The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems wit...The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems within a time domain framework,the free water surface needs to simultaneously satisfy both the kinematic and dynamic boundary conditions of the free water surface.This provides conditions for adding artificial damping layers.Using the Runge−Kutta method to solve equations related to time.An upwind differential scheme is used in the present method to deal with the convection terms on the free surface to prevent waves upstream.Through the comparison with the available experimental data and other numerical methods,the present method is proved to have good mesh convergence,and satisfactory results can be obtained.The constant panel method is applied to calculate the hydrodynamic interaction responses of two parallel ships advancing in head waves.Numerical simulations are conducted on the effects of forward speed,different longitudinal and lateral distances on the motion response of two modified Wigley ships in head waves.Then further investigations are conducted on the effects of different ship types on the motion response.展开更多
This paper focuses on the research of a semi-submersible platform equipped with a DP-assisted mooring system. Based on the working principles of the DP-assisted mooring system and the model of the platform motion, a t...This paper focuses on the research of a semi-submersible platform equipped with a DP-assisted mooring system. Based on the working principles of the DP-assisted mooring system and the model of the platform motion, a time domain simulation program is applied to analyze the impact, in the case of one line failure, on the platform motion, power consumption of the thrusters and the tension of the mooring lines. The results show that, under the 10-year wind dominant, a one line failure will have little impact on the tension of the mooring lines. When the failure line is windward, the power consumption will increase greatly with a weakened position of accuracy. However when the failure line is leeward, the power consumption will be reduced with a partly strengthened oosition of accuracy.展开更多
Direct time-domain simulation of floating structures has advantages:it can calculate wave pressure fields and forces directly; and it is useful for coupled analysis of floating structures with a mooring system. A time...Direct time-domain simulation of floating structures has advantages:it can calculate wave pressure fields and forces directly; and it is useful for coupled analysis of floating structures with a mooring system. A time-domain boundary integral equation method is presented to simulate three-dimensional water wave radiation problems. A stable form of the integration free-surface boundary condition (IFBC) is used to update velocity potentials on the free surface. A multi-transmitting formula (MTF) method with an artificial speed is introduced to the artificial radiation boundary (ARB). The method was applied to simulate a semi-spherical liquefied natural gas (LNG) carrier and a semi-submersible undergoing specified harmonic motion. Numerical parameters such as the form of the ARB, and the time and space discretization related to this method are discussed. It was found that a good agreement can be obtained when artificial speed is between 0.6 and 1.6 times the phase velocity of water waves in the MTF method. A simulation can be done for a long period of time by this method without problems of instability, and the method is also accurate and computationally efficient.展开更多
The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of c...The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.展开更多
Simulating the coupled motions of multiple bodies in the time domain is a complex problem because of the strong hydrodynamic interactions and coupled effect of various mechanical connectors. In this study, we investig...Simulating the coupled motions of multiple bodies in the time domain is a complex problem because of the strong hydrodynamic interactions and coupled effect of various mechanical connectors. In this study, we investigate the hydrodynamic responses of three barges moored side-by-side in a floatover operation in the frequency and time domains. In the frequency domain, the damping lid method is adopted to improve the overestimated hydrodynamic coefficients calculated from conventional potential flow theory. A time-domain computing program based on potential flow theory and impulse theory is compiled for analyses that consider multibody hydrodynamic interactions and mechanical effects from lines and fenders. Correspondingly, an experiment is carried out for comparison with the numerical results. All statistics, time series, and power density spectra from decay and irregular wave tests are in a fairly good agreement.展开更多
