To accurately model flows with shock waves using staggered-grid Lagrangian hydrodynamics, the artificial viscosity has to be introduced to convert kinetic energy into internal energy, thereby increasing the entropy ac...To accurately model flows with shock waves using staggered-grid Lagrangian hydrodynamics, the artificial viscosity has to be introduced to convert kinetic energy into internal energy, thereby increasing the entropy across shocks. Determining the appropriate strength of the artificial viscosity is an art and strongly depends on the particular problem and experience of the researcher. The objective of this study is to pose the problem of finding the appropriate strength of the artificial viscosity as an optimization problem and solve this problem using machine learning (ML) tools, specifically using surrogate models based on Gaussian Process regression (GPR) and Bayesian analysis. We describe the optimization method and discuss various practical details of its implementation. The shock-containing problems for which we apply this method all have been implemented in the LANL code FLAG (Burton in Connectivity structures and differencing techniques for staggered-grid free-Lagrange hydrodynamics, Tech. Rep. UCRL-JC-110555, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1992, in Consistent finite-volume discretization of hydrodynamic conservation laws for unstructured grids, Tech. Rep. CRL-JC-118788, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1994, Multidimensional discretization of conservation laws for unstructured polyhedral grids, Tech. Rep. UCRL-JC-118306, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1994, in FLAG, a multi-dimensional, multiple mesh, adaptive free-Lagrange, hydrodynamics code. In: NECDC, 1992). First, we apply ML to find optimal values to isolated shock problems of different strengths. Second, we apply ML to optimize the viscosity for a one-dimensional (1D) propagating detonation problem based on Zel’dovich-von Neumann-Doring (ZND) (Fickett and Davis in Detonation: theory and experiment. Dover books on physics. Dover Publications, Mineola, 2000) detonation theory using a reactive burn model. We compare results for default (currently used values in FLAG) and optimized values of the artificial viscosity for these problems demonstrating the potential for significant improvement in the accuracy of computations.展开更多
Purpose:The purpose of this study is to develop and compare model choice strategies in context of logistic regression.Model choice means the choice of the covariates to be included in the model.Design/methodology/appr...Purpose:The purpose of this study is to develop and compare model choice strategies in context of logistic regression.Model choice means the choice of the covariates to be included in the model.Design/methodology/approach:The study is based on Monte Carlo simulations.The methods are compared in terms of three measures of accuracy:specificity and two kinds of sensitivity.A loss function combining sensitivity and specificity is introduced and used for a final comparison.Findings:The choice of method depends on how much the users emphasize sensitivity against specificity.It also depends on the sample size.For a typical logistic regression setting with a moderate sample size and a small to moderate effect size,either BIC,BICc or Lasso seems to be optimal.Research limitations:Numerical simulations cannot cover the whole range of data-generating processes occurring with real-world data.Thus,more simulations are needed.Practical implications:Researchers can refer to these results if they believe that their data-generating process is somewhat similar to some of the scenarios presented in this paper.Alternatively,they could run their own simulations and calculate the loss function.Originality/value:This is a systematic comparison of model choice algorithms and heuristics in context of logistic regression.The distinction between two types of sensitivity and a comparison based on a loss function are methodological novelties.展开更多
This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results...This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination.展开更多
Carbon emissions have become a critical concern in the global effort to combat climate change,with each country or region contributing differently based on its economic structures,energy sources,and industrial activit...Carbon emissions have become a critical concern in the global effort to combat climate change,with each country or region contributing differently based on its economic structures,energy sources,and industrial activities.The factors influencing carbon emissions vary across countries and sectors.This study examined the factors influencing CO_(2)emissions in the 7 South American countries including Argentina,Brazil,Chile,Colombia,Ecuador,Peru,and Venezuela.We used the Seemingly Unrelated Regression(SUR)model to analyse the relationship of CO_(2)emissions with gross domestic product(GDP),renewable energy use,urbanization,industrialization,international tourism,agricultural productivity,and forest area based on data from 2000 to 2022.According to the SUR model,we found that GDP and industrialization had a moderate positive effect on CO_(2)emissions,whereas renewable energy use had a moderate negative effect on CO_(2)emissions.International tourism generally had a positive impact on CO_(2)emissions,while forest area tended to decrease CO_(2)emissions.Different variables had different effects on CO_(2)emissions in the 7 South American countries.In Argentina and Venezuela,GDP,international tourism,and agricultural productivity significantly affected CO_(2)emissions.In Colombia,GDP and international tourism had a negative impact on CO_(2)emissions.In Brazil,CO_(2)emissions were primarily driven by GDP,while in Chile,Ecuador,and Peru,international tourism had a negative effect on CO_(2)emissions.Overall,this study highlights the importance of country-specific strategies for reducing CO_(2)emissions and emphasizes the varying roles of these driving factors in shaping environmental quality in the 7 South American countries.展开更多
BACKGROUND The spread of the severe acute respiratory syndrome coronavirus 2 outbreak worldwide has caused concern regarding the mortality rate caused by the infection.The determinants of mortality on a global scale c...BACKGROUND The spread of the severe acute respiratory syndrome coronavirus 2 outbreak worldwide has caused concern regarding the mortality rate caused by the infection.The determinants of mortality on a global scale cannot be fully understood due to lack of information.AIM To identify key factors that may explain the variability in case lethality across countries.METHODS We identified 21 Potential risk factors for coronavirus disease 2019(COVID-19)case fatality rate for all the countries with available data.We examined univariate relationships of each variable with case fatality rate(CFR),and all independent variables to identify candidate variables for our final multiple model.Multiple regression analysis technique was used to assess the strength of relationship.RESULTS The mean of COVID-19 mortality was 1.52±1.72%.There was a statistically significant inverse correlation between health expenditure,and number of computed tomography scanners per 1 million with CFR,and significant direct correlation was found between literacy,and air pollution with CFR.This final model can predict approximately 97%of the changes in CFR.CONCLUSION The current study recommends some new predictors explaining affect mortality rate.Thus,it could help decision-makers develop health policies to fight COVID-19.展开更多
