The component synthesis active vibration suppression method (CSVS) can be applied to suppress the vibration of flexible systems. By this method, several same or similar time-varying components are arranged according...The component synthesis active vibration suppression method (CSVS) can be applied to suppress the vibration of flexible systems. By this method, several same or similar time-varying components are arranged according to certain rules along the time axis. The synthesized command can suppress the arbitrary unwanted vibration harmonic while achieving the desired rigid body motion. The number of the components increases rapidly when the number of harmonic vibration is growing. In this article, the CSVS based on zero-placement technique is used to construct the synthesized command to suppress the multi-harmonics simultaneously in the discrete domain. The nature of zero-placement method is to put enough zeros to cancel system poles at necessary points. The designed synthesized command has equal time intervals between each component and which is much easier to be implemented. Using this method, the number of components increases linearly with the increasing of the number of being suppressed harmonics. For the spacecraft with flexible appendages, CSVS based on zero-placement is used to design the time optimal large angle maneuver control strategy. Simulations have verified the validity and superiority of the proposed approach.展开更多
Lithium secondary batteries(LSBs) with high energy densities need to be further developed for future applications in portable electronic devices, electric vehicles, hybrid electric vehicles and smart grids. Lithium ...Lithium secondary batteries(LSBs) with high energy densities need to be further developed for future applications in portable electronic devices, electric vehicles, hybrid electric vehicles and smart grids. Lithium metal is the most promising electrode for next-generation rechargeable batteries. However, the formation of lithium dendrite on the anode surface leads to serious safety concerns and low coulombic efficiency.Recently, researchers have made great efforts and significant progresses to solve these problems. Here we review the growth mechanism and suppression method of lithium dendrite for LSBs’ anode protection. We also establish the relationship between the growth mechanism and suppression method. The research direction for building better LSBs is given by comparing the advantages and disadvantages of these methods based on the growth mechanism.展开更多
Principles of polynomial fitting zero offset profile are introduced, and a new polynomial fitting method, tbe time-amplitude dual fitting method, is developed. The method can be used to purify seismic waves and suppre...Principles of polynomial fitting zero offset profile are introduced, and a new polynomial fitting method, tbe time-amplitude dual fitting method, is developed. The method can be used to purify seismic waves and suppress multiples. The effect of suppressing multiples is compared with other multiple suppression methods.展开更多
The vibration suppression of the finite plate with square steel beams is studied using traveling wave method. The finite plate with square beams is modeled as the coupling systems between the plate flexural motion and...The vibration suppression of the finite plate with square steel beams is studied using traveling wave method. The finite plate with square beams is modeled as the coupling systems between the plate flexural motion and the flexural and torsional motions for the square beams. The vibration response at any position of the coupling structure can be obtained by wave method. Numerical results show that comparing to finite element method (FEM), not only the low frequency but also the medium-high frequency vibration response of the finite plate with square beam can be effectively calculated by wave method. The suppression effect can be increased as the square beam is located at one-third of the length of plate or increasing the height of the beam. The study provides reference for arranged square beams applying to vibration suppression of ship and train structures.展开更多
In order to reduce the computational complexity of searching in massive information in detecting of warhead targets, background removal is usually the first step of target detection algorithm in sequential frame image...In order to reduce the computational complexity of searching in massive information in detecting of warhead targets, background removal is usually the first step of target detection algorithm in sequential frame images. In this paper, an adaptive multi-exposure time preserving star edge small area filtering background removal algorithm is proposed, which can suppress the back-ground and preserve the target and star edges. This algorithm not only ensures the accuracy of centroid and orbit determination, but also reduces false alarm and improves tracking accuracy.展开更多
To realize low harmonic distortion of the vibration waveform output from electromagnetic vibrators,we propose a vibration harmonic suppression technology based on an improved sensorless feedback control method.Without...To realize low harmonic distortion of the vibration waveform output from electromagnetic vibrators,we propose a vibration harmonic suppression technology based on an improved sensorless feedback control method.Without changing the original driving circuit,the alternating current(AC)equivalent resistance of the driving coil is used to obtain high-precision vibration velocity information,and then a simple and reliable velocity feedback control system is established.Through the study of the effect of different values of key parameters on the system,we have achieved an effective expansion of the velocity characteristic frequency band of low-frequency vibration,resulting in an enhanced harmonic suppression capability of velocity feedback control.We present extensive experiments to prove the effectiveness of the proposed method and make comparisons with conventional control methods.In the frequency range of 0.01-1.00 Hz,without using any sensors,the method proposed in this study can reduce the harmonic distortion of the vibration waveform by about 40%compared to open-loop control and by about 20%compared to a conventional sensorless feedback control method.展开更多
