期刊文献+
共找到10,696篇文章
< 1 2 250 >
每页显示 20 50 100
Research status and prospects of the fractal analysis of metal material surfaces and interfaces
1
作者 Qinjin Dai Xuefeng Liu +2 位作者 Xin Ma Shaojie Tian Qinghe Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期20-38,共19页
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal... As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future. 展开更多
关键词 metal material surfaces and interfaces fractal analysis fractal dimension HOMOGENEITY
下载PDF
Theoretical characterization of the temperature-dependent saturation magnetization of magnetic metallic materials
2
作者 吴金龙 董攀 +6 位作者 贺屹 马艳丽 李梓源 姚沁远 邱俊 麻建坐 李卫国 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期577-585,共9页
Based on the force-heat equivalence energy density principle,a theoretical model for magnetic metallic materials is developed,which characterizes the temperature-dependent magnetic anisotropy energy by considering the... Based on the force-heat equivalence energy density principle,a theoretical model for magnetic metallic materials is developed,which characterizes the temperature-dependent magnetic anisotropy energy by considering the equivalent relationship between magnetic anisotropy energy and heat energy;then the relationship between the magnetic anisotropy constant and saturation magnetization is considered.Finally,we formulate a temperature-dependent model for saturation magnetization,revealing the inherent relationship between temperature and saturation magnetization.Our model predicts the saturation magnetization for nine different magnetic metallic materials at different temperatures,exhibiting satisfactory agreement with experimental data.Additionally,the experimental data used as reference points are at or near room temperature.Compared to other phenomenological theoretical models,this model is considerably more accessible than the data required at 0 K.The index included in our model is set to a constant value,which is equal to 10/3 for materials other than Fe,Co,and Ni.For transition metals(Fe,Co,and Ni in this paper),the index is 6 in the range of 0 K to 0.65T_(cr)(T_(cr) is the critical temperature),and 3 in the range of 0.65T_(cr) to T_(cr),unlike other models where the adjustable parameters vary according to each material.In addition,our model provides a new way to design and evaluate magnetic metallic materials with superior magnetic properties over a wide range of temperatures. 展开更多
关键词 magnetic metallic materials temperature dependent saturation magnetization MODELING
下载PDF
Capillary Property of Entangled Porous Metallic Wire materials and Its Application in Fluid Buffers:Theoretical Analysis and Experimental Study
3
作者 Yu Tang Yiwan Wu +1 位作者 Hu Cheng Rong Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期400-416,共17页
Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property en... Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.). 展开更多
关键词 Entangled porous metallic wire materials Capillary property Viscousfluid Low-speed impact Damping force
下载PDF
Recent advances in transition metal phosphide materials:Synthesis and applications in supercapacitors 被引量:1
4
作者 Ge Li Yu Feng +3 位作者 Yi Yang Xiaoliang Wu Xiumei Song Lichao Tan 《Nano Materials Science》 EI CAS CSCD 2024年第2期174-192,共19页
Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient elec... Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient electrode materials is the key to improve the performance of supercapacitors.As the battery-type materials,transition metal phosphides(TMPs)possess high theoretical specific capacity,good electrical conductivity and superior structural stability,which have been extensively studied to be electrode materials for supercapacitors.In this review,we summarize the up-to-date progress on TMPs materials from diversified synthetic methods,diverse nanostructures and several prominent TMPs and their composites in application of supercapacitors.In the end,we also propose the remaining challenges toward the rational discovery and synthesis of high-performance TMP electrodes materials for energy storage. 展开更多
关键词 Transition metal phosphides Cobalt phosphide Nickel phosphides Electrode materials SUPERCAPACITOR
下载PDF
Synthesis and Modulation of Low-Dimensional Transition Metal Chalcogenide Materials via Atomic Substitution 被引量:1
5
作者 Xuan Wang Akang Chen +3 位作者 XinLei Wu Jiatao Zhang Jichen Dong Leining Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期49-94,共46页
In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart... In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized. 展开更多
关键词 Transition metal chalcogenides Atomic substitution Ion exchange Low-dimensional materials Controllable synthesis
下载PDF
A review on in vitro corrosion performance test of biodegradable metallic materials 被引量:12
6
作者 甄珍 奚廷斐 郑玉峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2283-2293,共11页