Possible changes in the structure and seasonal variability of the subtropical ridge may lead to changes in the rainfall’s variability modes over Caribbean region. This generates additional difficulties around water r...Possible changes in the structure and seasonal variability of the subtropical ridge may lead to changes in the rainfall’s variability modes over Caribbean region. This generates additional difficulties around water resource planning, therefore, obtaining seasonal prediction models that allow these variations to be characterized in detail, it’s a concern, specially for island states. This research proposes the construction of statistical-dynamic models based on PCA regression methods. It is used as predictand the monthly precipitation accumulated, while the predictors (6) are extracted from the ECMWF-SEAS5 ensemble mean forecasts with a lag of one month with respect to the target month. In the construction of the models, two sequential training schemes are evaluated, obtaining that only the shorter preserves the seasonal characteristics of the predictand. The evaluation metrics used, where cell-point and dichotomous methodologies are combined, suggest that the predictors related to sea surface temperatures do not adequately represent the seasonal variability of the predictand, however, others such as the temperature at 850 hPa and the Outgoing Longwave Radiation are represented with a good approximation regardless of the model chosen. In this sense, the models built with the nearest neighbor methodology were the most efficient. Using the individual models with the best results, an ensemble is built that allows improving the individual skill of the models selected as members by correcting the underestimation of precipitation in the dynamic model during the wet season, although problems of overestimation persist for thresholds lower than 50 mm.展开更多
Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. ...Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. The above statement holds for West Texas, Midland, and Odessa Precisely. Two machine learning regression algorithms (Random Forest and XGBoost) were employed to develop models for the prediction of total dissolved solids (TDS) and sodium absorption ratio (SAR) for efficient water quality monitoring of two vital aquifers: Edward-Trinity (plateau), and Ogallala aquifers. These two aquifers have contributed immensely to providing water for different uses ranging from domestic, agricultural, industrial, etc. The data was obtained from the Texas Water Development Board (TWDB). The XGBoost and Random Forest models used in this study gave an accurate prediction of observed data (TDS and SAR) for both the Edward-Trinity (plateau) and Ogallala aquifers with the R<sup>2</sup> values consistently greater than 0.83. The Random Forest model gave a better prediction of TDS and SAR concentration with an average R, MAE, RMSE and MSE of 0.977, 0.015, 0.029 and 0.00, respectively. For the XGBoost, an average R, MAE, RMSE, and MSE of 0.953, 0.016, 0.037 and 0.00, respectively, were achieved. The overall performance of the models produced was impressive. From this study, we can clearly understand that Random Forest and XGBoost are appropriate for water quality prediction and monitoring in an area of high hydrocarbon activities like Midland and Odessa and West Texas at large.展开更多
In this paper, a logistical regression statistical analysis (LR) is presented for a set of variables used in experimental measurements in reversed field pinch (RFP) machines, commonly known as “slinky mode” (SM), ob...In this paper, a logistical regression statistical analysis (LR) is presented for a set of variables used in experimental measurements in reversed field pinch (RFP) machines, commonly known as “slinky mode” (SM), observed to travel around the torus in Madison Symmetric Torus (MST). The LR analysis is used to utilize the modified Sine-Gordon dynamic equation model to predict with high confidence whether the slinky mode will lock or not lock when compared to the experimentally measured motion of the slinky mode. It is observed that under certain conditions, the slinky mode “locks” at or near the intersection of poloidal and/or toroidal gaps in MST. However, locked mode cease to travel around the torus;while unlocked mode keeps traveling without a change in the energy, making it hard to determine an exact set of conditions to predict locking/unlocking behaviour. The significant key model parameters determined by LR analysis are shown to improve the Sine-Gordon model’s ability to determine the locking/unlocking of magnetohydrodyamic (MHD) modes. The LR analysis of measured variables provides high confidence in anticipating locking versus unlocking of slinky mode proven by relational comparisons between simulations and the experimentally measured motion of the slinky mode in MST.展开更多
This study aims to analyze and predict the relationship between the average price per box in the cigarette market of City A and government procurement,providing a scientific basis and support for decision-making.By re...This study aims to analyze and predict the relationship between the average price per box in the cigarette market of City A and government procurement,providing a scientific basis and support for decision-making.By reviewing relevant theories and literature,qualitative prediction methods,regression prediction models,and other related theories were explored.Through the analysis of annual cigarette sales data and government procurement data in City A,a comprehensive understanding of the development of the tobacco industry and the economic trends of tobacco companies in the county was obtained.By predicting and analyzing the average price per box of cigarette sales across different years,corresponding prediction results were derived and compared with actual sales data.The prediction results indicate that the correlation coefficient between the average price per box of cigarette sales and government procurement is 0.982,implying that government procurement accounts for 96.4%of the changes in the average price per box of cigarettes.These findings offer an in-depth exploration of the relationship between the average price per box of cigarettes in City A and government procurement,providing a scientific foundation for corporate decision-making and market operations.展开更多
