期刊文献+
共找到2,167篇文章
< 1 2 109 >
每页显示 20 50 100
Identification of time-varying system and energy-based optimization of adaptive control in seismically excited structure
1
作者 Elham Aghabarari Fereidoun Amini Pedram Ghaderi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期227-240,共14页
The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ... The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems. 展开更多
关键词 integrated online identification time-varying systems structural energy multiple forgetting factor recursive least squares optimal simple adaptive control algorithm
下载PDF
A New Multiobjective Particle Swarm Optimization Using Local Displacement and Local Guides
2
作者 Saïd Charriffaini Rawhoudine Abdoulhafar Halassi Bacar 《Open Journal of Optimization》 2024年第2期31-49,共19页
This paper introduces a novel variant of particle swarm optimization that leverages local displacements through attractors for addressing multiobjective optimization problems. The method incorporates a square root dis... This paper introduces a novel variant of particle swarm optimization that leverages local displacements through attractors for addressing multiobjective optimization problems. The method incorporates a square root distance mechanism into the external archives to enhance the diversity. We evaluate the performance of the proposed approach on a set of constrained and unconstrained multiobjective test functions, establishing a benchmark for comparison. In order to gauge its effectiveness relative to established techniques, we conduct a comprehensive comparison with well-known approaches such as SMPSO, NSGA2 and SPEA2. The numerical results demonstrate that our method not only achieves efficiency but also exhibits competitiveness when compared to evolutionary algorithms. Particularly noteworthy is its superior performance in terms of convergence and diversification, surpassing the capabilities of its predecessors. 展开更多
关键词 Particle Swarm optimization Multiobjective optimization Attractor-Based Displacement square Root Distance Crowding Distance
下载PDF
Near-Infrared Spectroscopy Combined with Absorbance Upper Optimization Partial Least Squares Applied to Rapid Analysis of Polysaccharide for Proprietary Chinese Medicine Oral Solution 被引量:2
3
作者 Jiexiong Su Xinkai Gao +5 位作者 Lirong Tan Xianzhao Liu Yueqing Ye Yifang Chen Kaisheng Ma Tao Pan 《American Journal of Analytical Chemistry》 2016年第3期275-281,共7页
Near-infrared (NIR) spectroscopy was applied to reagent-free quantitative analysis of polysaccharide of a brand product of proprietary Chinese medicine (PCM) oral solution samples. A novel method, called absorbance up... Near-infrared (NIR) spectroscopy was applied to reagent-free quantitative analysis of polysaccharide of a brand product of proprietary Chinese medicine (PCM) oral solution samples. A novel method, called absorbance upper optimization partial least squares (AUO-PLS), was proposed and successfully applied to the wavelength selection. Based on varied partitioning of the calibration and prediction sample sets, the parameter optimization was performed to achieve stability. On the basis of the AUO-PLS method, the selected upper bound of appropriate absorbance was 1.53 and the corresponding wavebands combination was 400 - 1880 & 2088 - 2346 nm. With the use of random validation samples excluded from the modeling process, the root-mean-square error and correlation coefficient of prediction for polysaccharide were 27.09 mg·L<sup>-</sup><sup>1</sup> and 0.888, respectively. The results indicate that the NIR prediction values are close to those of the measured values. NIR spectroscopy combined with AUO-PLS method provided a promising tool for quantification of the polysaccharide for PCM oral solution and this technique is rapid and simple when compared with conventional methods. 展开更多
关键词 Near-Infrared Spectroscopic Analysis Proprietary Chinese Medicine Oral Solution POLYSACCHARIDE Absorbance Upper optimization Partial Least squares
下载PDF
Design of Radial Basis Function Network Using Adaptive Particle Swarm Optimization and Orthogonal Least Squares 被引量:1
4
作者 Majid Moradi Zirkohi Mohammad Mehdi Fateh Ali Akbarzade 《Journal of Software Engineering and Applications》 2010年第7期704-708,共5页
This paper presents a two-level learning method for designing an optimal Radial Basis Function Network (RBFN) using Adaptive Velocity Update Relaxation Particle Swarm Optimization algorithm (AVURPSO) and Orthogonal Le... This paper presents a two-level learning method for designing an optimal Radial Basis Function Network (RBFN) using Adaptive Velocity Update Relaxation Particle Swarm Optimization algorithm (AVURPSO) and Orthogonal Least Squares algorithm (OLS) called as OLS-AVURPSO method. The novelty is to develop an AVURPSO algorithm to form the hybrid OLS-AVURPSO method for designing an optimal RBFN. The proposed method at the upper level finds the global optimum of the spread factor parameter using AVURPSO while at the lower level automatically constructs the RBFN using OLS algorithm. Simulation results confirm that the RBFN is superior to Multilayered Perceptron Network (MLPN) in terms of network size and computing time. To demonstrate the effectiveness of proposed OLS-AVURPSO in the design of RBFN, the Mackey-Glass Chaotic Time-Series as an example is modeled by both MLPN and RBFN. 展开更多
