletely available state and non-synchronization phenomenon.The holonomic dynamics of the sliding mode are characterized by a descriptor system in which the switching surface is regarded as the fast subsystem and the system dynamics are viewed as the slow subsystem.Based upon the co-occurrence of two subsystems,the sufficient stochastic admissibility criterion of the holonomic dynamics is derived by utilizing the characteristics of cumulative distribution functions.Furthermore,a recursive learning controller is formulated to guarantee the reachability of the sliding manifold and realize the chattering reduction of the asynchronous switching and sliding motion.Finally,the proposed theoretical method is substantia-ted through two numerical simulations with the practical contin-uous stirred tank reactor and F-404 aircraft engine model,respectively.
基金supported by the National Natural Science Foundation of China (62073327,62273350)the Natural Science Foundation of Jiangsu Province (BK20221112)。
文摘This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the slow and fast characteristics among system states,the interconnected SPS is decomposed into the slow time-scale dynamics and the fast timescale dynamics through singular perturbation theory.For the fast time-scale dynamics with interconnections,we devise a decentralized optimal control strategy by selecting appropriate weight matrices in the cost function.For the slow time-scale dynamics with unknown system parameters,an off-policy RL algorithm with convergence guarantee is given to learn the optimal control strategy in terms of measurement data.By combining the slow and fast controllers,we establish the composite decentralized adaptive optimal output regulator,and rigorously analyze the stability and optimality of the closed-loop system.The proposed decomposition design not only bypasses the numerical stiffness but also alleviates the high-dimensionality.The efficacy of the proposed methodology is validated by a load-frequency control application of a two-area power system.
文摘In this paper, a combination of model based adaptive design along with adaptive linear output feedback controller is used to compensate for robotic manipulator with output deadzone nonlinearity. The deadzone dynamics are utilized to adaptively estimate the deadzone parameter and a switching function is designed to eliminate the error produced in the adaptive observer dynamics. The overall design of the closed loop system ensures stability in the BIBO criterion.
基金Suzhou Agricultural Vocational and Technical College Young Teachers Research Ability Enhancement Program“Research and Screening of Bacteria for Fermented Beverages of Vice Tea and Loquat Flower”(Project No.QN[2022]01)。
文摘This article explores the impact of the three-dimensional cultivation mode on the development of the Suzhou tea industry,focusing on the diversified estimation of the value of output per acre and sales mode.It introduces the history and traditional cultivation practices of tea in Suzhou,as well as the current challenges and problems faced by the industry.An in-depth analysis was conducted on the overview and improvement plans of the three-dimensional cultivation mode,covering relevant technical methods.Based on this analysis,the impact of the three-dimensional cultivation on the value of output per acre was studied and predicted.Its potential and advantages were explored and compared with the effectiveness of traditional cultivation models.Additionally,the impact of the three-dimensional cultivation mode on sales was analyzed,examining its market adaptability and competitiveness,as well as its advantages in expanding sales channels and market coverage.The study also focused on the promoting effect of diversified sales models on the Suzhou tea industry,including direct consumption market development,tea processing product development and promotion,and the integration of tea culture and the tourism industry.To ensure sustainable development,the article evaluates the environmental impact,economic feasibility,social benefits,and farmer benefits of the three-dimensional cultivation model.Finally,the prospects for the development of the Suzhou tea industry were discussed,and the positioning and response strategies of the threedimensional cultivation model were proposed.
基金the University of Dodoma for supporting this work
文摘Prediction of power output plays a vital role in the installation and operation of photovoltaic modules.In this paper,two photovoltaic module technologies,amorphous silicon and copper indium gallium selenide installed outdoors on the rooftop of the University of Dodoma,located at 6.5738°S and 36.2631°E in Tanzania,were used to record the power output during the winter season.The average data of ambient temperature,module temperature,solar irradiance,relative humidity,and wind speed recorded is used to predict the power output using a non-linear autoregressive artificial neural network.We consider the Levenberg-Marquardt optimization,Bayesian regularization,resilient propagation,and scaled conjugate gradient algorithms to understand their abilities in training,testing and validating the data.A comparison with reference to the performance indices:coefficient of determination,root mean square error,mean absolute percentage error,and mean absolute bias error is drawn for both modules.According to the findings of our investigation,the predicted results are in good agreement with the experimental results.All the algorithms performed better,and the predicted power out of both modules using the Bayesian regularization algorithm is observed to exhibit good processing capabilities compared to the other three algorithms that are evident from the measured performance indices.