A geometric framework is proposed for semiparametric nonlinear regression models based on the concept of least favorable curve, introduced by Severini and Wong (1992). The authors use this framework to drive three kin...A geometric framework is proposed for semiparametric nonlinear regression models based on the concept of least favorable curve, introduced by Severini and Wong (1992). The authors use this framework to drive three kinds of improved approximate confidence regions for the parameter and parameter subset in terms of curvatures. The results obtained by Hamilton et al. (1982), Hamilton (1986) and Wei (1994) are extended to semiparametric nonlinear regression models.展开更多
Backgrounds:Evaluating the growth performance of pigs in real-time is laborious and expensive,thus mathematical models based on easily accessible variables are developed.Multiple regression(MR)is the most widely used ...Backgrounds:Evaluating the growth performance of pigs in real-time is laborious and expensive,thus mathematical models based on easily accessible variables are developed.Multiple regression(MR)is the most widely used tool to build prediction models in swine nutrition,while the artificial neural networks(ANN)model is reported to be more accurate than MR model in prediction performance.Therefore,the potential of ANN models in predicting the growth performance of pigs was evaluated and compared with MR models in this study.Results:Body weight(BW),net energy(NE)intake,standardized ileal digestible lysine(SID Lys)intake,and their quadratic terms were selected as input variables to predict ADG and F/G among 10 candidate variables.In the training phase,MR models showed high accuracy in both ADG and F/G prediction(R^(2)_(ADG)=0.929,R^(2)_(F/G)=0.886)while ANN models with 4,6 neurons and radial basis activation function yielded the best performance in ADG and F/G prediction(R^(2)_(ADG)=0.964,R^(2)_(F/G)=0.932).In the testing phase,these ANN models showed better accuracy in ADG prediction(CCC:0.976 vs.0.861,R^(2):0.951 vs.0.584),and F/G prediction(CCC:0.952 vs.0.900,R^(2):0.905 vs.0.821)compared with the MR models.Meanwhile,the“over-fitting”occurred in MR models but not in ANN models.On validation data from the animal trial,ANN models exhibited superiority over MR models in both ADG and F/G prediction(P<0.01).Moreover,the growth stages have a significant effect on the prediction accuracy of the models.Conclusion:Body weight,NE intake and SID Lys intake can be used as input variables to predict the growth performance of growing-finishing pigs,with trained ANN models are more flexible and accurate than MR models.Therefore,it is promising to use ANN models in related swine nutrition studies in the future.展开更多
Internal solitary wave propagation over a submarine ridge results in energy dissipation, in which the hydrodynamic interaction between a wave and ridge affects marine environment. This study analyzes the effects of ri...Internal solitary wave propagation over a submarine ridge results in energy dissipation, in which the hydrodynamic interaction between a wave and ridge affects marine environment. This study analyzes the effects of ridge height and potential energy during wave-ridge interaction with a binary and cumulative logistic regression model. In testing the Global Null Hypothesis, all values are p 〈0.001, with three statistical methods, such as Likelihood Ratio, Score, and Wald. While comparing with two kinds of models, tests values obtained by cumulative logistic regression models are better than those by binary logistic regression models. Although this study employed cumulative logistic regression model, three probability functions p^1, p^2 and p^3, are utilized for investigating the weighted influence of factors on wave reflection. Deviance and Pearson tests are applied to cheek the goodness-of-fit of the proposed model. The analytical results demonstrated that both ridge height (X1 ) and potential energy (X2 ) significantly impact (p 〈 0. 0001 ) the amplitude-based refleeted rate; the P-values for the deviance and Pearson are all 〉 0.05 (0.2839, 0.3438, respectively). That is, the goodness-of-fit between ridge height ( X1 ) and potential energy (X2) can further predict parameters under the scenario of the best parsimonious model. Investigation of 6 predictive powers ( R2, Max-rescaled R^2, Sorners' D, Gamma, Tau-a, and c, respectively) indicate that these predictive estimates of the proposed model have better predictive ability than ridge height alone, and are very similar to the interaction of ridge height and potential energy. It can be concluded that the goodness-of-fit and prediction ability of the cumulative logistic regression model are better than that of the binary logistic regression model.展开更多
In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the l...In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the local linear technique and the averaged method,the initial estimates of the coefficient functions are given.Second step,based on the initial estimates,the efficient estimates of the coefficient functions are proposed by a one-step back-fitting procedure.The efficient estimators share the same asymptotic normalities as the local linear estimators for the functional-coefficient models with a single smoothing variable in different functions.Two simulated examples show that the procedure is effective.展开更多
Recently,many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties.Although statistical analysis is a common method for developing regression models...Recently,many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties.Although statistical analysis is a common method for developing regression models,but still selection of suitable transformation of the independent variables in a regression model is diffcult.In this paper,a genetic algorithm(GA)has been employed as a heuristic search method for selection of best transformation of the independent variables(some index properties of rocks)in regression models for prediction of uniaxial compressive strength(UCS)and modulus of elasticity(E).Firstly,multiple linear regression(MLR)analysis was performed on a data set to establish predictive models.Then,two GA models were developed in which root mean squared error(RMSE)was defned as ftness function.Results have shown that GA models are more precise than MLR models and are able to explain the relation between the intrinsic strength/elasticity properties and index properties of rocks by simple formulation and accepted accuracy.展开更多
In classical regression analysis, the error of independent variable is usually not taken into account in regression analysis. This paper presents two solution methods for the case that both the independent and the dep...In classical regression analysis, the error of independent variable is usually not taken into account in regression analysis. This paper presents two solution methods for the case that both the independent and the dependent variables have errors. These methods are derived from the condition-adjustment and indirect-adjustment models based on the Total-Least-Squares principle. The equivalence of these two methods is also proven in theory.展开更多