关键词 RADIAL BASIS Function Network ORTHOGONAL Least squareS Algorithm Particle SWARM optimization Mackey-Glass CHAOTIC Time-Series
下载PDF
Design of Ballistic Consistency Based on Least Squares Support Vector Machine and Particle Swarm Optimization
5
作者 张宇宸 杜忠华 戴炜 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第5期549-554,共6页
In order to improve the firing efficiency of projectiles,it is required to use the universal firing table for gun weapon system equipped with a variety of projectiles.Moreover,the foundation of sharing the universal f... In order to improve the firing efficiency of projectiles,it is required to use the universal firing table for gun weapon system equipped with a variety of projectiles.Moreover,the foundation of sharing the universal firing table is the ballistic matching for two types of projectiles.Therefore,a method is proposed in the process of designing new type of projectile.The least squares support vector machine is utilized to build the ballistic trajectory model of the original projectile,thus it is viable to compare the two trajectories.Then the particle swarm optimization is applied to find the combination of trajectory parameters which meet the criterion of ballistic matching best.Finally,examples show the proposed method is valid and feasible. 展开更多
关键词 ballistic matching least squares support vector machine particle swarm optimization curve fitting
下载PDF
Seasonal Least Squares Support Vector Machine with Fruit Fly Optimization Algorithm in Electricity Consumption Forecasting
6
作者 WANG Zilong XIA Chenxia 《Journal of Donghua University(English Edition)》 EI CAS 2019年第1期67-76,共10页
Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid mo... Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid model in combination of least squares support vector machine(LSSVM) model with fruit fly optimization algorithm(FOA) and the seasonal index adjustment is constructed to predict monthly electricity consumption. The monthly electricity consumption demonstrates a nonlinear characteristic and seasonal tendency. The LSSVM has a good fit for nonlinear data, so it has been widely applied to handling nonlinear time series prediction. However, there is no unified selection method for key parameters and no unified method to deal with the effect of seasonal tendency. Therefore, the FOA was hybridized with the LSSVM and the seasonal index adjustment to solve this problem. In order to evaluate the forecasting performance of hybrid model, two samples of monthly electricity consumption of China and the United States were employed, besides several different models were applied to forecast the two empirical time series. The results of the two samples all show that, for seasonal data, the adjusted model with seasonal indexes has better forecasting performance. The forecasting performance is better than the models without seasonal indexes. The fruit fly optimized LSSVM model outperforms other alternative models. In other words, the proposed hybrid model is a feasible method for the electricity consumption forecasting. 展开更多
关键词 forecasting FRUIT FLY optimization algorithm(FOA) least squareS support vector machine(LSSVM) SEASONAL index
下载PDF
Medium Term Load Forecasting for Jordan Electric Power System Using Particle Swarm Optimization Algorithm Based on Least Square Regression Methods
7
作者 Mohammed Hattab Mohammed Ma’itah +2 位作者 Tha’er Sweidan Mohammed Rifai Mohammad Momani 《Journal of Power and Energy Engineering》 2017年第2期75-96,共22页
This paper presents a technique for Medium Term Load Forecasting (MTLF) using Particle Swarm Optimization (PSO) algorithm based on Least Squares Regression Methods to forecast the electric loads of the Jordanian grid ... This paper presents a technique for Medium Term Load Forecasting (MTLF) using Particle Swarm Optimization (PSO) algorithm based on Least Squares Regression Methods to forecast the electric loads of the Jordanian grid for year of 2015. Linear, quadratic and exponential forecast models have been examined to perform this study and compared with the Auto Regressive (AR) model. MTLF models were influenced by the weather which should be considered when predicting the future peak load demand in terms of months and weeks. The main contribution for this paper is the conduction of MTLF study for Jordan on weekly and monthly basis using real data obtained from National Electric Power Company NEPCO. This study is aimed to develop practical models and algorithm techniques for MTLF to be used by the operators of Jordan power grid. The results are compared with the actual peak load data to attain minimum percentage error. The value of the forecasted weekly and monthly peak loads obtained from these models is examined using Least Square Error (LSE). Actual reported data from NEPCO are used to analyze the performance of the proposed approach and the results are reported and compared with the results obtained from PSO algorithm and AR model. 展开更多