The delay compensation method plays an essential role in maintaining the stability and achieving accurate real-time hybrid simulation results. The effectiveness of various compensation methods in different test scenar...The delay compensation method plays an essential role in maintaining the stability and achieving accurate real-time hybrid simulation results. The effectiveness of various compensation methods in different test scenarios, however, needs to be quantitatively evaluated. In this study, four compensation methods (i.e., the polynomial extrapolation, the linear acceleration extrapolation, the inverse compensation and the adaptive inverse compensation) are selected and compared experimentally using a frequency evaluation index (FEI) method. The effectiveness of the FEI method is first verified through comparison with the discrete transfer fimction approach for compensation methods assuming constant delay. Incomparable advantage is further demonstrated for the FEI method when applied to adaptive compensation methods, where the discrete transfer function approach is difficult to implement. Both numerical simulation and laboratory tests with predefined displacements are conducted using sinusoidal signals and random signals as inputs. Findings from numerical simulation and experimental results demonstrate that the FEI method is an efficient and effective approach to compare the performance of different compensation methods, especially for those requiring adaptation of compensation parameters.展开更多
This study presents the deduction of time domain mathematical equations to simulate the curve of the charging process of a symmetrical electrochemical supercapacitor with activated carbon electrodes fed by a source of...This study presents the deduction of time domain mathematical equations to simulate the curve of the charging process of a symmetrical electrochemical supercapacitor with activated carbon electrodes fed by a source of constant electric potential in time ε and the curve of the discharge process through two fixed resistors. The first resistor R<sub>Co</sub> is a control that aims to prevent sudden variations in the intensity of the electric current i<sub>1</sub>(t) present at the terminals of the electrochemical supercapacitor at the beginning of the charging process. The second resistor is the internal resistance R<sub>A</sub> of the ammeter used in the calculation of the intensity of the electric current i<sub>1</sub>(t) over time in the charging and discharging processes. The mathematical equations generated were based on a 2R(C + kU<sub>C</sub>(t)) electrical circuit model and allowed to simulate the effects of the potential-dependent capacitance (kU<sub>C</sub>(t)) on the charge and discharge curves and hence on the calculated values of the fixed capacitance C, the equivalent series resistance (ESR), the equivalent parallel resistance (EPR) and the electrical potential dependent capacitance index k.展开更多
Nonlinear wave loads can induce low-frequency and high-frequency resonance motions of a moored platform in deep water. For the analysis of the nonlinear response of an offshore platform under the action of irregular w...Nonlinear wave loads can induce low-frequency and high-frequency resonance motions of a moored platform in deep water. For the analysis of the nonlinear response of an offshore platform under the action of irregular waves, the most widely used method in practice is the Cummins method, in which the second-order exciting forces in the time domain are computed by a two-term Volterra series model based on incident waves, first-order body motion response, and quadratic transfer functions(QTFs). QTFs are bichromatic waves acting on a body and are computed in the frequency domain in advance. For moving bodies, QTFs are related to the first-order body response, which is to be determined in the simulation process of body motion response but is unknown in the computation procedure of QTFs. In solving this problem, Teng and Cong(2017) proposed a method to divide the QTFs into different components,which are unrelated to the body response. With the application of the new QTF components, a modified Cummins method can be developed for the simulation of the nonlinear response of a moored floating platform. This paper presents a review of the theory.展开更多
The voltage stability is substantially a dynamic stability, but the primary method which is more mature and engineering practical to analyze the stability of voltage is still static analysis. The time-domain simulatio...The voltage stability is substantially a dynamic stability, but the primary method which is more mature and engineering practical to analyze the stability of voltage is still static analysis. The time-domain simulation is an important measure in research of complex power grid. With the development of full dynamic simulation technology, the research of dynamic voltage stability by using full dynamic simulation program which is based on time-domain simulation can be carried out. This paper uses full dynamic simulation program in dynamic voltage stability research, lays special stress on research in how generator over-excitation limiter functioned and influence in dynamic voltage stability research, and raise 2 methods and steps to figure out dynamic stable voltage in both over-excitation counted and not counted. The simulation results of examples indicate the correctness and effectiveness of these methods, and also fully verify the function and influence of generator over-excitation limiter in full dynamic voltage stability research.展开更多