基金This work is supported by Academic Research Fund Tier 2,Ministry of Education-Singapore(MOE2019-T2-2-147)T.C.acknowledges support from the National Key Research and Development Program of China(2019YFA0709100,2020YFA0714504).
文摘Creation of arbitrary features with high resolution is critically important in the fabrication of nano-optoelectronic devices.Here,sub-50 nm surface structuring is achieved directly on Sb2S3 thin films via microsphere femtosecond laser irradi-ation in far field.By varying laser fluence and scanning speed,nano-feature sizes can be flexibly tuned.Such small patterns are attributed to the co-effect of microsphere focusing,two-photons absorption,top threshold effect,and high-repetition-rate femtosecond laser-induced incubation effect.The minimum feature size can be reduced down to~30 nm(λ/26)by manipulating film thickness.The fitting analysis between the ablation width and depth predicts that the feature size can be down to~15 nm at the film thickness of~10 nm.A nano-grating is fabricated,which demonstrates desirable beam diffraction performance.This nano-scale resolution would be highly attractive for next-generation laser nano-lithography in far field and in ambient air.
基金This work was supported by Research Grants Council of Hong Kong(CityU-11205221).
文摘This article addresses the leader-following output consensus problem of heterogeneous linear multi-agent systems with unknown agent parameters under directed graphs.The dynamics of followers are allowed to be non-minimum phase with unknown arbitrary individual relative degrees.This is contrary to many existing works on distributed adaptive control schemes where agent dynamics are required to be minimum phase and often of the same relative degree.A distributed adaptive pole placement control scheme is developed,which consists of a distributed observer and an adaptive pole placement control law.It is shown that under the proposed distributed adaptive control scheme,all signals in the closed-loop system are bounded and the outputs of all the followers track the output of the leader asymptotically.The effectiveness of the proposed scheme is demonstrated by one practical example and one numerical example.
基金supported by the National Natural Science Foundation of China(61725303,91848205)。
文摘In this paper,we investigate the peaking issue of extended state observers and the anti-disturbance control problem of tethered aircraft systems subject to the unstable flight of the main aircraft,airflow disturbances and deferred output constraints.Independent of exact initial values,a modified extended state observer is constructed from a shifting function such that not only the peaking issue inherently in the observer is circumvented completely but also the accurate estimation of the lumped disturbance is guaranteed.Meanwhile,to deal with deferred output constraints,an improved output constrained controller is employed by integrating the shifting function into the barrier Lyapunov function.Then,by combining the modified observer and the improved controller,an anti-disturbance control scheme is presented,which ensures that the outputs with any bounded initial conditions satisfy the constraints after a pre-specified finite time,and the tethered aircraft tracks the desired trajectory accurately.Finally,both a theoretical proof and simulation results verify the effectiveness of the proposed control scheme.
基金supported by the National Natural Science Foundation of China(Grant Nos.11872341 and 22075261)。
文摘As a typical energetic composite,polytetrafluoroethylene(PTFE)/aluminum(Al)has been widely applied in explosives,pyrotechnics,and propellants due to its ultra-high energy density and intense exothermic reaction.In this work,the radial gradient(RG)structure of PTFE/Al cylinders with three different PTFE morphologies(200 nm and 5μm particles and 5μm fiber)and content changes are prepared by 3D printing technology.The effect of radial gradient structure on the pressure output of PTFE/Al has been studied.Compared with the morphology change of PTFE,the change of component content in the gradient structure has an obvious effect on the pressure output of the PTFE/Al cylinder.Furthermore,the relationships of the morphology,content of PTFE and the combustion reaction of the PTFE/Al cylinder reveal that the cylinder shows a more complex flame propagation process than others.These results could provide a strategy to improve the combustion and pressure output of PTFE/Al.