关键词 MEDIUM TERM Load Forecasting Particle SWARM optimization Least square Regression Methods
下载PDF
Application of particle swarm optimization-based least square support vector machine in quantitative analysis of extraction solution of yangxinshi tablet using near infrared spectroscopy
8
作者 Weijian Lou Kai Yang +3 位作者 Miaoqin Zhu Yongjiang Wu Xuesong Liu Ye Jin 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2014年第6期40-48,共9页
A particle swarm optimization(PSO)-based least square support vector machine(LS-SVM)method was investigated for quantitative analysis of extraction solution of Y angxinshi tablet using near infrared(NIR)spectroscopy.T... A particle swarm optimization(PSO)-based least square support vector machine(LS-SVM)method was investigated for quantitative analysis of extraction solution of Y angxinshi tablet using near infrared(NIR)spectroscopy.The usable spectral region(5400-6200cm^(-1))was identified,then the first derivative spectra smoothed using a Savitzky-Golay filter were employed to establish calibration models.The PSO algorithm was applied to select the LS-SVM hyper-parameters(including the regularization and kernel parametens).The calibration models of total flavonoids,puerarin,salvianolic acid B and icarin were established using the optimumn hyper-parameters of LS SVM.The performance of LS SVM models were compared with partial least squares(PLS)regression,feed forward back propagation network(BPANN)and support vector machine(SVM).Experimental results showed that both the calibration results and prediction accuracy of the PSO-based LS SVM method were superior to PLS,BP-ANN and SVM.For PSO-based LS-SVM models,the determination cofficients(R2)for the calibration set were above 0.9881,and the RSEP values were controlled within 5.772%.For the validation set,the RMSEP values were close to RMSEC and less than 0.042,the RSEP values were under 8.778%,which were much lower than the PLS,BP-ANN and SVM models.The PSO-based LS SVM algorithm employed in this study exhibited excellent calibration performance and prediction accuracy,which has definite practice significance and application value. 展开更多
关键词 Near infrared spectroscopy EXTRACTION paurticle swarm optimization least square support vector machines
下载PDF
Improved cat swarm optimization for parameter estimation of mixed additive and multiplicative random error model 被引量:2
9
作者 Leyang Wang Shuhao Han 《Geodesy and Geodynamics》 EI CSCD 2023年第4期385-391,共7页
To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a deriv... To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a derivative-free cat swarm optimization for parameter estimation.We embed the Powell method,which uses conjugate direction acceleration and does not need to derive the objective function,into the original cat swarm optimization to accelerate its convergence speed and search accuracy.We use the ordinary least squares,weighted least squares,original cat swarm optimization,particle swarm algorithm and improved cat swarm optimization to estimate the parameters of the straight-line fitting MAM model with lower nonlinearity and the DEM MAM model with higher nonlinearity,respectively.The experimental results show that the improved cat swarm optimization has faster convergence speed,higher search accuracy,and better stability than the original cat swarm optimization and the particle swarm algorithm.At the same time,the improved cat swarm optimization can obtain results consistent with the weighted least squares method based on the objective function only while avoiding multiple complex weight array derivations.The method in this paper provides a new idea for theoretical research on parameter estimation of MAM error models. 展开更多
关键词 Mixed additive and multiplicative random error model Parameter estimation Least squares Cat swarm optimization Powell method
下载PDF
Particle swarm optimization based RVM classifier for non-linear circuit fault diagnosis 被引量:5
10
作者 高成 黄姣英 +1 位作者 孙悦 刁胜龙 《Journal of Central South University》 SCIE EI CAS 2012年第2期459-464,共6页