In this study, the terahertz time-domain spectroscopy (THz-TDS) of crystalline methedrine, which is one of the illegal drugs, is performed using molecular dynamics simulation by the Fourier transform of time derivativ...In this study, the terahertz time-domain spectroscopy (THz-TDS) of crystalline methedrine, which is one of the illegal drugs, is performed using molecular dynamics simulation by the Fourier transform of time derivative auto-correlation functions of the dipole moment. In order to accurately detect the drugs from samples, it is necessary to build a complete database for terahertz spectra under different external conditions from theoretical calculation, which are hardly obtained from the experiments directly. Our results show remarkable consistency with the available experimental data in the frequency range of 10 - 100 cm-1 indicating that the presented method has significant capability to simulate terahertz spectra at various conditions. We investigated the effects of temperature and pressure on THz-TDS by simulating the system at temperature range between 78.4 K and 400 K at pressures up to 100 atm. Results show the spectral features of THz-TDS both in intensity and profile are highly sensitive to the variation of temperature and with a lower magnitude to the variation of pressure. The vanishing, rebuilding and shifting of spectral peaks are due to the complex mechanisms such as the anharmonicity, shifting in the vibration energy levels, formation and destruction of hydrogen-binding and the deformation of the potential energy surface during the environment changing. This improved our understanding for complicated THz-TDS of crystalline methedrine and would be useful for assignment of the practical measurements.展开更多
In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method ...In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method is used to solve the differential equations goveming the dynamics of the milling system. Several chatter detection criteria are applied synthetically to the simulated signals and the stability diagram is obtained in time-domain. The simulation results in time-domain show a good agreement with the analytical prediction, which is validated by the cutting experiments. By simulating the chatter stability lobes in the time-domain and analyzing the influences of different spindle speeds on the vibration amplitudes of the tool under a Fixed chip-load condition, conclusions could be drawn as follows: In rough milling, higher machining efficiency can be achieved by selecting a spindle speed corresponding to the axial depth of cut in accordance with the simulated chatter stability lobes, and in Fmish milling, lower surface roughness can be achieved by selecting a spindle speed well beyond the resonant frequency of machining system.展开更多
After a brief review of studies on artificial boundaries in dynamic soil-structure interaction, a three-dimensional viscous-spring artificial boundary (VSAB) in the time domain is developed in this paper. First, the...After a brief review of studies on artificial boundaries in dynamic soil-structure interaction, a three-dimensional viscous-spring artificial boundary (VSAB) in the time domain is developed in this paper. First, the 3D VSAB equations in the normal and tangential directions are derived based on the elastic wave motion theory. Secondly, a numerical simulation technique of wave motion equations along with the VSAB condition in the time domain is studied. Finally, numerical examples of some classical elastic wave motion problems are presented and the results are compared with the associated theoretical solutions, demonstrating that high precision and adequate stability can be achieved by using the proposed 3D VSAB. The proposed 3D VSAB can be conveniently incorporated in the general finite element program, which is commonly used to study dynamic soil-structure interaction problems.展开更多
The principle of surface wave plasma discharge in a rectangular cavity is introduced simply based on surface plasmon polariton theory. The distribution of surface-wave electric field at the interface of the plasma-die...The principle of surface wave plasma discharge in a rectangular cavity is introduced simply based on surface plasmon polariton theory. The distribution of surface-wave electric field at the interface of the plasma-dielectric slab is investigated by using the three-dimensional finite-difference time-domain method (3D-FDTD) with different slotantenna structures. And the experimental image of discharge with a novel slot antenna array and the simulation of the electric field with this slot antenna array are both displayed. Combined with the distribution of surface wave excitation and experimental results, the numerical simulation performed by using 3D-FDTD is shown to be a useful tool in the computer-aided antenna design for large area planar-type surface-wave plasma sources.展开更多
