In numerical simulation of wave propagation,both viscoelastic materials and perfectly matched layers(PMLs)attenuate waves.The wave equations for both the viscoelastic model and the PML contain convolution operators.Ho...In numerical simulation of wave propagation,both viscoelastic materials and perfectly matched layers(PMLs)attenuate waves.The wave equations for both the viscoelastic model and the PML contain convolution operators.However,convolution operator is intractable in finite-difference time-domain(FDTD)method.A great deal of progress has been made in using time stepping instead of convolution in FDTD.To incorporate PML into viscoelastic media,more memory variables need to be introduced,which increases the code complexity and computation costs.By modifying the nonsplitting PML formulation,I propose a viscoelastic model,which can be used as a viscoelastic material and/or a PML just by adjusting the parameters.The proposed viscoelastic model is essentially equivalent to a Maxwell model.Compared with existing PML methods,the proposed method requires less memory and its implementation in existing finite-difference codes is much easier.The attenuation and phase velocity of P-and S-waves are frequency independent in the viscoelastic model if the related quality factors(Q)are greater than 10.The numerical examples show that the method is stable for materials with high absorption(Q=1),and for heterogeneous media with large contrast of acoustic impedance and large contrast of viscosity.展开更多
At present, the polymer solution is usually assumed to be Newtonian fluid or pseudoplastic fluid, and its elasticity is not considered on the study of polymer flooding well testing model. A large number of experiments...At present, the polymer solution is usually assumed to be Newtonian fluid or pseudoplastic fluid, and its elasticity is not considered on the study of polymer flooding well testing model. A large number of experiments have shown that polymer solutions have viscoelasticity, and disregarding the elasticity will cause certain errors in the analysis of polymer solution seepage law. Based on the percolation theory, this paper describes the polymer flooding mechanism from the two aspects of viscous effect and elastic effect, the mathematical model of oil water two-phase three components unsteady flow in viscoelastic polymer flooding was established, and solved by finite difference method, and the well-test curve was drawn to analyze the rule of well test curve in polymer flooding. The results show that, the degree of upward warping in the radial flow section of the pressure recovery curve when considering polymer elasticity is greater than the curve which not considering polymer elasticity. The relaxation time, power-law index, polymer injection concentration mainly affect the radial flow stage of the well testing curve. The relaxation time, power-law index, polymer injection concentration and other polymer flooding parameters mainly affect the radial flow stage of the well testing curve. The larger the polymer flooding parameters, the greater the degree of upwarping of the radial flow derivative curve. This model has important reference significance for well-testing research in polymer flooding oilfields.展开更多
This research work aims at modeling the creep behavior of a material by a non-linear schapery’s viscoelastic model. We started with analytical part where three powerful methods of creep modeling have been developed a...This research work aims at modeling the creep behavior of a material by a non-linear schapery’s viscoelastic model. We started with analytical part where three powerful methods of creep modeling have been developed and compared. That is the Heaviside, the Nordin and Varna and lastly our own proposed methods. From this preliminary study, it came out that our method is different to the two others because we took into account the loading time at the creep beginning. Besides we studied several loading programs and retained a five order non-linear polynomial which is the program that gave us satisfactory results. The other loading functions led to divergent results and wasn’t present here as consequence. In the second part of this work, we devoted ourselves to the determination of non-linear parameters in the schapery’s viscoelasticity equation, through a well developed and illustrated methodology. From this study, it is straight forward that non-linear parameters are stress dependent;confirming the results of several authors that preceded us in this studying field.展开更多
Taking into account three important porous media mechanisms during wave propagation (the Biot-flow, squirt-flow, and solid-skeleton viscoelastic mechanisms), we introduce water saturation into the dynamic governing ...Taking into account three important porous media mechanisms during wave propagation (the Biot-flow, squirt-flow, and solid-skeleton viscoelastic mechanisms), we introduce water saturation into the dynamic governing equations of wave propagation by analyzing the effective medium theory and then providing a viscoelastic Biot/squirt (BISQ) model which can analyze the wave propagation problems in a partially viscous pore fluid saturated porous media. In this model, the effects of pore fluid distribution patterns on the effective bulk modulus at different frequencies are considered. Then we derive the wave dynamic equations in the time-space domain. The phase velocity and the attenuation coefficient equations of the viscoelatic BISQ model in the frequency-wavenumber domain are deduced through a set of plane harmonic solution assumptions. Finally, by means of numerical simulations, we investigate the effects of water saturation, permeability, and frequency on compressional wave velocity and attenuation. Based on tight sandstone and carbonate experimental observed data, the compressional wave velocities of partially saturated reservoir rocks are calculated. The compressional wave velocity in carbonate reservoirs is more sensitive to gas saturation than in sandstone reservoirs.展开更多
To simultaneously take into account the Biot-flow mechanism, the squirt-flow mechanism, and the frame-viscoelasticity mechanism, a generalized viscoelastic BISQ (Biot/squirt) model is developed for wave propagation ...To simultaneously take into account the Biot-flow mechanism, the squirt-flow mechanism, and the frame-viscoelasticity mechanism, a generalized viscoelastic BISQ (Biot/squirt) model is developed for wave propagation in clay-bearing sandstones based on Dvorkin's elastic BISQ model. The present model is extended to a wide range of permeabilities (k 〉 0.05 mD) by introducing a dimensionless correction factor for viscoelastic parameters, defined as a function of the permeability and the clay content. We describe the frame's stress-strain relationship of the clay-bearing sandstones by the differential constitutive equations of generalized viscoelasticity and then derive the viscoelastic-wave dynamic equations. With the assumption of a plane-wave solution, we finally yield the phase velocities and the attenuation coefficients by solving the dynamic wave equations in the frequency and wave number domain. The comparison of numerical results and experimental data shows that the generalized viscoelastic BISQ model is applicable for modeling the wave propagation in most of the sandstones mainly bearing kaolinite clay.展开更多