Extensive in vitro corrosion test systems have been carried out to simulate the in vivo corrosion behavior of biodegradable metallic materials. Various methods have their own unique benefits and limitations. The corro... Extensive in vitro corrosion test systems have been carried out to simulate the in vivo corrosion behavior of biodegradable metallic materials. Various methods have their own unique benefits and limitations. The corrosion mechanism of biodegradable alloys and in vitro corrosion test systems on biodegradable metallic materials are reviewed, to build a reasonable simulated in vitro test system for mimicking the in vivo animal test from the aspects of electrolyte solution selection, surface roughness influence, test methods and evaluation methodology of corrosion rate. Buffered simulated body fluid containing similar components to human blood plasma should be applied as electrolyte solution, such as simulated body fluid (SBF) and culture medium with serum. Surface roughness of samples and ratio of solution volume to sample surface area should be adopted based on the real implant situation, and the dynamic corrosion is preferred. As to the evaluation methodology of corrosion rate, different methods may complement one another. 展开更多
关键词 biodegradable metallic material in vitro corrosion test Mg FE
下载PDF
The Anti-Penetration Performance and Mechanism of Metal Materials:A Review
7
作者 Jialin Chen Shutao Li +5 位作者 Shang Ma Yeqing Chen Yin Liu Quanwei Tian Xiting Zhong Jiaxing Song 《Engineering》 SCIE EI CAS CSCD 2024年第9期131-157,共27页
This article reviews the anti-penetration principles and strengthening mechanisms of metal materials,ranging from macroscopic failure modes to microscopic structural characteristics,and further summarizes the micro-ma... This article reviews the anti-penetration principles and strengthening mechanisms of metal materials,ranging from macroscopic failure modes to microscopic structural characteristics,and further summarizes the micro-macro correlation in the anti-penetration process.Finally,it outlines the constitutive models and numerical simulation studies utilized in the field of impact and penetration.From the macro perspective,nine frequent penetration failure modes of metal materials are summarized,with a focus on the analysis of the cratering,compression shear,penetration,and plugging stages of the penetration process.The reasons for the formation of adiabatic shear bands(ASBs)in metal materials with different crystal structures are elaborated,and the formation mechanism of the equiaxed grains in the ASB is explored.Both the strength and the toughness of metal materials are related to the materials’crystal structures and microstructures.The toughness is mainly influenced by the deformation mechanism,while the strength is explained by the strengthening mechanism.Therefore,the mechanical properties of metal materials depend on their microstructures,which are subject to the manufacturing process and material composition.Regarding numerical simulation,the advantages and disadvantages of different constitutive models and simulation methods are summarized based on the application characteristics of metal materials in high-speed penetration practice.In summary,this article provides a systematic overview of the macroscopic and microscopic characteristics of metal materials,along with their mechanisms and correlation during the anti-penetration and impact-resistance processes,thereby making an important contribution to the scientific understanding of anti-penetration performance and its optimization in metal materials. 展开更多
关键词 metal materials Failure model Adiabatic shear band Strengthening mechanisms Numerical simulation
下载PDF
A review of Al-based material dopants for high-performance solid state lithium metal batteries
8
作者 Ying Tian Weicui Liu +6 位作者 Tianwei Liu Xiaofan Feng Wenwen Duan Wen Yu Hongze Li Nanping Deng Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期244-261,共18页
As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promisi... As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promising alternative to traditional liquid lithium-ion batteries(LIBs), offering higher energy density, enhanced safety, and longer lifespan. The rise of SSLMBs has brought about a transformation in energy storage, with aluminum(Al)-based material dopants playing a crucial role in advancing the next generation of batteries. The review highlights the significance of Al-based material dopants in SSLMBs applications, particularly its contributions to solid-state electrolytes(SSEs), cathodes, anodes,and other components of SSLMBs. Some studies have also shown that Al-based material dopants effectively enhance SSE ion conductivity, stabilize electrode and SSE interfaces, and suppress lithium dendrite growth, thereby enhancing the electrochemical performance of SSLMBs. Despite the above mentioned progresses, there are still problems and challenges need to be addressed. The review offers a comprehensive insight into the important role of Al in SSLMBs and addresses some of the issues related to its applications, endowing valuable support for the practical implementation of SSLMBs. 展开更多