A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessi... A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessing technique based on the kurtosis and entropy of signals were used. Firstly, sinusoidal inputs with different frequencies were applied to the circuit under test (CUT). Then, the resulting frequency responses were sampled to generate features. The frequency response was sampled to compute its kurtosis and entropy, which can show the information capacity of signal. By analyzing the output signals, the proposed method can detect and identify faulty components in circuits. The results indicate that the fault classes can be classified correctly for at least 99% of the test data in example circuit. And the proposed method can diagnose hard and soft faults. 展开更多
关键词 non-linear circuits fault diagnosis relevance vector machine particle swarm optimization KURTOSIS ENTROPY
下载PDF
Optimizing crashworthiness design of square honeycomb structure 被引量:4
11
作者 李萌 邓宗全 +2 位作者 郭宏伟 刘荣强 丁北辰 《Journal of Central South University》 SCIE EI CAS 2014年第3期912-919,共8页
To provide theoretical basis for square honeycombs used as crashworthy structures, energy-absorption properties of metal square honeycombs and the size optimization were performed. Specific energy absorption(SEA) was ... To provide theoretical basis for square honeycombs used as crashworthy structures, energy-absorption properties of metal square honeycombs and the size optimization were performed. Specific energy absorption(SEA) was defined as the energy absorbed by the honeycomb structure per unit volume. This parameter was often used for determining the crashworthiness of thin-walled structures. In order to find the most optimized metal square honeycomb structure with the maximum SEA and the lowest peak stress, the cell length and the foil thickness of the metal honeycombs were optimized, with a low peak stress and a high SEA set as the two primary objectives. The pre-processing software Patran was used to build FE models, and the explicit solver LS-DYNA was employed to perform the crashworthiness analyses. The results show that the square honeycomb exhibits good energy absorption performance in some cases. The geometry is effective using 16.8% less buffer structure volume than the hexagonal honeycombs with a peak stress limitation of 1.21 MPa. 展开更多
关键词 CRASHWORTHINESS square honeycomb response surface methodology numerical simulation multi-objective optimization
下载PDF
Least Squares Solution for Discrete Time Nonlinear Stochastic Optimal Control Problem with Model-Reality Differences 被引量:2
12
作者 Sie Long Kek Jiao Li Kok Lay Teo 《Applied Mathematics》 2017年第1期1-14,共14页
In this paper, an efficient computational approach is proposed to solve the discrete time nonlinear stochastic optimal control problem. For this purpose, a linear quadratic regulator model, which is a linear dynamical... In this paper, an efficient computational approach is proposed to solve the discrete time nonlinear stochastic optimal control problem. For this purpose, a linear quadratic regulator model, which is a linear dynamical system with the quadratic criterion cost function, is employed. In our approach, the model-based optimal control problem is reformulated into the input-output equations. In this way, the Hankel matrix and the observability matrix are constructed. Further, the sum squares of output error is defined. In these point of views, the least squares optimization problem is introduced, so as the differences between the real output and the model output could be calculated. Applying the first-order derivative to the sum squares of output error, the necessary condition is then derived. After some algebraic manipulations, the optimal control law is produced. By substituting this control policy into the input-output equations, the model output is updated iteratively. For illustration, an example of the direct current and alternating current converter problem is studied. As a result, the model output trajectory of the least squares solution is close to the real output with the smallest sum squares of output error. In conclusion, the efficiency and the accuracy of the approach proposed are highly presented. 展开更多
关键词 Least squareS SOLUTION STOCHASTIC optimal Control Linear Quadratic REGULATOR Sum squareS of Output Error INPUT-OUTPUT Equations
下载PDF
COST 231-Hata Propagation Model Optimization in 1800 MHz Band Based on Magnetic Optimization Algorithm: Application to the City of Limbé
13
作者 Eric Michel Deussom Djomadji Kabiena Ivan Basile +1 位作者 Fobasso Segnou Thierry Tonye Emanuel 《Journal of Computer and Communications》 2023年第2期57-74,共18页