Due to the increasing use of passive absorbers to control unwanted vibrations,many studies have been done on energy absorbers ideally,but the lack of studies of real environmental conditions on these absorbers is felt...Due to the increasing use of passive absorbers to control unwanted vibrations,many studies have been done on energy absorbers ideally,but the lack of studies of real environmental conditions on these absorbers is felt.The present work investigates the effect of viscoelasticity on the stability and bifurcations of a system attached to a nonlinear energy sink(NES).In this paper,the Burgers model is assumed for the viscoelasticity in an NES,and a linear oscillator system is considered for investigating the instabilities and bifurcations.The equations of motion of the coupled system are solved by using the harmonic balance and pseudo-arc-length continuation methods.The results show that the viscoelasticity affects the frequency intervals of the Hopf and saddle-node branches,and by increasing the stiffness parameters of the viscoelasticity,the conditions of these branches occur in larger ranges of the external force amplitudes,and also reduce the frequency range of the branches.In addition,increasing the viscoelastic damping parameter has the potential to completely eliminate the instability of the system and gradually reduce the amplitude of the jump phenomenon.展开更多
The fractional calculus approach in the constitutive relationship model of viscoelastic fluid is introduced.The flow near a wall suddenly set in mo- tion is studied for a non-Newtonian viscoelastic fluid with the frac...The fractional calculus approach in the constitutive relationship model of viscoelastic fluid is introduced.The flow near a wall suddenly set in mo- tion is studied for a non-Newtonian viscoelastic fluid with the fractional Maxwell model.Exact solutions of velocity and stress are obtained by using the discrete in- verse Laplace transform of the sequential fractional derivatives.It is found that the effect of the fractional orders in the constitutive relationship on the flow field is signif- icant.The results show that for small times there are appreciable viscoelastic effects on the shear stress at the plate,for large times the viscoelastic effects become weak.展开更多
The fractional calculus is used in the constitutive relationship model of viscoelastic fluid. A generalized Maxwell model with fractional calculus is considered. Based on the flow conditions described, two flow cases ...The fractional calculus is used in the constitutive relationship model of viscoelastic fluid. A generalized Maxwell model with fractional calculus is considered. Based on the flow conditions described, two flow cases are solved and the exact solutions are obtained by using the Weber transform and the Laplace transform for fractional calculus.展开更多
The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is...The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode.展开更多
A new simple thixotropy model was proposed in the present paper to characterize the thixotropy-loop experiments and the start-up experiment of an LDPE (PE-FSB23D0221Q200) melt. The thixotropy model is a combination ...A new simple thixotropy model was proposed in the present paper to characterize the thixotropy-loop experiments and the start-up experiment of an LDPE (PE-FSB23D0221Q200) melt. The thixotropy model is a combination of a viscoelastic-component and a postulated kinetics process of structure change, which is constituted in terms of the indirect microstructural approach usually adopted in the characterization of thixotropy. The descriptions of the thixotropy model on both the thixotropy-loop tests and the startup test show good agreement with the experimental values, indicating the good capability of the model in characterizing the time-dependent nonlinear viscoelastic. The stress overshoot phenomenon and the stress relaxation after cessation of the thixotropy loop test can be described well by the model, whereas both of the typical viscoelastic phenomena could not be described in our previous work with a variant Huang model.展开更多
This paper is concerned with the initial boundary value problem for a viscoelastic model with relaxation. Under the only assumption that the C^0-norm of the initial data is small, without smallness hypothesis for the ...This paper is concerned with the initial boundary value problem for a viscoelastic model with relaxation. Under the only assumption that the C^0-norm of the initial data is small, without smallness hypothesis for the C^1-norm, the existence of the global smooth solution to the corresponding initial boundary value problem is proved. The analysis is based on some a priori estimates obtained by the 'maximum principle' of first-order quasilinear hyperbolic system.展开更多
A linear viscoelastic finite element model was built to investigate factors that influenced the intraocular pressure (IOP) elevations due to micro-volumetric changes in the eye at three different rates. The viscoelast...A linear viscoelastic finite element model was built to investigate factors that influenced the intraocular pressure (IOP) elevations due to micro-volumetric changes in the eye at three different rates. The viscoelastic properties of the cornea and the sclera, including the instantaneous modulus, equilibrium modulus, and relaxation time constants, parametrically varied to examine their effects on IOP elevations at different rates of volumetric changes. The simulated responses were in good agreement with the previously reported experimental results obtained from porcine globes, showing the general trend of higher IOP elevations at faster rates. The simulations showed that all viscoelastic properties influenced the profile of the dynamic IOP due to volumetric changes, and the relative significance of a specific parameter was highly dependent on the rate of change.展开更多