关键词 Al-based material dopants Solid state lithium metal batteries Solid-state electrolytes Action mechanisms and structure designs Optimization strategies
下载PDF
EFFECT OF STRAIN RATE(?) ON STRAIN HARDENING EXPONENT n OF SOME METALLIC MATERIALS 被引量:4
9
作者 TANG Changguo, ZHU Jinhua, ZHANG Yuhua, ZHOU HuijiuResearch Institute for Strength of Metals. Xi’an Jiaotong University. Xi’an. China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1994年第3期183-186,共4页
Variable strain rate tension tests for 4 metallic materials show that as the strain rate in creases the strain hardening exponent n decreases. The trend follows a two stage linear relation between n and Ig (?). When (... Variable strain rate tension tests for 4 metallic materials show that as the strain rate in creases the strain hardening exponent n decreases. The trend follows a two stage linear relation between n and Ig (?). When (?) < (?)cp, i.e. under quasi-static loading, n can be considered as a constant, but when (?)>(?)cp, n decreases rapidly till an ideal plastic state. n = 0. The characterizations and mechanisms of softening induced by high (?) are discussed. 展开更多
关键词 strain rate strain hardening EXPONENT metallic material
下载PDF
Degree of polarization based on the three-component pBRDF model for metallic materials 被引量:6
10
作者 Kai Wang Jing-Ping Zhu Hong Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第2期254-259,共6页
An expression of degree of polarization(DOP) for metallic material is presented based on the three-component polarized bidirectional reflectance distribution function(p BRDF) model with considering specular reflec... An expression of degree of polarization(DOP) for metallic material is presented based on the three-component polarized bidirectional reflectance distribution function(p BRDF) model with considering specular reflection, directional diffuse reflection and ideal diffuse reflection. The three-component p BRDF model with a detailed reflection assumption is validated by comparing simulations with measurements. The DOP expression presented in this paper is related to surface roughness, which makes it more reasonable in physics. Test results for two metallic samples show that the DOP based on the three-component p BRDF model accords well with the measurement and the error of existing DOP expression is significantly reduced by introducing the diffuse reflection. It indicates that our DOP expression describes the polarized reflection properties of metallic surfaces more accurately. 展开更多
关键词 degree of polarization(DOP) polarized bidirectional reflectance distribution function(pBRDF) metallic materials
下载PDF
IGNITING SHS BY LASER AND ITS APPLICATION TO SELECTIVE LASER SINTERING OF METALLIC POWDER MATERIAL 被引量:1
11
作者 Y.S.Shi S.C.Chen X.L.Lu S.H.Huang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第5期694-704,共11页
How to directly fabricate metallic functional parts with selective laser sintering (SLS) process is a potential technique that scientists are researching. Existent problems during directly fabricating metal part by us... How to directly fabricate metallic functional parts with selective laser sintering (SLS) process is a potential technique that scientists are researching. Existent problems during directly fabricating metal part by use of SLS are analyzed. For the sake of solving the problems, a new idea of adding self-propagating high-temperature synthesis (SHS) material into metallic powder material to form new type of SLS metallic powder material is put forward. This powder material can release controllable amount of heat during its interaction with the laser beam energy to reduce the requirement to laser power during directly sintering metallic part, to prolong the time of metallic liquid phase existing, and to improve the intensity and accuracy of SLS part. For this reason, SHS material′s interaction with the CO2 laser beam energy is researched, which proves that CO2 laser beam energy may instantly ignite SHS reaction. On the basis of the above-mentioned researches, the effect of sintering the metal powder material mixing SHS material with CO2 laser is also researched, which shows: there is an optimal blending ratio of various material in the new metallic powder material. Under the optimal blending ratio and SLS process parameters, this new metallic powder material can indeed release amount of heat and SHS reaction may be controlled within the laser sintering. This research result makes it possible that the metallic part is directly sintered with small CO2 laser (less than 50W), which may greatly reduce the volume, cost and running expenditure of SLS machine, be propitious to application. 展开更多
关键词 selective laser sintering (SLS) self-propagating high-temperaturesynthesis (SHS) ignition time metallic powder material metallic part