文摘This paper considers the mean square output containment control problem for heterogeneous multi-agent systems(MASs)with randomly switching topologies and nonuniform distributed delays.By modeling the switching topologies as a continuous-time Markov process and taking the distributed delays into consideration,a novel distributed containment observer is proposed to estimate the convex hull spanned by the leaders'states.A novel distributed output feedback containment controller is then designed without using the prior knowledge of distributed delays.By constructing a novel switching Lyapunov functional,the output containment control problem is then solved in the sense of mean square under an easily-verifiable sufficient condition.Finally,two numerical examples are given to show the effectiveness of the proposed controller.
文摘The study of local stability of thermal engines modeled as an endoreversible Curzon and Ahlborn cycle is shown. It is assumed a non-linear heat transfer for heat fluxes in the system (engine + environments). A semisum of two expressions of the efficiency found in the literature of finite time thermodynamics for the maximum power output regime is considered in order to make the analysis. Expression of variables for local stability and power output is found even graphic results for important parameters in the analysis of stability, and a phase plane portrait is shown.
基金supported by Comunidad de Madrid within the framework of the Multiannual Agreement with Universidad Politécnica de Madrid to encourage research by young doctors(PRINCE).
文摘Cyber-Physical Systems are very vulnerable to sparse sensor attacks.But current protection mechanisms employ linear and deterministic models which cannot detect attacks precisely.Therefore,in this paper,we propose a new non-linear generalized model to describe Cyber-Physical Systems.This model includes unknown multivariable discrete and continuous-time functions and different multiplicative noises to represent the evolution of physical processes and randomeffects in the physical and computationalworlds.Besides,the digitalization stage in hardware devices is represented too.Attackers and most critical sparse sensor attacks are described through a stochastic process.The reconstruction and protectionmechanisms are based on aweighted stochasticmodel.Error probability in data samples is estimated through different indicators commonly employed in non-linear dynamics(such as the Fourier transform,first-return maps,or the probability density function).A decision algorithm calculates the final reconstructed value considering the previous error probability.An experimental validation based on simulation tools and real deployments is also carried out.Both,the new technology performance and scalability are studied.Results prove that the proposed solution protects Cyber-Physical Systems against up to 92%of attacks and perturbations,with a computational delay below 2.5 s.The proposed model shows a linear complexity,as recursive or iterative structures are not employed,just algebraic and probabilistic functions.In conclusion,the new model and reconstructionmechanism can protect successfully Cyber-Physical Systems against sparse sensor attacks,even in dense or pervasive deployments and scenarios.
基金supported by the National Natural Science Foundation of China(61873219)。
文摘This paper investigates the problem of robust output regulation control with prospected transient property for strict feedback systems.By employing the internal model principle,the robust output regulation problem with a prospected property can be transformed to a robust stabilization problem with a new output constraint.Then,by constructing the speed function and adopting barrier Lyapunov function technique,the dynamic feedback controller can be designed not only to drive error output of the closed-loop system entering into a prescribed performance bound within a given finite time,but also to achieve that the error output converges to zero asymptotically.The effectiveness of the results is illustrated by a simulation example.
基金Supported by the National Natural Science Foundation of China (No. U20A20332, 52175063)Hebei Province PhD Graduate Innovation Funding Project (No. CXZZBS2021121)。
文摘The hydraulic servo actuator of heavy vehicle active suspension is investigated to clarify the correlation between system parameters and the control characteristics of active suspension hydraulic servo system.Accordingly, a nonlinear physical model of electro-hydraulic servo active suspension system is built.Compared with the conventional nonlinear modeling, the model in this study considers the asymmetry of working areas caused by single rod hydraulic cylinder in the suspension system.In accordance with the model, a nonlinear output feedback controller based on backstepping is designed, and the effectiveness of the controller is proved based on the experimental platform.The dynamic response curve of the electro-hydraulic servo control system under the change of parameters is generated based on the simulation model.The sensitivity of electro-hydraulic servo control performance to the change of system physical parameters is investigated, and two evaluation indexes are proposed to quantify and compare the effect of all physical parameter changes on position control system.As revealed by the results, the position control characteristics of suspension actuator are more sensitive to the changes of flow gain of the servo valve, system supply oil pressure and effective working areas of cylinder, and the two evaluation indexes are over 10 times higher than other physical parameters.