Travel time through a ring road with a total length of 80 km has been predicted by a viscoelastic traffic model(VEM), which is developed in analogous to the non-Newtonian fluid flow. The VEM expresses a traffic pressu...Travel time through a ring road with a total length of 80 km has been predicted by a viscoelastic traffic model(VEM), which is developed in analogous to the non-Newtonian fluid flow. The VEM expresses a traffic pressure for the unfree flow case by space headway, ensuring that the pressure can be determined by the assumption that the relevant second critical sound speed is exactly equal to the disturbance propagation speed determined by the free flow speed and the braking distance measured by the average vehicular length. The VEM assumes that the sound speed for the free flow case depends on the traffic density in some specific aspects, which ensures that it is exactly identical to the free flow speed on an empty road. To make a comparison, the open Navier-Stokes type model developed by Zhang(ZHANG, H. M. Driver memory, traffic viscosity and a viscous vehicular traffic flow model. Transp. Res. Part B, 37, 27–41(2003)) is adopted to predict the travel time through the ring road for providing the counterpart results.When the traffic free flow speed is 80 km/h, the braking distance is supposed to be 45 m,with the jam density uniquely determined by the average length of vehicles l ≈ 5.8 m. To avoid possible singular points in travel time prediction, a distinguishing period for time averaging is pre-assigned to be 7.5 minutes. It is found that the travel time increases monotonically with the initial traffic density on the ring road. Without ramp effects, for the ring road with the initial density less than the second critical density, the travel time can be simply predicted by using the equilibrium speed. However, this simpler approach is unavailable for scenarios over the second critical.展开更多
The present research focuses on the analysis of wave propagation on a rotating viscoelastic nanobeam supported on the viscoelastic foundation which is subject to thermal gradient effects.A comprehensive and accurate m...The present research focuses on the analysis of wave propagation on a rotating viscoelastic nanobeam supported on the viscoelastic foundation which is subject to thermal gradient effects.A comprehensive and accurate model of a viscoelastic nanobeam is constructed by using a novel nonclassical mechanical model.Based on the general nonlocal theory(GNT),Kelvin-Voigt model,and Timoshenko beam theory,the motion equations for the nanobeam are obtained.Through the GNT,material hardening and softening behaviors are simultaneously taken into account during wave propagation.An analytical solution is utilized to generate the results for torsional(TO),longitudinal(LA),and transverse(TA)types of wave dispersion.Moreover,the effects of nonlocal parameters,Kelvin-Voigt damping,foundation damping,Winkler-Pasternak coefficients,rotating speed,and thermal gradient are illustrated and discussed in detail.展开更多
Cyber-Physical Systems are very vulnerable to sparse sensor attacks.But current protection mechanisms employ linear and deterministic models which cannot detect attacks precisely.Therefore,in this paper,we propose a n...Cyber-Physical Systems are very vulnerable to sparse sensor attacks.But current protection mechanisms employ linear and deterministic models which cannot detect attacks precisely.Therefore,in this paper,we propose a new non-linear generalized model to describe Cyber-Physical Systems.This model includes unknown multivariable discrete and continuous-time functions and different multiplicative noises to represent the evolution of physical processes and randomeffects in the physical and computationalworlds.Besides,the digitalization stage in hardware devices is represented too.Attackers and most critical sparse sensor attacks are described through a stochastic process.The reconstruction and protectionmechanisms are based on aweighted stochasticmodel.Error probability in data samples is estimated through different indicators commonly employed in non-linear dynamics(such as the Fourier transform,first-return maps,or the probability density function).A decision algorithm calculates the final reconstructed value considering the previous error probability.An experimental validation based on simulation tools and real deployments is also carried out.Both,the new technology performance and scalability are studied.Results prove that the proposed solution protects Cyber-Physical Systems against up to 92%of attacks and perturbations,with a computational delay below 2.5 s.The proposed model shows a linear complexity,as recursive or iterative structures are not employed,just algebraic and probabilistic functions.In conclusion,the new model and reconstructionmechanism can protect successfully Cyber-Physical Systems against sparse sensor attacks,even in dense or pervasive deployments and scenarios.展开更多
An integral nonlocal stress gradient viscoelastic model is proposed on the basis of the integral nonlocal stress gradient model and the standard viscoelastic model,and is utilized to investigate the free damping vibra...An integral nonlocal stress gradient viscoelastic model is proposed on the basis of the integral nonlocal stress gradient model and the standard viscoelastic model,and is utilized to investigate the free damping vibration analysis of the viscoelastic BernoulliEuler microbeams in thermal environment.Hamilton's principle is used to derive the differential governing equations and corresponding boundary conditions.The integral relations between the strain and the nonlocal stress are converted into a differential form with constitutive constraints.The size-dependent axial thermal stress due to the variation of the environmental temperature is derived explicitly.The Laplace transformation is utilized to obtain the explicit expression for the bending deflection and moment.Considering the boundary conditions and constitutive constraints,one can get a nonlinear equation with complex coefficients,from which the complex characteristic frequency can be determined.A two-step numerical method is proposed to solve the elastic vibration frequency and the damping ratio.The effects of length scale parameters,viscous coefficient,thermal stress,vibration order on the vibration frequencies,and critical viscous coefficient are investigated numerically for the viscoelastic Bernoulli-Euler microbeams under different boundary conditions.展开更多