A number of statistical tests are proposed for the purpose of change-point detection in a general nonparametric regression model under mild conditions. New proofs are given to prove the weak convergence of the underly...A number of statistical tests are proposed for the purpose of change-point detection in a general nonparametric regression model under mild conditions. New proofs are given to prove the weak convergence of the underlying processes which assume remove the stringent condition of bounded total variation of the regression function and need only second moments. Since many quantities, such as the regression function, the distribution of the covariates and the distribution of the errors, are unspecified, the results are not distribution-free. A weighted bootstrap approach is proposed to approximate the limiting distributions. Results of a simulation study for this paper show good performance for moderate samples sizes.展开更多
In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illus...In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illustrate that the finite sample performances of proposed method perform better than the least squares based method with regard to the non-causal selection rate (NSR) and the median of model error (MME) when the error distribution is heavy-tail. Finally, we apply the proposed methodology to analyze the ragweed pollen level dataset.展开更多
The global pandemic,coronavirus disease 2019(COVID-19),has significantly affected tourism,especially in Spain,as it was among the first countries to be affected by the pandemic and is among the world’s biggest touris...The global pandemic,coronavirus disease 2019(COVID-19),has significantly affected tourism,especially in Spain,as it was among the first countries to be affected by the pandemic and is among the world’s biggest tourist destinations.Stock market values are responding to the evolution of the pandemic,especially in the case of tourist companies.Therefore,being able to quantify this relationship allows us to predict the effect of the pandemic on shares in the tourism sector,thereby improving the response to the crisis by policymakers and investors.Accordingly,a dynamic regression model was developed to predict the behavior of shares in the Spanish tourism sector according to the evolution of the COVID-19 pandemic in the medium term.It has been confirmed that both the number of deaths and cases are good predictors of abnormal stock prices in the tourism sector.展开更多
[Objective]The aim was to establish the linear regression prediction models between sowing time and plant productivity, biological yield of forage sorghum in autumn idle land.[Method]The relationships between sowing t...[Objective]The aim was to establish the linear regression prediction models between sowing time and plant productivity, biological yield of forage sorghum in autumn idle land.[Method]The relationships between sowing time and plant productivity, biological yield of forage sorghum were simulated and compared by using field experiment and linear regression analysis.[Result] The sowing time had an important influence on the plant productivity and biological yield of forage sorghum in autumn idle land. The plant productivity and biological yield of forage sorghum both decreased with the delay of sowing time.The regression model between plant fresh weight and sowing time was ?fresh=0.618-0.015x; the regression model between plant dry weight and sowing time was ?dry=0.184-0.005x; and the regression model between biological yield and sowing time was yield=29 126.461-711.448x. During July 23rd to August 30th, when the sowing time was delayed by 1 day, the plant fresh weight of forage sorghum was reduced by 0.015 g, the plant dry weight was reduced by 0.005 g, and the yield was reduced by 711.448 kg/hm2. [Conclusion] The three regression models established in this study will provide theoretical support for the production of forage sorghum.展开更多
This research examines optimization of blasting parameters for economic production of granite aggregates in Ratcon and NSCE quarries located atIbadan,OyoState. Samples were collected from the study areas for the deter...This research examines optimization of blasting parameters for economic production of granite aggregates in Ratcon and NSCE quarries located atIbadan,OyoState. Samples were collected from the study areas for the determination of rock density and porosity. Schmidt hammer was used for in situ determination of rock hardness. Uniaxial compressive strength of in situ rock was estimated from the values obtained from Schmidt hammer rebound hardness test and density determined from laboratory test. Blasting data were collected from the study areas for optimization. Multiple regression analysis using computer aided solution SPSS (Statistical Package for the Social Sciences) was used to analyse data obtained from the laboratory test, field test and the study areas. The estimated mean uniaxial compressive strength value of NSCE is 240 MPa and that of Ratcon is 200 MPa and their average densities and average porosities are2.63g/cm3,2.55g/cm3, 1.88% and 2.25% respectively. Eleven parameters were input into the multiple regression analysis to generate the models. Two parameters out of eleven input parameters such as geometric volume of blast (Y1) and number of boulders generated after blasting (Y2) were dependent variables and the remaining nine such as X1 (Drill hole diameter), X2 (Drill hole depth), X3 (Spacing), X4 (Burden), X5 (Average charge per hole), X6 (Rock density), X7 (Porosity), X8 (Uniaxial compressive strength) and X9 (Specific charge) were input as independent variables. The results of the models show that out of the nine independent variables seven of them that is X1 (Borehole diameter), X2 (Borehole depth), X3 (Spacing), X4 (Burden), X5 (Average charge per hole), X8 (Uniaxial compressive strength) and X9 (Specific charge) have significant contribution to the models while X6 (Rock Density) and X7 (Porosity) have insignificant contribution they are therefore automatically deleted by the SPSS. The result of the models developed for the optimization reveals that blasting number 5 gives the required product at lowest possible cost. From the result, the cost of secondary blasting has been reduced and volume of the blasted rock has been increased with low cost of explosives, the parameters that give this result have been chosen as optimum parameters.展开更多
基金This work was performed under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No.89233218CNA000001The Authors gratefully acknowledge the support of the US Department of Energy National Nuclear Security Administration Advanced Simulation and Computing Program.LA-UR-22-33159.