Sloshing is a common phenomenon in nature and industry, and it is important in many fields, such as marine engineering and aerospace engineering. To reduce the sloshing load on the side walls, the topology optimizatio...Sloshing is a common phenomenon in nature and industry, and it is important in many fields, such as marine engineering and aerospace engineering. To reduce the sloshing load on the side walls, the topology optimization and optimal control methods are used to design the shape of the board, which is fixed in the middle of the tank. The results show that the new board shape, which is designed via topology optimization, can significantly reduce the sloshing load on the side wall.展开更多
When a valve is suddenly closed in fluid transport pipelines,a pressure surge or shock is created along the pipeline due to the momentum change.This phenomenon,called hydraulic shock,can cause major damage to the pipe...When a valve is suddenly closed in fluid transport pipelines,a pressure surge or shock is created along the pipeline due to the momentum change.This phenomenon,called hydraulic shock,can cause major damage to the pipelines.In this paper,we introduce a hyperbolic partial differential equation(PDE)system to describe the fluid flow in the pipeline and propose an optimal boundary control problem for pressure suppression during the valve closure.The boundary control in this system is related to the valve actuation located at the pipeline terminus through a valve closing model.To solve this optimal boundary control problem,we use the method of lines and orthogonal collocation to obtain a spatial-temporal discretization model based on the original pipeline transmission PDE system.Then,the optimal boundary control problem is reduced to a nonlinear programming(NLP)problem that can be solved using nonlinear optimization techniques such as sequential quadratic programming(SQP).Finally,we conclude the paper with simulation results demonstrating that the full parameterization(FP)method eliminates pressure shock effectively and costs less computation time compared with the control vector parameterization(CVP)method.展开更多
Using staggered-grid finite difference method to solve seismic wave equation,large spatial grid and high dominant frequency of source cause numerical dispersion,staggeredgrid finite difference method,which can reduce ...Using staggered-grid finite difference method to solve seismic wave equation,large spatial grid and high dominant frequency of source cause numerical dispersion,staggeredgrid finite difference method,which can reduce the step spatial size and increase the order of difference,will multiply the calculation amount and reduce the efficiency of solving wave equation.The optimal nearly analytic discrete(ONAD)method can accurately solve the wave equation by using the combination of displacement and gradient of spatial nodes to approach the spatial partial derivative under rough grid and high-frequency condition.In this study,the ONAD method is introduced into the field of reverse-time migration(RTM)for performing forward-and reverse-time extrapolation of a two-dimensional acoustic equation,and the RTM based on ONAD method is realized via normalized cross-correlation imaging condition,effectively suppressed the numerical dispersion and improved the imaging accuracy.Using ONAD method to image the groove model and SEG/EAGE salt dome model by RTM,and comparing with the migration sections obtained by staggered-grid finite difference method with the same time order 2 nd and space order 4 th,results show that the RTM based on ONAD method can effectively suppress numerical dispersion caused by the high frequency components in source and shot records,and archive accurate imaging of complex geological structures especially the fine structure,and the migration sections of the measured data show that ONAD method has practical application value.展开更多
文摘The component synthesis active vibration suppression method (CSVS) can be applied to suppress the vibration of flexible systems. By this method, several same or similar time-varying components are arranged according to certain rules along the time axis. The synthesized command can suppress the arbitrary unwanted vibration harmonic while achieving the desired rigid body motion. The number of the components increases rapidly when the number of harmonic vibration is growing. In this article, the CSVS based on zero-placement technique is used to construct the synthesized command to suppress the multi-harmonics simultaneously in the discrete domain. The nature of zero-placement method is to put enough zeros to cancel system poles at necessary points. The designed synthesized command has equal time intervals between each component and which is much easier to be implemented. Using this method, the number of components increases linearly with the increasing of the number of being suppressed harmonics. For the spacecraft with flexible appendages, CSVS based on zero-placement is used to design the time optimal large angle maneuver control strategy. Simulations have verified the validity and superiority of the proposed approach.
基金supported by the State Grid Technology Project(No. DG71-17-010)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (CIT&TCD 201504019)
文摘Lithium secondary batteries(LSBs) with high energy densities need to be further developed for future applications in portable electronic devices, electric vehicles, hybrid electric vehicles and smart grids. Lithium metal is the most promising electrode for next-generation rechargeable batteries. However, the formation of lithium dendrite on the anode surface leads to serious safety concerns and low coulombic efficiency.Recently, researchers have made great efforts and significant progresses to solve these problems. Here we review the growth mechanism and suppression method of lithium dendrite for LSBs’ anode protection. We also establish the relationship between the growth mechanism and suppression method. The research direction for building better LSBs is given by comparing the advantages and disadvantages of these methods based on the growth mechanism.