下载PDF
Experimental Research of Electronic Devices Thermal Control Using Metallic Phase Change Materials 被引量:1
12
作者 Ai-Gang Pan Jun-Biao Wang +1 位作者 Xian-Jie Zhang Xiao-Bao Cao 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第2期113-121,共9页
A Phase-change thermal control unit( PTCU) filled with metallic phase change material( PCM) Bismuth alloy for electric devices thermal protection was developed and investigated experimentally. The PTCU filled with PCM... A Phase-change thermal control unit( PTCU) filled with metallic phase change material( PCM) Bismuth alloy for electric devices thermal protection was developed and investigated experimentally. The PTCU filled with PCM was designed and manufactured. Resistance heating components( RCHs) produced 1 W,3 W, 5 W,7W,and 10 W for simulating heat generation of electronic devices. At various heating power levels,the performance of PTCU were tested during heating period and one duty cycle period. The experimental results show that the PTCU delays RCH reaching the maximum operating temperature. Also,a numerical model was developed to enable interpretation of experimental results and to perform parametric studies. The results confirmed that the PTCU is suitable for electric devices thermal control. 展开更多
关键词 bismuth alloy metallic phase change materials thermal control electronic device
下载PDF
Model of bidirectional reflectance distribution function for metallic materials 被引量:1
13
作者 王凯 朱京平 +1 位作者 刘宏 侯洵 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期337-341,共5页
Based on the three-component assumption that the reflection is divided into specular reflection,directional diffuse reflection,and ideal diffuse reflection,a bidirectional reflectance distribution function(BRDF) mod... Based on the three-component assumption that the reflection is divided into specular reflection,directional diffuse reflection,and ideal diffuse reflection,a bidirectional reflectance distribution function(BRDF) model of metallic materials is presented.Compared with the two-component assumption that the reflection is composed of specular reflection and diffuse reflection,the three-component assumption divides the diffuse reflection into directional diffuse and ideal diffuse reflection.This model effectively resolves the problem that constant diffuse reflection leads to considerable error for metallic materials.Simulation and measurement results validate that this three-component BRDF model can improve the modeling accuracy significantly and describe the reflection properties in the hemisphere space precisely for the metallic materials. 展开更多
关键词 bidirectional reflectance distribution function metallic materials scattering
下载PDF
Use of Intermetallic Alloys as Reactive Materials for Warhead Applications
14
作者 Jürgen Evers Thomas M.Klaptke 《火炸药学报》 EI CAS CSCD 北大核心 2015年第6期8-10,共3页
With this communication we want to suggest the system ZrW2,a high-density and very hard intermetallic compound that reacts/burns highly exothermic with air at high temperature.This intermetallic phase should provide a... With this communication we want to suggest the system ZrW2,a high-density and very hard intermetallic compound that reacts/burns highly exothermic with air at high temperature.This intermetallic phase should provide a very suitable reactive material for warhead applications. 展开更多
关键词 Cermisch metal INTERmetallic PHASE thermites REACTIVE structure material WARHEAD
下载PDF
Mechanical behavior of entangled metallic wire materials-polyurethane interpenetrating composites
15
作者 Xiao-yuan Zheng Zhi-ying Ren +2 位作者 Hong-bai Bai Zhang-bin Wu You-song Guo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期120-136,共17页
Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is pre... Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is presented in this work in order to fabricate composites with enhanced mechanical characteristics.More specifically,entangled metallic wire materials were used as the active matrix,whereas polyurethane was employed as the reinforcement elements.As a result,an entangled metallic wire material-polyurethane composite with high damping and stiffness was prepared by enforcing the vacuum infiltration method.On top of that,the mechanical properties(loss factor,energy consumption,and average stiffness)of the proposed composite materials were characterized by performing dynamic tests,and its fatigue characteristics were verified by the micro-interface bonding,as well as the macro-damage factor.The impact of the density,preloading spacing,loading amplitude,and exciting frequency on the mechanical properties of the composites were also thoroughly analyzed.The extracted results indicate that the mechanical properties of the composites were significantly enhanced than those of the pure materials due to the introduction of interface friction.Moreover,the average stiffness of the composites was about 10 times the respective value of the entangled metallic wire material.Interestingly,a rise in the loading period leads to some failure between the composite interfaces,which reduces the stiffness property but enhances the damping dissipation properties.Finally,a comprehensive dynamic mechanical model of the composites was established,while it was experimentally verified.The proposed composites possess higher damping features,i.e.,stiffness characteristics,and maintain better fatigue characteristics,which can broaden the application range of the composites.In addition,we provide a theoretical and experimental framework for the research and applications in the field of metal matrix composites. 展开更多