文摘To accurately model flows with shock waves using staggered-grid Lagrangian hydrodynamics, the artificial viscosity has to be introduced to convert kinetic energy into internal energy, thereby increasing the entropy across shocks. Determining the appropriate strength of the artificial viscosity is an art and strongly depends on the particular problem and experience of the researcher. The objective of this study is to pose the problem of finding the appropriate strength of the artificial viscosity as an optimization problem and solve this problem using machine learning (ML) tools, specifically using surrogate models based on Gaussian Process regression (GPR) and Bayesian analysis. We describe the optimization method and discuss various practical details of its implementation. The shock-containing problems for which we apply this method all have been implemented in the LANL code FLAG (Burton in Connectivity structures and differencing techniques for staggered-grid free-Lagrange hydrodynamics, Tech. Rep. UCRL-JC-110555, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1992, in Consistent finite-volume discretization of hydrodynamic conservation laws for unstructured grids, Tech. Rep. CRL-JC-118788, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1994, Multidimensional discretization of conservation laws for unstructured polyhedral grids, Tech. Rep. UCRL-JC-118306, Lawrence Livermore National Laboratory, Livermore, CA, 1992, 1994, in FLAG, a multi-dimensional, multiple mesh, adaptive free-Lagrange, hydrodynamics code. In: NECDC, 1992). First, we apply ML to find optimal values to isolated shock problems of different strengths. Second, we apply ML to optimize the viscosity for a one-dimensional (1D) propagating detonation problem based on Zel’dovich-von Neumann-Doring (ZND) (Fickett and Davis in Detonation: theory and experiment. Dover books on physics. Dover Publications, Mineola, 2000) detonation theory using a reactive burn model. We compare results for default (currently used values in FLAG) and optimized values of the artificial viscosity for these problems demonstrating the potential for significant improvement in the accuracy of computations.
文摘Purpose:The purpose of this study is to develop and compare model choice strategies in context of logistic regression.Model choice means the choice of the covariates to be included in the model.Design/methodology/approach:The study is based on Monte Carlo simulations.The methods are compared in terms of three measures of accuracy:specificity and two kinds of sensitivity.A loss function combining sensitivity and specificity is introduced and used for a final comparison.Findings:The choice of method depends on how much the users emphasize sensitivity against specificity.It also depends on the sample size.For a typical logistic regression setting with a moderate sample size and a small to moderate effect size,either BIC,BICc or Lasso seems to be optimal.Research limitations:Numerical simulations cannot cover the whole range of data-generating processes occurring with real-world data.Thus,more simulations are needed.Practical implications:Researchers can refer to these results if they believe that their data-generating process is somewhat similar to some of the scenarios presented in this paper.Alternatively,they could run their own simulations and calculate the loss function.Originality/value:This is a systematic comparison of model choice algorithms and heuristics in context of logistic regression.The distinction between two types of sensitivity and a comparison based on a loss function are methodological novelties.
文摘This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination.
文摘Carbon emissions have become a critical concern in the global effort to combat climate change,with each country or region contributing differently based on its economic structures,energy sources,and industrial activities.The factors influencing carbon emissions vary across countries and sectors.This study examined the factors influencing CO_(2)emissions in the 7 South American countries including Argentina,Brazil,Chile,Colombia,Ecuador,Peru,and Venezuela.We used the Seemingly Unrelated Regression(SUR)model to analyse the relationship of CO_(2)emissions with gross domestic product(GDP),renewable energy use,urbanization,industrialization,international tourism,agricultural productivity,and forest area based on data from 2000 to 2022.According to the SUR model,we found that GDP and industrialization had a moderate positive effect on CO_(2)emissions,whereas renewable energy use had a moderate negative effect on CO_(2)emissions.International tourism generally had a positive impact on CO_(2)emissions,while forest area tended to decrease CO_(2)emissions.Different variables had different effects on CO_(2)emissions in the 7 South American countries.In Argentina and Venezuela,GDP,international tourism,and agricultural productivity significantly affected CO_(2)emissions.In Colombia,GDP and international tourism had a negative impact on CO_(2)emissions.In Brazil,CO_(2)emissions were primarily driven by GDP,while in Chile,Ecuador,and Peru,international tourism had a negative effect on CO_(2)emissions.Overall,this study highlights the importance of country-specific strategies for reducing CO_(2)emissions and emphasizes the varying roles of these driving factors in shaping environmental quality in the 7 South American countries.