Network planning is essential for the construction and the development of wireless networks. The network planning cannot be possible without an appropriate propagation model which in fact is its foundation. Initially ... Network planning is essential for the construction and the development of wireless networks. The network planning cannot be possible without an appropriate propagation model which in fact is its foundation. Initially used mainly for mobile radio networks, the optimization of propagation model is becoming essential for efficient deployment of the network in different types of environment, namely rural, suburban and urban especially with the emergence of concepts such as digital terrestrial television, smart cities, Internet of Things (IoT) with wide deployment for different use cases such as smart grid, smart metering of electricity, gas and water. In this paper we use an optimization algorithm that is inspired by the principles of magnetic field theory namely Magnetic Optimization Algorithm (MOA) to tune COST231-Hata propagation model. The dataset used is the result of drive tests carry out on field in the town of Limbe in Cameroon. We take into account the standard K-factor model and then use the MOA algorithm in order to set up a propagation model adapted to the physical environment of a town. The town of Limbe is used as an implementation case, but the proposed method can be used everywhere. The calculation of the root mean square error (RMSE) between the real data from the radio measurements and the prediction data obtained after the implementation of MOA allows the validation of the results. A comparative study between the value of the RMSE obtained by the new model and those obtained by the optimization using linear regression, by the standard COST231-Hata models, and the free space model is also done, this allows us to conclude that the new model obtained using MOA for the city of Limbe is better and more representative of this local environment than the standard COST231-Hata model. The new model obtained can be used for radio planning in the city of Limbé in Cameroon. 展开更多
关键词 Radio Measurements Root Mean square Error Magnetic optimization Algorithm
下载PDF
Hybrid Architecture and Beamforming Optimization for Millimeter Wave Systems
14
作者 TANG Yuanqi ZHANG Huimin +2 位作者 ZHENG Zheng LI Ping ZHU Yu 《ZTE Communications》 2023年第3期93-104,共12页
Hybrid beamforming(HBF)has become an attractive and important technology in massive multiple-input multiple-output(MIMO)millimeter-wave(mmWave)systems.There are different hybrid architectures in HBF depending on diffe... Hybrid beamforming(HBF)has become an attractive and important technology in massive multiple-input multiple-output(MIMO)millimeter-wave(mmWave)systems.There are different hybrid architectures in HBF depending on different connection strategies of the phase shifter network between antennas and radio frequency chains.This paper investigates HBF optimization with different hybrid architectures in broadband point-to-point mmWave MIMO systems.The joint hybrid architecture and beamforming optimization problem is divided into two sub-problems.First,we transform the spectral efficiency maximization problem into an equivalent weighted mean squared error minimization problem,and propose an algorithm based on the manifold optimization method for the hybrid beamformer with a fixed hybrid architecture.The overlapped subarray architecture which balances well between hardware costs and system performance is investigated.We further propose an algorithm to dynamically partition antenna subarrays and combine it with the HBF optimization algorithm.Simulation results are presented to demonstrate the performance improvement of our proposed algorithms. 展开更多
关键词 hybrid beamforming hybrid architecture weighted mean square error manifold optimization dynamic subarrays
下载PDF
Optimized CUDA Implementation to Improve the Performance of Bundle Adjustment Algorithm on GPUs
15
作者 Pranay R. Kommera Suresh S. Muknahallipatna John E. McInroy 《Journal of Software Engineering and Applications》 2024年第4期172-201,共30页
The 3D reconstruction pipeline uses the Bundle Adjustment algorithm to refine the camera and point parameters. The Bundle Adjustment algorithm is a compute-intensive algorithm, and many researchers have improved its p... The 3D reconstruction pipeline uses the Bundle Adjustment algorithm to refine the camera and point parameters. The Bundle Adjustment algorithm is a compute-intensive algorithm, and many researchers have improved its performance by implementing the algorithm on GPUs. In the previous research work, “Improving Accuracy and Computational Burden of Bundle Adjustment Algorithm using GPUs,” the authors demonstrated first the Bundle Adjustment algorithmic performance improvement by reducing the mean square error using an additional radial distorting parameter and explicitly computed analytical derivatives and reducing the computational burden of the Bundle Adjustment algorithm using GPUs. The naïve implementation of the CUDA code, a speedup of 10× for the largest dataset of 13,678 cameras, 4,455,747 points, and 28,975,571 projections was achieved. In this paper, we present the optimization of the Bundle Adjustment algorithm CUDA code on GPUs to achieve higher speedup. We propose a new data memory layout for the parameters in the Bundle Adjustment algorithm, resulting in contiguous memory access. We