关键词 Entangled metallic wire material Composites materials Damping property STIFFNESS Fatigue characteristics
下载PDF
A Novel Uniplanar Multi-Electrode Capacitive Sensor for In-Situ Weathering Damage Detection of Nonmetallic Materials 被引量:1
16
作者 Ensheng Dong Yonggui Dong +2 位作者 Wener Lv Huibo Jia Jun Li 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期630-633,共4页
A uniplanar capacitive sensor with 5-electrodes on one plane substrate and a large reflector electrode,was designed to get the corresponding capacitance information for weathering damage detection of non-metallic mate... A uniplanar capacitive sensor with 5-electrodes on one plane substrate and a large reflector electrode,was designed to get the corresponding capacitance information for weathering damage detection of non-metallic materials exposed to a service environment.A 2-D finite-element method was employed to simulate the electric potential distribution and capacitance measurements for the sensor.2 marble slabs,one was healthy and the other was notched,were experimentally detected.Both the simulation and the preliminary experimental results show that the measured capacitances decrease after weathering damage occurs in nonmetallic material.The reflector can enlarge the sensitive depth.The weathering assessment of nonmetallic materials can be done by processing the measured capacitances.The proposed approach can effectively detect the weathering damage of nonmetallic material and can be practically used for in-situ weathering damage evaluation. 展开更多
关键词 capacitive sensor weathering damage detection reflector electrode non-metallic materials
下载PDF
Novel Ring Compression Test Method to Determine the Stress-Strain Relations and Mechanical Properties of Metallic Materials
17
作者 Guangzhao Han Lixun Cai +4 位作者 Chen Bao Bo Liang Yang Lyu Maobo Huang Xiaokun Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第6期114-125,共12页
Although there are methods for testing the stress-strain relation and strength,which are the most fundamental and important properties of metallic materials,their application to small-volume materials and tube compone... Although there are methods for testing the stress-strain relation and strength,which are the most fundamental and important properties of metallic materials,their application to small-volume materials and tube components is lim-ited.In this study,based on energy density equivalence,a new dimensionless elastoplastic load-displacement model for compressed metal rings with isotropy and constitutive power law is proposed to describe the relations among the geometric dimensions,Hollomon law parameters,load,and displacement.Furthermore,a novel test method was developed to determine the elastic modulus,stress-strain relation,yield and tensile strength via ring compression test.The universality and accuracy of the method were verified within a wide range of imaginary materials using finite element analysis(FEA),and the results show that the stress-strain curves obtained by this method are consistent with those inputted in the FEA program.Additionally,a series of ring compression tests were performed for seven metallic materials.It was found that the stress-strain curves and mechanical properties predicted by the method agreed with the uniaxial tensile results.With its low material consumption,the ring compression test has the potential to be as an alternative to traditional tensile test when direct tension method is limited. 展开更多
关键词 Ring compression Energy density equivalence Stress-strain relation STRENGTH metallic material
下载PDF
Quasi-static and low-velocity impact mechanical behaviors of entangled porous metallic wire material under different temperatures
18
作者 Yi-wan Wu Hu Cheng +3 位作者 Shang-zhou Li Yu Tang Hong-bai Bai Chun-hong Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期143-152,共10页