文摘BACKGROUND The spread of the severe acute respiratory syndrome coronavirus 2 outbreak worldwide has caused concern regarding the mortality rate caused by the infection.The determinants of mortality on a global scale cannot be fully understood due to lack of information.AIM To identify key factors that may explain the variability in case lethality across countries.METHODS We identified 21 Potential risk factors for coronavirus disease 2019(COVID-19)case fatality rate for all the countries with available data.We examined univariate relationships of each variable with case fatality rate(CFR),and all independent variables to identify candidate variables for our final multiple model.Multiple regression analysis technique was used to assess the strength of relationship.RESULTS The mean of COVID-19 mortality was 1.52±1.72%.There was a statistically significant inverse correlation between health expenditure,and number of computed tomography scanners per 1 million with CFR,and significant direct correlation was found between literacy,and air pollution with CFR.This final model can predict approximately 97%of the changes in CFR.CONCLUSION The current study recommends some new predictors explaining affect mortality rate.Thus,it could help decision-makers develop health policies to fight COVID-19.
文摘Possible changes in the structure and seasonal variability of the subtropical ridge may lead to changes in the rainfall’s variability modes over Caribbean region. This generates additional difficulties around water resource planning, therefore, obtaining seasonal prediction models that allow these variations to be characterized in detail, it’s a concern, specially for island states. This research proposes the construction of statistical-dynamic models based on PCA regression methods. It is used as predictand the monthly precipitation accumulated, while the predictors (6) are extracted from the ECMWF-SEAS5 ensemble mean forecasts with a lag of one month with respect to the target month. In the construction of the models, two sequential training schemes are evaluated, obtaining that only the shorter preserves the seasonal characteristics of the predictand. The evaluation metrics used, where cell-point and dichotomous methodologies are combined, suggest that the predictors related to sea surface temperatures do not adequately represent the seasonal variability of the predictand, however, others such as the temperature at 850 hPa and the Outgoing Longwave Radiation are represented with a good approximation regardless of the model chosen. In this sense, the models built with the nearest neighbor methodology were the most efficient. Using the individual models with the best results, an ensemble is built that allows improving the individual skill of the models selected as members by correcting the underestimation of precipitation in the dynamic model during the wet season, although problems of overestimation persist for thresholds lower than 50 mm.
文摘Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. The above statement holds for West Texas, Midland, and Odessa Precisely. Two machine learning regression algorithms (Random Forest and XGBoost) were employed to develop models for the prediction of total dissolved solids (TDS) and sodium absorption ratio (SAR) for efficient water quality monitoring of two vital aquifers: Edward-Trinity (plateau), and Ogallala aquifers. These two aquifers have contributed immensely to providing water for different uses ranging from domestic, agricultural, industrial, etc. The data was obtained from the Texas Water Development Board (TWDB). The XGBoost and Random Forest models used in this study gave an accurate prediction of observed data (TDS and SAR) for both the Edward-Trinity (plateau) and Ogallala aquifers with the R<sup>2</sup> values consistently greater than 0.83. The Random Forest model gave a better prediction of TDS and SAR concentration with an average R, MAE, RMSE and MSE of 0.977, 0.015, 0.029 and 0.00, respectively. For the XGBoost, an average R, MAE, RMSE, and MSE of 0.953, 0.016, 0.037 and 0.00, respectively, were achieved. The overall performance of the models produced was impressive. From this study, we can clearly understand that Random Forest and XGBoost are appropriate for water quality prediction and monitoring in an area of high hydrocarbon activities like Midland and Odessa and West Texas at large.
文摘In this paper, a logistical regression statistical analysis (LR) is presented for a set of variables used in experimental measurements in reversed field pinch (RFP) machines, commonly known as “slinky mode” (SM), observed to travel around the torus in Madison Symmetric Torus (MST). The LR analysis is used to utilize the modified Sine-Gordon dynamic equation model to predict with high confidence whether the slinky mode will lock or not lock when compared to the experimentally measured motion of the slinky mode. It is observed that under certain conditions, the slinky mode “locks” at or near the intersection of poloidal and/or toroidal gaps in MST. However, locked mode cease to travel around the torus;while unlocked mode keeps traveling without a change in the energy, making it hard to determine an exact set of conditions to predict locking/unlocking behaviour. The significant key model parameters determined by LR analysis are shown to improve the Sine-Gordon model’s ability to determine the locking/unlocking of magnetohydrodyamic (MHD) modes. The LR analysis of measured variables provides high confidence in anticipating locking versus unlocking of slinky mode proven by relational comparisons between simulations and the experimentally measured motion of the slinky mode in MST.