The creep behaviors in deep underground engineering structures,especially in soft rocks,have a remarkable impact on the long-term stability of the excavations,which finally leads to the high risk and failure of it.Acc...The creep behaviors in deep underground engineering structures,especially in soft rocks,have a remarkable impact on the long-term stability of the excavations,which finally leads to the high risk and failure of it.Accordingly,it is essential to recognize the time-dependent deformation through the investigation of this phenomenon.In this study,the creep behaviors of soft rocks were examined to help understand the underlying mechanism of the extended time-dependent deformation.Due to the limited results about the time-dependent properties of the constituents of the rock that reveal their heterogeneity,the targeting nanoindentation technique(TNIT),was adopted to investigate the viscoelastic characteristics of kaolinite and quartz in a two-constituent mudstone sample.The TNIT consists of identifications of mineralogical ingredients in mudstone and nanoindentation experiments on each identified constituent.After conducting experiments,the unloading stages of the typical indentation curves were analyzed to calculate the hardness and elastic modulus of both elements in mudstone.Additionally,the 180 s load-holding stages with the peak load of 50 mN were transformed into the typical creep strain-time curves for fitting analysis by using the Kelvin model,the standard viscoelastic model,and the extended viscoelastic model.Fitting results show that the standard viscoelastic model not only can perfectly express the nanoindentation creep behaviors of both kaolinite and quartz but also can produce suitable constants used to measure their creep parameters.The creep parameters of kaolinite are much smaller than that of quartz,which causes the considerable time-dependent deformation of the soft mudstone.Eventually,the standard viscoelastic model was also verified on the quartz in a sandstone sample.展开更多
A mixed finite element formulation for viscoelastic flows is derived in this paper, in which the FIC (finite incremental calculus) pressure stabilization process and the DEVSS (discrete elastic viscous stress split...A mixed finite element formulation for viscoelastic flows is derived in this paper, in which the FIC (finite incremental calculus) pressure stabilization process and the DEVSS (discrete elastic viscous stress splitting) method using the Crank-Nicolson-based split are introduced within a general framework of the iterative version of the fractional step algorithm. The SU (streamline-upwind) method is particularly chosen to tackle the convective terms in constitutive equations of viscoelastic flows. Thanks to the proposed scheme the finite elements with equal low-order interpolation approximations for stress-velocity-pressure variables can be successfully used even for viscoelastic flows with high Weissenberg numbers. The XPP (extended Pom-Pom) constitutive model for describing viscoelastic behaviors is particularly integrated into the proposed scheme. The numerical results for the 4:1 sudden contraction flow problem demonstrate prominent stability, accuracy and convergence rate of the proposed scheme in both pressure and stress distributions over the flow domain within a wide range of the Weissenberg number, particularly the capability in reproducing the results, which can be used to explain the "die swell" phenomenon observed in the polymer injection molding process.展开更多
Spectral element method(SEM) for elastic media is well known for its great flexibility and high accuracy in solving problems with complex geometries.It is an advanced choice for wave simulations.Due to anelasticity ...Spectral element method(SEM) for elastic media is well known for its great flexibility and high accuracy in solving problems with complex geometries.It is an advanced choice for wave simulations.Due to anelasticity of earth media,SEM for elastic media is no longer appropriate.On fundamental of the second-order elastic SEM,this work takes the viscoelastic wave equations and the vertical transversely isotropic(VTI) media into consideration,and establishes the second-order SEM for wave modeling in viscoelastic VTI media.The second-order perfectly matched layer for viscoelastic VTI media is also introduced.The problem of handling the overlapped absorbed corners is solved.A comparison with the analytical solution in a twodimensional viscoelastic homogeneous medium shows that the method is accurate in the wave-field modeling.Furtherly,numerical validation also presents its great flexibility in solving wave propagation problems in complex heterogeneous media.This second-order SEM with perfectly matched layer for viscoelastic VTI media can be easily applied in wave modeling in a limited region.展开更多
The paper explores the gravity-driven flow of the thin film of a viscoelastic-fluid-based nanofluids(VFBN)along an inclined plane under non-isothermal conditions and subjected to convective cooling at the free-surface...The paper explores the gravity-driven flow of the thin film of a viscoelastic-fluid-based nanofluids(VFBN)along an inclined plane under non-isothermal conditions and subjected to convective cooling at the free-surface.The Newton’s law of cooling is used to model the convective heat-exchange with the ambient at the free-surface.The Giesekus viscoelastic constitutive model,with appropriate modifications to account for non-isothermal effects,is employed to describe the polymeric effects.The unsteady and coupled non-linear partial differential equations(PDEs)describing the model problem are obtained and solved via efficient semi-implicit numerical schemes based on finite difference methods(FDM)implemented in Matlab.The response of the VFBN velocity,temperature,thermal-conductivity and polymeric-stresses to variations in the volume-fraction of embedded nanoparticles is investigated.It is shown that these quantities all increase as the nanoparticle volume-fraction becomes higher.展开更多
文摘In numerical simulation of wave propagation,both viscoelastic materials and perfectly matched layers(PMLs)attenuate waves.The wave equations for both the viscoelastic model and the PML contain convolution operators.However,convolution operator is intractable in finite-difference time-domain(FDTD)method.A great deal of progress has been made in using time stepping instead of convolution in FDTD.To incorporate PML into viscoelastic media,more memory variables need to be introduced,which increases the code complexity and computation costs.By modifying the nonsplitting PML formulation,I propose a viscoelastic model,which can be used as a viscoelastic material and/or a PML just by adjusting the parameters.The proposed viscoelastic model is essentially equivalent to a Maxwell model.Compared with existing PML methods,the proposed method requires less memory and its implementation in existing finite-difference codes is much easier.The attenuation and phase velocity of P-and S-waves are frequency independent in the viscoelastic model if the related quality factors(Q)are greater than 10.The numerical examples show that the method is stable for materials with high absorption(Q=1),and for heterogeneous media with large contrast of acoustic impedance and large contrast of viscosity.