To improve the defense capability of military equipment under extreme conditions,impact-resistant and high-energy-consuming materials have to be developed.The damping characteristic of entangled porous metallic wire m... To improve the defense capability of military equipment under extreme conditions,impact-resistant and high-energy-consuming materials have to be developed.The damping characteristic of entangled porous metallic wire materials(EPMWM)for vibration isolation was previously investigated.In this paper,a study focusing on the impact-resistance of EPMWM with the consideration of ambient temperature is presented.The quasi-static and low-velocity impact mechanical behavior of EPMWM under different temperatures(25℃-300℃)are systematically studied.The results of the static compression test show that the damping energy dissipation of EPMWM increases with temperature while the nonlinear damping characteristics are gradually enhanced.During the impact experiments,the impact energy loss rate of EPMWM was between 65%and 85%,while the temperatures increased from 25℃to 300℃.Moreover,under the same drop impact conditions,the overall deformation of EPMWM decreases in the temperature range of 100℃-200℃.On the other hand,the impact stiffness,energy dissipation,and impact loss factor of EPMWM significantly increase with temperature.This can be attributed to an increase in temperature,which changes the thermal expansion coefficient and contact state of the internal wire helixes.Consequently,the energy dissipation mode(dry friction,air damping,and plastic deformation)of EPMWM is also altered.Therefore,the EPMWM may act as a potential candidate material for superior energy absorption applications. 展开更多
关键词 Entangled porous metallic wire material Low-velocity impact High temperature Energy dissipation characteristics Mechanical behavior
下载PDF
The Analysis of Stiffness for Rubbery Metallic Material Based on Mesoscopic Features
19
作者 Hong Zuo Hongbai Bai Yuhong Feng 《Materials Sciences and Applications》 2011年第6期654-660,共7页
In this article, deformation and mechanical response of a rubbery metallic material were investigated. First, the mesoscopic structural properties of the material and its evolution during part producing were analyzed ... In this article, deformation and mechanical response of a rubbery metallic material were investigated. First, the mesoscopic structural properties of the material and its evolution during part producing were analyzed and described in detail. Then the inherence relationship between the macroscopic mechanical properties and mesoscopic structural characteristics were studied, in which the related mesoscopic structural characteristics were limited in the basic unit (mm) scale such as the radius of metal wire and unit coil, etc. Furthermore, according to the mesoscopic properties of the material, a curved beam unit based on the mesoscopic scale and shape factor was introduced to bridge the mechanical response and the mesoscopic parameters such as the beam orientation and spatial distribution. In the end, a mesoscopic stiffness model was proposed, from which the macroscopic mechanical properties of material could be deduced from the mesoscopic characteristic size, shape and the mechanical properties of base metallic material. 展开更多
关键词 Rubbery metallic material STIFFNESS Model MESOSCOPIC CHARACTERISTIC
下载PDF
Numerical and experimental evaluation for density-related thermal insulation capability of entangled porous metallic wire material
20
作者 Tao Zhou Rong-zheng Fang +3 位作者 Di Jia Pei Yang Zhi-ying Ren Hong-bai Bai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期177-188,共12页
Entangled porous metallic wire material(EPMWM)has the potential as a thermal insulation material in defence and engineering.In order to optimize its thermophysical properties at the design stage,it is of great signifi... Entangled porous metallic wire material(EPMWM)has the potential as a thermal insulation material in defence and engineering.In order to optimize its thermophysical properties at the design stage,it is of great significance to reveal the thermal response mechanism of EPMWM based on its complex structural effects.In the present work,virtual manufacturing technology(VMT)was developed to restore the physics-based 3D model of EPMWM.On this basis,the transient thermal analysis is carried out to explore the contact-relevant thermal behavior of EPMWM,and then the spiral unit containing unique structural information are further extracted and counted.In particular,the thermal resistance network is numerically constructed based on the spiral unit through the thermoelectric analogy method to accurately predict the effective thermal conductivity(ETC)of EPMWM.Finally,the thermal diffusivity and specific heat of the samples were obtained by the laser thermal analyzer to calculate the ETC and thermal insulation factor of interest.The results show that the ETC of EPMWM increases with increasing temperature or reducing density under the experimental conditions.The numerical prediction is consistent with the experimental result and the average error is less than 4%. 展开更多
关键词 Entangled porous metallic wire material (EPMWM) Virtual manufacturing technology(VMT) Thermal resistance network Effective thermal conductivity(ETC) Thermal insulation factor
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部