Numerical simulation of a two-dimensional nonlinear sloshing problem is preceded by the finite element method. Two theories are used. One is fully nonlinear theory; the other is time domain second order theory. A liqu...Numerical simulation of a two-dimensional nonlinear sloshing problem is preceded by the finite element method. Two theories are used. One is fully nonlinear theory; the other is time domain second order theory. A liquid sloshing in a rectangular container subjected to a horizontal excitation is simulated using these two theories. Numerical results are obtained and comparisons are made. It is found that a good agreement is obtained for the case of small amplitude oscillation. For the situation of large amplitude excitation, although the differences between using the two theories are obvious the second order solution can still exhibit typical nonlinear features of nonlinear wave.展开更多
Several major challenges need to be faced for efficient transient multiscale electromagnetic simulations, such as flex- ible and robust geometric modeling schemes, efficient and stable time-stepping algorithms, etc. F...Several major challenges need to be faced for efficient transient multiscale electromagnetic simulations, such as flex- ible and robust geometric modeling schemes, efficient and stable time-stepping algorithms, etc. Fortunately, because of the versatile choices of spatial discretization and temporal integration, a discontinuous Galerkin time-domain (DGTD) method can be a very promising method of solving transient multiscale electromagnetic problems. In this paper, we present the application of a leap-frog DGTD method to the analyzing of the multiscale electromagnetic scattering problems. The uniaxial perfect matching layer (UPML) truncation of the computational domain is discussed and formulated in the leap-frog DGTD context. Numerical validations are performed in the challenging test cases demonstrating the accuracy and effectiveness of the method in solving transient multiscale electromagnetic problems compared with those of other numerical methods.展开更多
Strong hydrodynamic interactions during the side-by-side offloading operation between floating liquefied natural gas(FLNG) and liquefied natural gas carrier(LNGC) can induce high risks of collision. The weather vane e...Strong hydrodynamic interactions during the side-by-side offloading operation between floating liquefied natural gas(FLNG) and liquefied natural gas carrier(LNGC) can induce high risks of collision. The weather vane effect of a single-point mooring system normally results in the satisfactory hydrodynamic performance of the side-by-side configuration in head seas. Nevertheless, the changes in wave directions in real sea conditions can significantly influence the relative motions. This article studies the relative motions of the side-by-side system by using the theoretical analysis method and the numerical calculation method. Based on the three-dimensional potential theory modified by artificial damping-lid method, the frequency-domain hydrodynamic coefficients can be improved to calculate the retardation functions for the multi-body problem. An in-house code is then developed to perform the time-domain simulation of two vessels, through which the relative motions are subsequently obtained. A range of oblique waves are chosen for the extensive calculation of relative motions between the two vessels, which are further analyzed in terms of the phase shift of motion responses induced by specific resonant wave patterns. Investigation results show that wave directions have a significant influence on the relative sway, roll, and yaw motions. Under the circumstance that the absolute phase shift between the roll motions of two vessels approaches 180°, stronger relative motions are induced when LNGC is on the weather side.Moreover, the gap water resonances at high frequencies tend to cause the dangerous opposed oscillation of two vessels in the sway and yaw modes, whereas FLNG reduces the gap water resonances and relative motions when located on the weather side.展开更多
Tank sloshing in ship cargo is excited by ship motions, which induces impact load on tank wall and then affects the ship motion. Wave forces acting on ship hull and the retardation function are solved by using three-d...Tank sloshing in ship cargo is excited by ship motions, which induces impact load on tank wall and then affects the ship motion. Wave forces acting on ship hull and the retardation function are solved by using three-dimensional frequency domain theory and an impulse response function method based on the potential flow theory, and global ship motion is examined coupling with nonlinear tank sloshing which is simulated by viscous flow theory. Based on the open source Computational Fluid Dynamics (CFD) development platform Open Field Operation and Manipulation (OpenFOAM), numerical calculation of ship motion coupled with tank sloshing is achieved and the corresponding numerical simulation and validation are carried out. With this method, the interactions of wave, ship body and tank sloshing are completely taken into consideration. This method has quite high efficiency for it takes advantage of potential flow theory for outer flow field and viscous flow theory for inside tank sloshing respectively. The numerical and experimental results of the ship motion agree well with each other.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52271278 and 52111530137)the Natural Science Found of Jiangsu Province(Grant No.BK20221389)the Newton Advanced Fellowships(Grant No.NAF\R1\180304)by the Royal Society.