文摘At present, the polymer solution is usually assumed to be Newtonian fluid or pseudoplastic fluid, and its elasticity is not considered on the study of polymer flooding well testing model. A large number of experiments have shown that polymer solutions have viscoelasticity, and disregarding the elasticity will cause certain errors in the analysis of polymer solution seepage law. Based on the percolation theory, this paper describes the polymer flooding mechanism from the two aspects of viscous effect and elastic effect, the mathematical model of oil water two-phase three components unsteady flow in viscoelastic polymer flooding was established, and solved by finite difference method, and the well-test curve was drawn to analyze the rule of well test curve in polymer flooding. The results show that, the degree of upward warping in the radial flow section of the pressure recovery curve when considering polymer elasticity is greater than the curve which not considering polymer elasticity. The relaxation time, power-law index, polymer injection concentration mainly affect the radial flow stage of the well testing curve. The relaxation time, power-law index, polymer injection concentration and other polymer flooding parameters mainly affect the radial flow stage of the well testing curve. The larger the polymer flooding parameters, the greater the degree of upwarping of the radial flow derivative curve. This model has important reference significance for well-testing research in polymer flooding oilfields.
文摘This research work aims at modeling the creep behavior of a material by a non-linear schapery’s viscoelastic model. We started with analytical part where three powerful methods of creep modeling have been developed and compared. That is the Heaviside, the Nordin and Varna and lastly our own proposed methods. From this preliminary study, it came out that our method is different to the two others because we took into account the loading time at the creep beginning. Besides we studied several loading programs and retained a five order non-linear polynomial which is the program that gave us satisfactory results. The other loading functions led to divergent results and wasn’t present here as consequence. In the second part of this work, we devoted ourselves to the determination of non-linear parameters in the schapery’s viscoelasticity equation, through a well developed and illustrated methodology. From this study, it is straight forward that non-linear parameters are stress dependent;confirming the results of several authors that preceded us in this studying field.
基金supported by the National Natural Science Foundation of China (No. 11002025, 40114066)the National Basic Research Program of China (973 Program) (No.2007CB209505)the RIPED Youth Innovation Foundation (No. 2010-A-26-01)
文摘Taking into account three important porous media mechanisms during wave propagation (the Biot-flow, squirt-flow, and solid-skeleton viscoelastic mechanisms), we introduce water saturation into the dynamic governing equations of wave propagation by analyzing the effective medium theory and then providing a viscoelastic Biot/squirt (BISQ) model which can analyze the wave propagation problems in a partially viscous pore fluid saturated porous media. In this model, the effects of pore fluid distribution patterns on the effective bulk modulus at different frequencies are considered. Then we derive the wave dynamic equations in the time-space domain. The phase velocity and the attenuation coefficient equations of the viscoelatic BISQ model in the frequency-wavenumber domain are deduced through a set of plane harmonic solution assumptions. Finally, by means of numerical simulations, we investigate the effects of water saturation, permeability, and frequency on compressional wave velocity and attenuation. Based on tight sandstone and carbonate experimental observed data, the compressional wave velocities of partially saturated reservoir rocks are calculated. The compressional wave velocity in carbonate reservoirs is more sensitive to gas saturation than in sandstone reservoirs.
基金supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 40725012)the National Hi-tech Research and Development Program of China(863 Program) (Grant No. 2006AA06Z240)the National Basic Research Program of China (973 program)(Grant No. 2007CB209505).