demonstrate that it improves the memory throughput on the GPUs, thereby improving the overall performance. We also demonstrate an increase in the computational throughput of the algorithm by optimizing the CUDA kernels to utilize the GPU resources effectively. A comparative performance study of explicitly computing an algorithm parameter versus using the Jacobians instead is presented. In the previous work, the Bundle Adjustment algorithm failed to converge for certain datasets due to several block matrices of the cameras in the augmented normal equation, resulting in rank-deficient matrices. In this work, we identify the cameras that cause rank-deficient matrices and preprocess the datasets to ensure the convergence of the BA algorithm. Our optimized CUDA implementation achieves convergence of the Bundle Adjustment algorithm in around 22 seconds for the largest dataset compared to 654 seconds for the sequential implementation, resulting in a speedup of 30×. Our optimized CUDA implementation presented in this paper has achieved a 3× speedup for the largest dataset compared to the previous naïve CUDA implementation. 展开更多
关键词 Scene Reconstruction Bundle Adjustment LEVENBERG-MARQUARDT non-linear Least squares Memory Throughput Computational Throughput Contiguous Memory Access CUDA optimization
下载PDF
Seismic displacement demand prediction in non-linear domain: Optimization of the N2 method
16
作者 Lorenzo Diana Andrea Manno Pierino Lestuzzi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第1期141-158,共18页
In Europe, computation of displacement demand for seismic assessment of existing buildings is essentially based on a simplified formulation of the N2 method as prescribed by Eurocode 8(EC8). However, a lack of accurac... In Europe, computation of displacement demand for seismic assessment of existing buildings is essentially based on a simplified formulation of the N2 method as prescribed by Eurocode 8(EC8). However, a lack of accuracy of the N2 method in certain conditions has been pointed out by several studies. This paper addresses the assessment of effectiveness of the N2 method in seismic displacement demand determination in non-linear domain. The objective of this work is to investigate the accuracy of the N2 method through comparison with displacement demands computed using non-linear timehistory analysis(NLTHA). Results show that the original N2 method may lead to overestimation or underestimation of displacement demand predictions. This may affect results of mechanical model-based assessment of seismic vulnerability at an urban scale. Hence, the second part of this paper addresses an improvement of the N2 method formula by empirical evaluation of NLTHA results based on EC8 ground-classes. This task is formulated as a mathematical programming problem in which coefficients are obtained by minimizing the overall discrepancy between NLTHA and modified formula results. Various settings of the mathematical programming problem have been solved using a global optimization metaheuristic. An extensive comparison between the original N2 method formulation and optimized formulae highlights benefits of the strategy. 展开更多
关键词 N2 METHOD SEISMIC vulnerability assessment non-linear time-history analysis spectrum compatible recordings DISPLACEMENT demand determination optimization strength reduction factor
下载PDF
Least-Squares Solutions of the Matrix Equation A^TXA=B Over Bisymmetric Matrices and its Optimal Approximation 被引量:1
17
作者 Yanyan Zhang Yuan Lei Anping Liao 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2007年第3期215-225,共11页
A real n×n symmetric matrix X=(x_(ij))_(n×n)is called a bisymmetric matrix if x_(ij)=x_(n+1-j,n+1-i).Based on the projection theorem,the canonical correlation de- composition and the generalized singular val... A real n×n symmetric matrix X=(x_(ij))_(n×n)is called a bisymmetric matrix if x_(ij)=x_(n+1-j,n+1-i).Based on the projection theorem,the canonical correlation de- composition and the generalized singular value decomposition,a method useful for finding the least-squares solutions of the matrix equation A^TXA=B over bisymmetric matrices is proposed.The expression of the least-squares solutions is given.Moreover, in the corresponding solution set,the optimal approximate solution to a given matrix is also derived.A numerical algorithm for finding the optimal approximate solution is also described. 展开更多
关键词 轴对称矩阵 矩阵方程 典型相关分解 最小二乘法 最佳逼近
下载PDF
STUDY ON PARAMETERS FOR TOPOLOGICAL VARIABLES FIELD INTERPOLATED BY MOVING LEAST SQUARE APPROXIMATION 被引量:3
18
作者 Rehan H.Zuberi 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第2期180-188,共9页