文摘The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems within a time domain framework,the free water surface needs to simultaneously satisfy both the kinematic and dynamic boundary conditions of the free water surface.This provides conditions for adding artificial damping layers.Using the Runge−Kutta method to solve equations related to time.An upwind differential scheme is used in the present method to deal with the convection terms on the free surface to prevent waves upstream.Through the comparison with the available experimental data and other numerical methods,the present method is proved to have good mesh convergence,and satisfactory results can be obtained.The constant panel method is applied to calculate the hydrodynamic interaction responses of two parallel ships advancing in head waves.Numerical simulations are conducted on the effects of forward speed,different longitudinal and lateral distances on the motion response of two modified Wigley ships in head waves.Then further investigations are conducted on the effects of different ship types on the motion response.
基金Suppirted by the Programme of Introducing Talents of Discipline to Universities(B07019)
文摘This paper focuses on the research of a semi-submersible platform equipped with a DP-assisted mooring system. Based on the working principles of the DP-assisted mooring system and the model of the platform motion, a time domain simulation program is applied to analyze the impact, in the case of one line failure, on the platform motion, power consumption of the thrusters and the tension of the mooring lines. The results show that, under the 10-year wind dominant, a one line failure will have little impact on the tension of the mooring lines. When the failure line is windward, the power consumption will increase greatly with a weakened position of accuracy. However when the failure line is leeward, the power consumption will be reduced with a partly strengthened oosition of accuracy.
基金Supported by the National Natural Science Foundation of China under Grant No.10572041,50779008 and the 111 Project
文摘Direct time-domain simulation of floating structures has advantages:it can calculate wave pressure fields and forces directly; and it is useful for coupled analysis of floating structures with a mooring system. A time-domain boundary integral equation method is presented to simulate three-dimensional water wave radiation problems. A stable form of the integration free-surface boundary condition (IFBC) is used to update velocity potentials on the free surface. A multi-transmitting formula (MTF) method with an artificial speed is introduced to the artificial radiation boundary (ARB). The method was applied to simulate a semi-spherical liquefied natural gas (LNG) carrier and a semi-submersible undergoing specified harmonic motion. Numerical parameters such as the form of the ARB, and the time and space discretization related to this method are discussed. It was found that a good agreement can be obtained when artificial speed is between 0.6 and 1.6 times the phase velocity of water waves in the MTF method. A simulation can be done for a long period of time by this method without problems of instability, and the method is also accurate and computationally efficient.
文摘The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.
基金financially supported by Lloyd’s Register Foundation(LRF),a UK-registered charity and sole shareholder of Lloyd’s Register Group Ltd.the Youth Innovation Fund of State Key Laboratory of Ocean Engineering(Grant No.GKZD010059-21)
文摘Simulating the coupled motions of multiple bodies in the time domain is a complex problem because of the strong hydrodynamic interactions and coupled effect of various mechanical connectors. In this study, we investigate the hydrodynamic responses of three barges moored side-by-side in a floatover operation in the frequency and time domains. In the frequency domain, the damping lid method is adopted to improve the overestimated hydrodynamic coefficients calculated from conventional potential flow theory. A time-domain computing program based on potential flow theory and impulse theory is compiled for analyses that consider multibody hydrodynamic interactions and mechanical effects from lines and fenders. Correspondingly, an experiment is carried out for comparison with the numerical results. All statistics, time series, and power density spectra from decay and irregular wave tests are in a fairly good agreement.