文摘To simultaneously take into account the Biot-flow mechanism, the squirt-flow mechanism, and the frame-viscoelasticity mechanism, a generalized viscoelastic BISQ (Biot/squirt) model is developed for wave propagation in clay-bearing sandstones based on Dvorkin's elastic BISQ model. The present model is extended to a wide range of permeabilities (k 〉 0.05 mD) by introducing a dimensionless correction factor for viscoelastic parameters, defined as a function of the permeability and the clay content. We describe the frame's stress-strain relationship of the clay-bearing sandstones by the differential constitutive equations of generalized viscoelasticity and then derive the viscoelastic-wave dynamic equations. With the assumption of a plane-wave solution, we finally yield the phase velocities and the attenuation coefficients by solving the dynamic wave equations in the frequency and wave number domain. The comparison of numerical results and experimental data shows that the generalized viscoelastic BISQ model is applicable for modeling the wave propagation in most of the sandstones mainly bearing kaolinite clay.
基金financial support from K.N.Toosi University of Technology,Tehran,Iran。
文摘Due to the increasing use of passive absorbers to control unwanted vibrations,many studies have been done on energy absorbers ideally,but the lack of studies of real environmental conditions on these absorbers is felt.The present work investigates the effect of viscoelasticity on the stability and bifurcations of a system attached to a nonlinear energy sink(NES).In this paper,the Burgers model is assumed for the viscoelasticity in an NES,and a linear oscillator system is considered for investigating the instabilities and bifurcations.The equations of motion of the coupled system are solved by using the harmonic balance and pseudo-arc-length continuation methods.The results show that the viscoelasticity affects the frequency intervals of the Hopf and saddle-node branches,and by increasing the stiffness parameters of the viscoelasticity,the conditions of these branches occur in larger ranges of the external force amplitudes,and also reduce the frequency range of the branches.In addition,increasing the viscoelastic damping parameter has the potential to completely eliminate the instability of the system and gradually reduce the amplitude of the jump phenomenon.
基金The project supported by the National Natural Science Foundation of China (10002003)Foundation for University Key Teacher by the Ministry of EducationResearch Fund for the Doctoral Program of Higher Education
文摘The fractional calculus approach in the constitutive relationship model of viscoelastic fluid is introduced.The flow near a wall suddenly set in mo- tion is studied for a non-Newtonian viscoelastic fluid with the fractional Maxwell model.Exact solutions of velocity and stress are obtained by using the discrete in- verse Laplace transform of the sequential fractional derivatives.It is found that the effect of the fractional orders in the constitutive relationship on the flow field is signif- icant.The results show that for small times there are appreciable viscoelastic effects on the shear stress at the plate,for large times the viscoelastic effects become weak.
基金The project supported by the National Natural Science Foundation of China (10272067, 10426024)the Doctoral Program Foundation of the Education Ministry of China (20030422046)the Natural Science Foundation of Shandong University at Weihai.
文摘The fractional calculus is used in the constitutive relationship model of viscoelastic fluid. A generalized Maxwell model with fractional calculus is considered. Based on the flow conditions described, two flow cases are solved and the exact solutions are obtained by using the Weber transform and the Laplace transform for fractional calculus.
基金Project supported by the National Natural Science Foundation of China (No. 10472060)Natural Science Founda-tion of Shanghai Municipality (No. 04ZR14058)Doctor Start-up Foundation of Shenyang Institute of Aeronautical Engineering (No. 05YB04).
文摘The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode.
基金The project supported by the National Natural Science Foundation of China(10402024)the Experiment Foundation for Precise Instrument of Shanghai Jiao Tong University(200207)
文摘A new simple thixotropy model was proposed in the present paper to characterize the thixotropy-loop experiments and the start-up experiment of an LDPE (PE-FSB23D0221Q200) melt. The thixotropy model is a combination of a viscoelastic-component and a postulated kinetics process of structure change, which is constituted in terms of the indirect microstructural approach usually adopted in the characterization of thixotropy. The descriptions of the thixotropy model on both the thixotropy-loop tests and the startup test show good agreement with the experimental values, indicating the good capability of the model in characterizing the time-dependent nonlinear viscoelastic. The stress overshoot phenomenon and the stress relaxation after cessation of the thixotropy loop test can be described well by the model, whereas both of the typical viscoelastic phenomena could not be described in our previous work with a variant Huang model.
基金The research was supported by the Natural Science Foundation of China(10171037)the National Key Program for Basic Research of China(2002CCA03700)respectivelyThe first author was supported by south central university for Nationalities Nature Science F
文摘This paper is concerned with the initial boundary value problem for a viscoelastic model with relaxation. Under the only assumption that the C^0-norm of the initial data is small, without smallness hypothesis for the C^1-norm, the existence of the global smooth solution to the corresponding initial boundary value problem is proved. The analysis is based on some a priori estimates obtained by the 'maximum principle' of first-order quasilinear hyperbolic system.
文摘A linear viscoelastic finite element model was built to investigate factors that influenced the intraocular pressure (IOP) elevations due to micro-volumetric changes in the eye at three different rates. The viscoelastic properties of the cornea and the sclera, including the instantaneous modulus, equilibrium modulus, and relaxation time constants, parametrically varied to examine their effects on IOP elevations at different rates of volumetric changes. The simulated responses were in good agreement with the previously reported experimental results obtained from porcine globes, showing the general trend of higher IOP elevations at faster rates. The simulations showed that all viscoelastic properties influenced the profile of the dynamic IOP due to volumetric changes, and the relative significance of a specific parameter was highly dependent on the rate of change.