基金National Social Science Fund Project“Research on the Operational Risks and Prevention of Government Procurement of Community Services Project System”(Project No.21CSH018)Research and Application of SDM Cigarette Supply Strategy Based on Consumer Data Analysis(Project No.2023ASXM07)。
文摘This study aims to analyze and predict the relationship between the average price per box in the cigarette market of City A and government procurement,providing a scientific basis and support for decision-making.By reviewing relevant theories and literature,qualitative prediction methods,regression prediction models,and other related theories were explored.Through the analysis of annual cigarette sales data and government procurement data in City A,a comprehensive understanding of the development of the tobacco industry and the economic trends of tobacco companies in the county was obtained.By predicting and analyzing the average price per box of cigarette sales across different years,corresponding prediction results were derived and compared with actual sales data.The prediction results indicate that the correlation coefficient between the average price per box of cigarette sales and government procurement is 0.982,implying that government procurement accounts for 96.4%of the changes in the average price per box of cigarettes.These findings offer an in-depth exploration of the relationship between the average price per box of cigarettes in City A and government procurement,providing a scientific foundation for corporate decision-making and market operations.
文摘A geometric framework is proposed for semiparametric nonlinear regression models based on the concept of least favorable curve, introduced by Severini and Wong (1992). The authors use this framework to drive three kinds of improved approximate confidence regions for the parameter and parameter subset in terms of curvatures. The results obtained by Hamilton et al. (1982), Hamilton (1986) and Wei (1994) are extended to semiparametric nonlinear regression models.
基金funded by the National Natural Science Foundation of China(32072764, 31702121)the 2115 Talent Development Program of China Agricultural UniversityNational Key Research and Development Program of China (2019YFD1002605)
文摘Backgrounds:Evaluating the growth performance of pigs in real-time is laborious and expensive,thus mathematical models based on easily accessible variables are developed.Multiple regression(MR)is the most widely used tool to build prediction models in swine nutrition,while the artificial neural networks(ANN)model is reported to be more accurate than MR model in prediction performance.Therefore,the potential of ANN models in predicting the growth performance of pigs was evaluated and compared with MR models in this study.Results:Body weight(BW),net energy(NE)intake,standardized ileal digestible lysine(SID Lys)intake,and their quadratic terms were selected as input variables to predict ADG and F/G among 10 candidate variables.In the training phase,MR models showed high accuracy in both ADG and F/G prediction(R^(2)_(ADG)=0.929,R^(2)_(F/G)=0.886)while ANN models with 4,6 neurons and radial basis activation function yielded the best performance in ADG and F/G prediction(R^(2)_(ADG)=0.964,R^(2)_(F/G)=0.932).In the testing phase,these ANN models showed better accuracy in ADG prediction(CCC:0.976 vs.0.861,R^(2):0.951 vs.0.584),and F/G prediction(CCC:0.952 vs.0.900,R^(2):0.905 vs.0.821)compared with the MR models.Meanwhile,the“over-fitting”occurred in MR models but not in ANN models.On validation data from the animal trial,ANN models exhibited superiority over MR models in both ADG and F/G prediction(P<0.01).Moreover,the growth stages have a significant effect on the prediction accuracy of the models.Conclusion:Body weight,NE intake and SID Lys intake can be used as input variables to predict the growth performance of growing-finishing pigs,with trained ANN models are more flexible and accurate than MR models.Therefore,it is promising to use ANN models in related swine nutrition studies in the future.
基金This paper was financially supported by NSC96-2628-E-366-004-MY2 and NSC96-2628-E-132-001-MY2
文摘Internal solitary wave propagation over a submarine ridge results in energy dissipation, in which the hydrodynamic interaction between a wave and ridge affects marine environment. This study analyzes the effects of ridge height and potential energy during wave-ridge interaction with a binary and cumulative logistic regression model. In testing the Global Null Hypothesis, all values are p 〈0.001, with three statistical methods, such as Likelihood Ratio, Score, and Wald. While comparing with two kinds of models, tests values obtained by cumulative logistic regression models are better than those by binary logistic regression models. Although this study employed cumulative logistic regression model, three probability functions p^1, p^2 and p^3, are utilized for investigating the weighted influence of factors on wave reflection. Deviance and Pearson tests are applied to cheek the goodness-of-fit of the proposed model. The analytical results demonstrated that both ridge height (X1 ) and potential energy (X2 ) significantly impact (p 〈 0. 0001 ) the amplitude-based refleeted rate; the P-values for the deviance and Pearson are all 〉 0.05 (0.2839, 0.3438, respectively). That is, the goodness-of-fit between ridge height ( X1 ) and potential energy (X2) can further predict parameters under the scenario of the best parsimonious model. Investigation of 6 predictive powers ( R2, Max-rescaled R^2, Sorners' D, Gamma, Tau-a, and c, respectively) indicate that these predictive estimates of the proposed model have better predictive ability than ridge height alone, and are very similar to the interaction of ridge height and potential energy. It can be concluded that the goodness-of-fit and prediction ability of the cumulative logistic regression model are better than that of the binary logistic regression model.
文摘In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the local linear technique and the averaged method,the initial estimates of the coefficient functions are given.Second step,based on the initial estimates,the efficient estimates of the coefficient functions are proposed by a one-step back-fitting procedure.The efficient estimators share the same asymptotic normalities as the local linear estimators for the functional-coefficient models with a single smoothing variable in different functions.Two simulated examples show that the procedure is effective.
文摘Recently,many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties.Although statistical analysis is a common method for developing regression models,but still selection of suitable transformation of the independent variables in a regression model is diffcult.In this paper,a genetic algorithm(GA)has been employed as a heuristic search method for selection of best transformation of the independent variables(some index properties of rocks)in regression models for prediction of uniaxial compressive strength(UCS)and modulus of elasticity(E).Firstly,multiple linear regression(MLR)analysis was performed on a data set to establish predictive models.Then,two GA models were developed in which root mean squared error(RMSE)was defned as ftness function.Results have shown that GA models are more precise than MLR models and are able to explain the relation between the intrinsic strength/elasticity properties and index properties of rocks by simple formulation and accepted accuracy.