基金National Natural Science Foundation of China under Grant No.51378107the Fundamental Research Funds for the Central Universities and Priority Academic Program Development of Jiangsu Higher Education Institutions under Grant No.KYLX-0158the National Natural Science Foundation under Grant No.CMMI-1227962
文摘The delay compensation method plays an essential role in maintaining the stability and achieving accurate real-time hybrid simulation results. The effectiveness of various compensation methods in different test scenarios, however, needs to be quantitatively evaluated. In this study, four compensation methods (i.e., the polynomial extrapolation, the linear acceleration extrapolation, the inverse compensation and the adaptive inverse compensation) are selected and compared experimentally using a frequency evaluation index (FEI) method. The effectiveness of the FEI method is first verified through comparison with the discrete transfer fimction approach for compensation methods assuming constant delay. Incomparable advantage is further demonstrated for the FEI method when applied to adaptive compensation methods, where the discrete transfer function approach is difficult to implement. Both numerical simulation and laboratory tests with predefined displacements are conducted using sinusoidal signals and random signals as inputs. Findings from numerical simulation and experimental results demonstrate that the FEI method is an efficient and effective approach to compare the performance of different compensation methods, especially for those requiring adaptation of compensation parameters.
文摘This study presents the deduction of time domain mathematical equations to simulate the curve of the charging process of a symmetrical electrochemical supercapacitor with activated carbon electrodes fed by a source of constant electric potential in time ε and the curve of the discharge process through two fixed resistors. The first resistor R<sub>Co</sub> is a control that aims to prevent sudden variations in the intensity of the electric current i<sub>1</sub>(t) present at the terminals of the electrochemical supercapacitor at the beginning of the charging process. The second resistor is the internal resistance R<sub>A</sub> of the ammeter used in the calculation of the intensity of the electric current i<sub>1</sub>(t) over time in the charging and discharging processes. The mathematical equations generated were based on a 2R(C + kU<sub>C</sub>(t)) electrical circuit model and allowed to simulate the effects of the potential-dependent capacitance (kU<sub>C</sub>(t)) on the charge and discharge curves and hence on the calculated values of the fixed capacitance C, the equivalent series resistance (ESR), the equivalent parallel resistance (EPR) and the electrical potential dependent capacitance index k.
基金the National Key R&D Program of China (Grant No.2016YFE0200100)the National Natural Science Foundation of China (Grant Nos.51490672 and 51479026).
文摘Nonlinear wave loads can induce low-frequency and high-frequency resonance motions of a moored platform in deep water. For the analysis of the nonlinear response of an offshore platform under the action of irregular waves, the most widely used method in practice is the Cummins method, in which the second-order exciting forces in the time domain are computed by a two-term Volterra series model based on incident waves, first-order body motion response, and quadratic transfer functions(QTFs). QTFs are bichromatic waves acting on a body and are computed in the frequency domain in advance. For moving bodies, QTFs are related to the first-order body response, which is to be determined in the simulation process of body motion response but is unknown in the computation procedure of QTFs. In solving this problem, Teng and Cong(2017) proposed a method to divide the QTFs into different components,which are unrelated to the body response. With the application of the new QTF components, a modified Cummins method can be developed for the simulation of the nonlinear response of a moored floating platform. This paper presents a review of the theory.
文摘The voltage stability is substantially a dynamic stability, but the primary method which is more mature and engineering practical to analyze the stability of voltage is still static analysis. The time-domain simulation is an important measure in research of complex power grid. With the development of full dynamic simulation technology, the research of dynamic voltage stability by using full dynamic simulation program which is based on time-domain simulation can be carried out. This paper uses full dynamic simulation program in dynamic voltage stability research, lays special stress on research in how generator over-excitation limiter functioned and influence in dynamic voltage stability research, and raise 2 methods and steps to figure out dynamic stable voltage in both over-excitation counted and not counted. The simulation results of examples indicate the correctness and effectiveness of these methods, and also fully verify the function and influence of generator over-excitation limiter in full dynamic voltage stability research.