基金Project supported by the Russian Foundation for Basic Research(No.18-07-00518)the National Natural Science Foundation of China(No.10972212)
文摘Travel time through a ring road with a total length of 80 km has been predicted by a viscoelastic traffic model(VEM), which is developed in analogous to the non-Newtonian fluid flow. The VEM expresses a traffic pressure for the unfree flow case by space headway, ensuring that the pressure can be determined by the assumption that the relevant second critical sound speed is exactly equal to the disturbance propagation speed determined by the free flow speed and the braking distance measured by the average vehicular length. The VEM assumes that the sound speed for the free flow case depends on the traffic density in some specific aspects, which ensures that it is exactly identical to the free flow speed on an empty road. To make a comparison, the open Navier-Stokes type model developed by Zhang(ZHANG, H. M. Driver memory, traffic viscosity and a viscous vehicular traffic flow model. Transp. Res. Part B, 37, 27–41(2003)) is adopted to predict the travel time through the ring road for providing the counterpart results.When the traffic free flow speed is 80 km/h, the braking distance is supposed to be 45 m,with the jam density uniquely determined by the average length of vehicles l ≈ 5.8 m. To avoid possible singular points in travel time prediction, a distinguishing period for time averaging is pre-assigned to be 7.5 minutes. It is found that the travel time increases monotonically with the initial traffic density on the ring road. Without ramp effects, for the ring road with the initial density less than the second critical density, the travel time can be simply predicted by using the equilibrium speed. However, this simpler approach is unavailable for scenarios over the second critical.
文摘The present research focuses on the analysis of wave propagation on a rotating viscoelastic nanobeam supported on the viscoelastic foundation which is subject to thermal gradient effects.A comprehensive and accurate model of a viscoelastic nanobeam is constructed by using a novel nonclassical mechanical model.Based on the general nonlocal theory(GNT),Kelvin-Voigt model,and Timoshenko beam theory,the motion equations for the nanobeam are obtained.Through the GNT,material hardening and softening behaviors are simultaneously taken into account during wave propagation.An analytical solution is utilized to generate the results for torsional(TO),longitudinal(LA),and transverse(TA)types of wave dispersion.Moreover,the effects of nonlocal parameters,Kelvin-Voigt damping,foundation damping,Winkler-Pasternak coefficients,rotating speed,and thermal gradient are illustrated and discussed in detail.
基金supported by Comunidad de Madrid within the framework of the Multiannual Agreement with Universidad Politécnica de Madrid to encourage research by young doctors(PRINCE).
文摘Cyber-Physical Systems are very vulnerable to sparse sensor attacks.But current protection mechanisms employ linear and deterministic models which cannot detect attacks precisely.Therefore,in this paper,we propose a new non-linear generalized model to describe Cyber-Physical Systems.This model includes unknown multivariable discrete and continuous-time functions and different multiplicative noises to represent the evolution of physical processes and randomeffects in the physical and computationalworlds.Besides,the digitalization stage in hardware devices is represented too.Attackers and most critical sparse sensor attacks are described through a stochastic process.The reconstruction and protectionmechanisms are based on aweighted stochasticmodel.Error probability in data samples is estimated through different indicators commonly employed in non-linear dynamics(such as the Fourier transform,first-return maps,or the probability density function).A decision algorithm calculates the final reconstructed value considering the previous error probability.An experimental validation based on simulation tools and real deployments is also carried out.Both,the new technology performance and scalability are studied.Results prove that the proposed solution protects Cyber-Physical Systems against up to 92%of attacks and perturbations,with a computational delay below 2.5 s.The proposed model shows a linear complexity,as recursive or iterative structures are not employed,just algebraic and probabilistic functions.In conclusion,the new model and reconstructionmechanism can protect successfully Cyber-Physical Systems against sparse sensor attacks,even in dense or pervasive deployments and scenarios.
基金Project supported by the National Natural Science Foundation of China(No.12172169)。
文摘An integral nonlocal stress gradient viscoelastic model is proposed on the basis of the integral nonlocal stress gradient model and the standard viscoelastic model,and is utilized to investigate the free damping vibration analysis of the viscoelastic BernoulliEuler microbeams in thermal environment.Hamilton's principle is used to derive the differential governing equations and corresponding boundary conditions.The integral relations between the strain and the nonlocal stress are converted into a differential form with constitutive constraints.The size-dependent axial thermal stress due to the variation of the environmental temperature is derived explicitly.The Laplace transformation is utilized to obtain the explicit expression for the bending deflection and moment.Considering the boundary conditions and constitutive constraints,one can get a nonlinear equation with complex coefficients,from which the complex characteristic frequency can be determined.A two-step numerical method is proposed to solve the elastic vibration frequency and the damping ratio.The effects of length scale parameters,viscous coefficient,thermal stress,vibration order on the vibration frequencies,and critical viscous coefficient are investigated numerically for the viscoelastic Bernoulli-Euler microbeams under different boundary conditions.