This paper presents a new approach to the structural topology optimization of continuum structures. Material-point independent variables are presented to illustrate the existence condition,or inexistence of the materi... This paper presents a new approach to the structural topology optimization of continuum structures. Material-point independent variables are presented to illustrate the existence condition,or inexistence of the material points and their vicinity instead of elements or nodes in popular topology optimization methods. Topological variables field is constructed by moving least square approximation which is used as a shape function in the meshless method. Combined with finite element analyses,not only checkerboard patterns and mesh-dependence phenomena are overcome by this continuous and smooth topological variables field,but also the locations and numbers of topological variables can be arbitrary. Parameters including the number of quadrature points,scaling parameter,weight function and so on upon optimum topological configurations are discussed. Two classic topology optimization problems are solved successfully by the proposed method. The method is found robust and no numerical instabilities are found with proper parameters. 展开更多
关键词 topological optimization continuum structure meshless method moving least square approximation checkerboard pattern mesh-dependence
下载PDF
ARX-NNPLS Model Based Optimization Strategy and Its Application in Polymer Grade Transition Process 被引量:3
19
作者 费正顺 胡斌 +1 位作者 叶鲁彬 梁军 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第5期971-979,共9页
Since it is often difficult to build differential algebraic equations (DAEs) for chemical processes, a new data-based modeling approach is proposed using ARX (AutoRegressive with eXogenous inputs) combined with neural... Since it is often difficult to build differential algebraic equations (DAEs) for chemical processes, a new data-based modeling approach is proposed using ARX (AutoRegressive with eXogenous inputs) combined with neural network under partial least squares framework (ARX-NNPLS), in which less specific knowledge of the process is required but the input and output data. To represent the dynamic and nonlinear behavior of the process, the ARX combined with neural network is used in the partial least squares (PLS) inner model between input and output latent variables. In the proposed dynamic optimization strategy based on the ARX-NNPLS model, neither parameterization nor iterative solving process for DAEs is needed as the ARX-NNPLS model gives a proper representation for the dynamic behavior of the process, and the computing time is greatly reduced compared to conventional control vector parameterization method. To demonstrate the ARX-NNPLS model based optimization strategy, the polyethylene grade transition in gas phase fluidized-bed reactor is taken into account. The optimization results show that the final optimal trajectory of quality index determined by the new approach moves faster to the target values and the computing time is much less. 展开更多
关键词 partial least squares ARX-NN structure dynamic optimization grade transition POLYMERIZATION
下载PDF
Fuzzy least brain storm optimization and entropy-based Euclidean distance for multimodal vein-based recognition system 被引量:1
20
作者 Dipti Verma Sipi Dubey 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2360-2371,共12页
Nowadays, the vein based recognition system becomes an emerging and facilitating biometric technology in the recognition system. Vein recognition exploits the different modalities such as finger, palm and hand image f... Nowadays, the vein based recognition system becomes an emerging and facilitating biometric technology in the recognition system. Vein recognition exploits the different modalities such as finger, palm and hand image for the person identification. In this work, the fuzzy least brain storm optimization and Euclidean distance(EED) are proposed for the vein based recognition system. Initially, the input image is fed into the region of interest(ROI) extraction which obtains the appropriate image for the subsequent step. Then, features or vein pattern is extracted by the image enlightening, circular averaging filter and holoentropy based thresholding. After the features are obtained, the entropy based Euclidean distance is proposed to fuse the features by the score level fusion with the weight score value. Finally, the optimal matching score is computed iteratively by the newly developed fuzzy least brain storm optimization(FLBSO) algorithm. The novel algorithm is developed by the least mean square(LMS) algorithm and fuzzy brain storm optimization(FBSO). Thus, the experimental results are evaluated and the performance is compared with the existing systems using false acceptance rate(FAR), false rejection rate(FRR) and accuracy. The performance outcome of the proposed algorithm attains the higher accuracy of 89.9% which ensures the better recognition rate. 展开更多
关键词 MULTIMODALITY BRAIN STORM optimization (BSO) least mean square (LMS) score level fusion recognition
下载PDF
上一页 1 2 109 下一页 到第
使用帮助 返回顶部