文摘In this study, the terahertz time-domain spectroscopy (THz-TDS) of crystalline methedrine, which is one of the illegal drugs, is performed using molecular dynamics simulation by the Fourier transform of time derivative auto-correlation functions of the dipole moment. In order to accurately detect the drugs from samples, it is necessary to build a complete database for terahertz spectra under different external conditions from theoretical calculation, which are hardly obtained from the experiments directly. Our results show remarkable consistency with the available experimental data in the frequency range of 10 - 100 cm-1 indicating that the presented method has significant capability to simulate terahertz spectra at various conditions. We investigated the effects of temperature and pressure on THz-TDS by simulating the system at temperature range between 78.4 K and 400 K at pressures up to 100 atm. Results show the spectral features of THz-TDS both in intensity and profile are highly sensitive to the variation of temperature and with a lower magnitude to the variation of pressure. The vanishing, rebuilding and shifting of spectral peaks are due to the complex mechanisms such as the anharmonicity, shifting in the vibration energy levels, formation and destruction of hydrogen-binding and the deformation of the potential energy surface during the environment changing. This improved our understanding for complicated THz-TDS of crystalline methedrine and would be useful for assignment of the practical measurements.
基金National Key Technologies R&D Program (2006BA103A16)Fundamental Research Project of COSTIND (K1203020507, B2120061326)
文摘In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method is used to solve the differential equations goveming the dynamics of the milling system. Several chatter detection criteria are applied synthetically to the simulated signals and the stability diagram is obtained in time-domain. The simulation results in time-domain show a good agreement with the analytical prediction, which is validated by the cutting experiments. By simulating the chatter stability lobes in the time-domain and analyzing the influences of different spindle speeds on the vibration amplitudes of the tool under a Fixed chip-load condition, conclusions could be drawn as follows: In rough milling, higher machining efficiency can be achieved by selecting a spindle speed corresponding to the axial depth of cut in accordance with the simulated chatter stability lobes, and in Fmish milling, lower surface roughness can be achieved by selecting a spindle speed well beyond the resonant frequency of machining system.
基金National Natural Science Foundation of ChinaUnder Grant No.50478014Special Funds for Major State Basic Research Project Under Grant No.2002CB412706Research Funds from National Civil Defense Oficce of Chinafor the Tenth Five-year Plan。
文摘After a brief review of studies on artificial boundaries in dynamic soil-structure interaction, a three-dimensional viscous-spring artificial boundary (VSAB) in the time domain is developed in this paper. First, the 3D VSAB equations in the normal and tangential directions are derived based on the elastic wave motion theory. Secondly, a numerical simulation technique of wave motion equations along with the VSAB condition in the time domain is studied. Finally, numerical examples of some classical elastic wave motion problems are presented and the results are compared with the associated theoretical solutions, demonstrating that high precision and adequate stability can be achieved by using the proposed 3D VSAB. The proposed 3D VSAB can be conveniently incorporated in the general finite element program, which is commonly used to study dynamic soil-structure interaction problems.
基金supported by the Foundation for Returned Scholars,the Ministry of Education of China
文摘The principle of surface wave plasma discharge in a rectangular cavity is introduced simply based on surface plasmon polariton theory. The distribution of surface-wave electric field at the interface of the plasma-dielectric slab is investigated by using the three-dimensional finite-difference time-domain method (3D-FDTD) with different slotantenna structures. And the experimental image of discharge with a novel slot antenna array and the simulation of the electric field with this slot antenna array are both displayed. Combined with the distribution of surface wave excitation and experimental results, the numerical simulation performed by using 3D-FDTD is shown to be a useful tool in the computer-aided antenna design for large area planar-type surface-wave plasma sources.