基金The work presented in this paper was supported by the projects of"the Fundamental Research Funds for the Central Universities(2020ZDPY0221)""the Guizhou Science and Technology Department([2020]2Y026)".The authors are also grateful to the anonymous reviewers for carefully reading the manuscript and providing many helpful comments.Sun Changlun acknowledges,in particular,the powerful support received from his wife,Zhou Fan,over the years.
文摘The creep behaviors in deep underground engineering structures,especially in soft rocks,have a remarkable impact on the long-term stability of the excavations,which finally leads to the high risk and failure of it.Accordingly,it is essential to recognize the time-dependent deformation through the investigation of this phenomenon.In this study,the creep behaviors of soft rocks were examined to help understand the underlying mechanism of the extended time-dependent deformation.Due to the limited results about the time-dependent properties of the constituents of the rock that reveal their heterogeneity,the targeting nanoindentation technique(TNIT),was adopted to investigate the viscoelastic characteristics of kaolinite and quartz in a two-constituent mudstone sample.The TNIT consists of identifications of mineralogical ingredients in mudstone and nanoindentation experiments on each identified constituent.After conducting experiments,the unloading stages of the typical indentation curves were analyzed to calculate the hardness and elastic modulus of both elements in mudstone.Additionally,the 180 s load-holding stages with the peak load of 50 mN were transformed into the typical creep strain-time curves for fitting analysis by using the Kelvin model,the standard viscoelastic model,and the extended viscoelastic model.Fitting results show that the standard viscoelastic model not only can perfectly express the nanoindentation creep behaviors of both kaolinite and quartz but also can produce suitable constants used to measure their creep parameters.The creep parameters of kaolinite are much smaller than that of quartz,which causes the considerable time-dependent deformation of the soft mudstone.Eventually,the standard viscoelastic model was also verified on the quartz in a sandstone sample.
基金the National Natural Science Foundation of China (10672033,10590354,90715011 and 10272027)the National Key Basic Research and Development Program (2002CB412709)
文摘A mixed finite element formulation for viscoelastic flows is derived in this paper, in which the FIC (finite incremental calculus) pressure stabilization process and the DEVSS (discrete elastic viscous stress splitting) method using the Crank-Nicolson-based split are introduced within a general framework of the iterative version of the fractional step algorithm. The SU (streamline-upwind) method is particularly chosen to tackle the convective terms in constitutive equations of viscoelastic flows. Thanks to the proposed scheme the finite elements with equal low-order interpolation approximations for stress-velocity-pressure variables can be successfully used even for viscoelastic flows with high Weissenberg numbers. The XPP (extended Pom-Pom) constitutive model for describing viscoelastic behaviors is particularly integrated into the proposed scheme. The numerical results for the 4:1 sudden contraction flow problem demonstrate prominent stability, accuracy and convergence rate of the proposed scheme in both pressure and stress distributions over the flow domain within a wide range of the Weissenberg number, particularly the capability in reproducing the results, which can be used to explain the "die swell" phenomenon observed in the polymer injection molding process.
基金financially supported by the National Natural Science Foundation of China (Grant No.41304077)Postdoctoral Science Foundation of China (Grant No.2013M531744,2014T70740)+1 种基金Key Laboratory of Geospace Environment and Geodesy (Grant No.12-02-03)Subsurface Multi-scale Imaging Laboratory (Grant No.SMIL-2014-01)
文摘Spectral element method(SEM) for elastic media is well known for its great flexibility and high accuracy in solving problems with complex geometries.It is an advanced choice for wave simulations.Due to anelasticity of earth media,SEM for elastic media is no longer appropriate.On fundamental of the second-order elastic SEM,this work takes the viscoelastic wave equations and the vertical transversely isotropic(VTI) media into consideration,and establishes the second-order SEM for wave modeling in viscoelastic VTI media.The second-order perfectly matched layer for viscoelastic VTI media is also introduced.The problem of handling the overlapped absorbed corners is solved.A comparison with the analytical solution in a twodimensional viscoelastic homogeneous medium shows that the method is accurate in the wave-field modeling.Furtherly,numerical validation also presents its great flexibility in solving wave propagation problems in complex heterogeneous media.This second-order SEM with perfectly matched layer for viscoelastic VTI media can be easily applied in wave modeling in a limited region.
文摘The paper explores the gravity-driven flow of the thin film of a viscoelastic-fluid-based nanofluids(VFBN)along an inclined plane under non-isothermal conditions and subjected to convective cooling at the free-surface.The Newton’s law of cooling is used to model the convective heat-exchange with the ambient at the free-surface.The Giesekus viscoelastic constitutive model,with appropriate modifications to account for non-isothermal effects,is employed to describe the polymeric effects.The unsteady and coupled non-linear partial differential equations(PDEs)describing the model problem are obtained and solved via efficient semi-implicit numerical schemes based on finite difference methods(FDM)implemented in Matlab.The response of the VFBN velocity,temperature,thermal-conductivity and polymeric-stresses to variations in the volume-fraction of embedded nanoparticles is investigated.It is shown that these quantities all increase as the nanoparticle volume-fraction becomes higher.