基金supported by the National Nature Science Foundation of China (41174009)
文摘In classical regression analysis, the error of independent variable is usually not taken into account in regression analysis. This paper presents two solution methods for the case that both the independent and the dependent variables have errors. These methods are derived from the condition-adjustment and indirect-adjustment models based on the Total-Least-Squares principle. The equivalence of these two methods is also proven in theory.
文摘A number of statistical tests are proposed for the purpose of change-point detection in a general nonparametric regression model under mild conditions. New proofs are given to prove the weak convergence of the underlying processes which assume remove the stringent condition of bounded total variation of the regression function and need only second moments. Since many quantities, such as the regression function, the distribution of the covariates and the distribution of the errors, are unspecified, the results are not distribution-free. A weighted bootstrap approach is proposed to approximate the limiting distributions. Results of a simulation study for this paper show good performance for moderate samples sizes.
文摘In this paper, we propose the double-penalized quantile regression estimators in partially linear models. An iterative algorithm is proposed for solving the proposed optimization problem. Some numerical examples illustrate that the finite sample performances of proposed method perform better than the least squares based method with regard to the non-causal selection rate (NSR) and the median of model error (MME) when the error distribution is heavy-tail. Finally, we apply the proposed methodology to analyze the ragweed pollen level dataset.
文摘The global pandemic,coronavirus disease 2019(COVID-19),has significantly affected tourism,especially in Spain,as it was among the first countries to be affected by the pandemic and is among the world’s biggest tourist destinations.Stock market values are responding to the evolution of the pandemic,especially in the case of tourist companies.Therefore,being able to quantify this relationship allows us to predict the effect of the pandemic on shares in the tourism sector,thereby improving the response to the crisis by policymakers and investors.Accordingly,a dynamic regression model was developed to predict the behavior of shares in the Spanish tourism sector according to the evolution of the COVID-19 pandemic in the medium term.It has been confirmed that both the number of deaths and cases are good predictors of abnormal stock prices in the tourism sector.
文摘[Objective]The aim was to establish the linear regression prediction models between sowing time and plant productivity, biological yield of forage sorghum in autumn idle land.[Method]The relationships between sowing time and plant productivity, biological yield of forage sorghum were simulated and compared by using field experiment and linear regression analysis.[Result] The sowing time had an important influence on the plant productivity and biological yield of forage sorghum in autumn idle land. The plant productivity and biological yield of forage sorghum both decreased with the delay of sowing time.The regression model between plant fresh weight and sowing time was ?fresh=0.618-0.015x; the regression model between plant dry weight and sowing time was ?dry=0.184-0.005x; and the regression model between biological yield and sowing time was yield=29 126.461-711.448x. During July 23rd to August 30th, when the sowing time was delayed by 1 day, the plant fresh weight of forage sorghum was reduced by 0.015 g, the plant dry weight was reduced by 0.005 g, and the yield was reduced by 711.448 kg/hm2. [Conclusion] The three regression models established in this study will provide theoretical support for the production of forage sorghum.
文摘This research examines optimization of blasting parameters for economic production of granite aggregates in Ratcon and NSCE quarries located atIbadan,OyoState. Samples were collected from the study areas for the determination of rock density and porosity. Schmidt hammer was used for in situ determination of rock hardness. Uniaxial compressive strength of in situ rock was estimated from the values obtained from Schmidt hammer rebound hardness test and density determined from laboratory test. Blasting data were collected from the study areas for optimization. Multiple regression analysis using computer aided solution SPSS (Statistical Package for the Social Sciences) was used to analyse data obtained from the laboratory test, field test and the study areas. The estimated mean uniaxial compressive strength value of NSCE is 240 MPa and that of Ratcon is 200 MPa and their average densities and average porosities are2.63g/cm3,2.55g/cm3, 1.88% and 2.25% respectively. Eleven parameters were input into the multiple regression analysis to generate the models. Two parameters out of eleven input parameters such as geometric volume of blast (Y1) and number of boulders generated after blasting (Y2) were dependent variables and the remaining nine such as X1 (Drill hole diameter), X2 (Drill hole depth), X3 (Spacing), X4 (Burden), X5 (Average charge per hole), X6 (Rock density), X7 (Porosity), X8 (Uniaxial compressive strength) and X9 (Specific charge) were input as independent variables. The results of the models show that out of the nine independent variables seven of them that is X1 (Borehole diameter), X2 (Borehole depth), X3 (Spacing), X4 (Burden), X5 (Average charge per hole), X8 (Uniaxial compressive strength) and X9 (Specific charge) have significant contribution to the models while X6 (Rock Density) and X7 (Porosity) have insignificant contribution they are therefore automatically deleted by the SPSS. The result of the models developed for the optimization reveals that blasting number 5 gives the required product at lowest possible cost. From the result, the cost of secondary blasting has been reduced and volume of the blasted rock has been increased with low cost of explosives, the parameters that give this result have been chosen as optimum parameters.