文摘Numerical simulation of a two-dimensional nonlinear sloshing problem is preceded by the finite element method. Two theories are used. One is fully nonlinear theory; the other is time domain second order theory. A liquid sloshing in a rectangular container subjected to a horizontal excitation is simulated using these two theories. Numerical results are obtained and comparisons are made. It is found that a good agreement is obtained for the case of small amplitude oscillation. For the situation of large amplitude excitation, although the differences between using the two theories are obvious the second order solution can still exhibit typical nonlinear features of nonlinear wave.
基金supported by the National Natural Science Foundation of China(Grant Nos.61301056 and 11176007)the Sichuan Provincial Science and Technology Support Program,China(Grant No.2013HH0047)+1 种基金the Fok Ying Tung Education Foundation,China(Grant No.141062)the"111"Project,China(Grant No.B07046)
文摘Several major challenges need to be faced for efficient transient multiscale electromagnetic simulations, such as flex- ible and robust geometric modeling schemes, efficient and stable time-stepping algorithms, etc. Fortunately, because of the versatile choices of spatial discretization and temporal integration, a discontinuous Galerkin time-domain (DGTD) method can be a very promising method of solving transient multiscale electromagnetic problems. In this paper, we present the application of a leap-frog DGTD method to the analyzing of the multiscale electromagnetic scattering problems. The uniaxial perfect matching layer (UPML) truncation of the computational domain is discussed and formulated in the leap-frog DGTD context. Numerical validations are performed in the challenging test cases demonstrating the accuracy and effectiveness of the method in solving transient multiscale electromagnetic problems compared with those of other numerical methods.
基金supported by the China National Scientific and Technology Major Project(2016ZX05028-002-004)
文摘Strong hydrodynamic interactions during the side-by-side offloading operation between floating liquefied natural gas(FLNG) and liquefied natural gas carrier(LNGC) can induce high risks of collision. The weather vane effect of a single-point mooring system normally results in the satisfactory hydrodynamic performance of the side-by-side configuration in head seas. Nevertheless, the changes in wave directions in real sea conditions can significantly influence the relative motions. This article studies the relative motions of the side-by-side system by using the theoretical analysis method and the numerical calculation method. Based on the three-dimensional potential theory modified by artificial damping-lid method, the frequency-domain hydrodynamic coefficients can be improved to calculate the retardation functions for the multi-body problem. An in-house code is then developed to perform the time-domain simulation of two vessels, through which the relative motions are subsequently obtained. A range of oblique waves are chosen for the extensive calculation of relative motions between the two vessels, which are further analyzed in terms of the phase shift of motion responses induced by specific resonant wave patterns. Investigation results show that wave directions have a significant influence on the relative sway, roll, and yaw motions. Under the circumstance that the absolute phase shift between the roll motions of two vessels approaches 180°, stronger relative motions are induced when LNGC is on the weather side.Moreover, the gap water resonances at high frequencies tend to cause the dangerous opposed oscillation of two vessels in the sway and yaw modes, whereas FLNG reduces the gap water resonances and relative motions when located on the weather side.
文摘Tank sloshing in ship cargo is excited by ship motions, which induces impact load on tank wall and then affects the ship motion. Wave forces acting on ship hull and the retardation function are solved by using three-dimensional frequency domain theory and an impulse response function method based on the potential flow theory, and global ship motion is examined coupling with nonlinear tank sloshing which is simulated by viscous flow theory. Based on the open source Computational Fluid Dynamics (CFD) development platform Open Field Operation and Manipulation (OpenFOAM), numerical calculation of ship motion coupled with tank sloshing is achieved and the corresponding numerical simulation and validation are carried out. With this method, the interactions of wave, ship body and tank sloshing are completely taken into consideration. This method has quite high efficiency for it takes advantage of potential flow theory for outer flow field and viscous flow theory for inside tank sloshing respectively. The numerical and experimental results of the ship motion agree well with each other.