文摘Principles of polynomial fitting zero offset profile are introduced, and a new polynomial fitting method, tbe time-amplitude dual fitting method, is developed. The method can be used to purify seismic waves and suppress multiples. The effect of suppressing multiples is compared with other multiple suppression methods.
基金National Natural Science Foundation of China ( No. 10972065) Natural Science Foundation of Heilongjiang Province of China( No. ZD200905)
文摘The vibration suppression of the finite plate with square steel beams is studied using traveling wave method. The finite plate with square beams is modeled as the coupling systems between the plate flexural motion and the flexural and torsional motions for the square beams. The vibration response at any position of the coupling structure can be obtained by wave method. Numerical results show that comparing to finite element method (FEM), not only the low frequency but also the medium-high frequency vibration response of the finite plate with square beam can be effectively calculated by wave method. The suppression effect can be increased as the square beam is located at one-third of the length of plate or increasing the height of the beam. The study provides reference for arranged square beams applying to vibration suppression of ship and train structures.
文摘In order to reduce the computational complexity of searching in massive information in detecting of warhead targets, background removal is usually the first step of target detection algorithm in sequential frame images. In this paper, an adaptive multi-exposure time preserving star edge small area filtering background removal algorithm is proposed, which can suppress the back-ground and preserve the target and star edges. This algorithm not only ensures the accuracy of centroid and orbit determination, but also reduces false alarm and improves tracking accuracy.
基金Project supported by the Natural Science Foundation of Heilongjiang Province,China(No.LH2021E060)the National Natural Science Foundation of China(No.52075133)the CGN-HIT Advanced Nuclear and New Energy Research Institute,China(No.CGN-HIT202215)。
文摘To realize low harmonic distortion of the vibration waveform output from electromagnetic vibrators,we propose a vibration harmonic suppression technology based on an improved sensorless feedback control method.Without changing the original driving circuit,the alternating current(AC)equivalent resistance of the driving coil is used to obtain high-precision vibration velocity information,and then a simple and reliable velocity feedback control system is established.Through the study of the effect of different values of key parameters on the system,we have achieved an effective expansion of the velocity characteristic frequency band of low-frequency vibration,resulting in an enhanced harmonic suppression capability of velocity feedback control.We present extensive experiments to prove the effectiveness of the proposed method and make comparisons with conventional control methods.In the frequency range of 0.01-1.00 Hz,without using any sensors,the method proposed in this study can reduce the harmonic distortion of the vibration waveform by about 40%compared to open-loop control and by about 20%compared to a conventional sensorless feedback control method.
基金Project supported by the National Natural Science Foundation of China(Nos.11572350,11372068,and 11602051)the National Key Basic Research and Development Program of China(No.2014CB744104)
文摘Sloshing is a common phenomenon in nature and industry, and it is important in many fields, such as marine engineering and aerospace engineering. To reduce the sloshing load on the side walls, the topology optimization and optimal control methods are used to design the shape of the board, which is fixed in the middle of the tank. The results show that the new board shape, which is designed via topology optimization, can significantly reduce the sloshing load on the side wall.
基金partially supported by the National Natural Science Foundation of China(61703217,61703114)the K.C.Wong Magna Fund in Ningbo University,the Open Project of Key Laboratory of Industrial Internet of Things and Networked Control(2018FF02)the Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China(ICT1900313)
文摘When a valve is suddenly closed in fluid transport pipelines,a pressure surge or shock is created along the pipeline due to the momentum change.This phenomenon,called hydraulic shock,can cause major damage to the pipelines.In this paper,we introduce a hyperbolic partial differential equation(PDE)system to describe the fluid flow in the pipeline and propose an optimal boundary control problem for pressure suppression during the valve closure.The boundary control in this system is related to the valve actuation located at the pipeline terminus through a valve closing model.To solve this optimal boundary control problem,we use the method of lines and orthogonal collocation to obtain a spatial-temporal discretization model based on the original pipeline transmission PDE system.Then,the optimal boundary control problem is reduced to a nonlinear programming(NLP)problem that can be solved using nonlinear optimization techniques such as sequential quadratic programming(SQP).Finally,we conclude the paper with simulation results demonstrating that the full parameterization(FP)method eliminates pressure shock effectively and costs less computation time compared with the control vector parameterization(CVP)method.
基金financially supported by the National Key R&D Program of China(No.2018YFC1405900)the National Natural Science Foundation of China(No.41674118)+1 种基金the Fundamental Research Funds for the Central Universities(No.201822011)the National Science and Technology Major Project(No.2016ZX05027-002)。
文摘Using staggered-grid finite difference method to solve seismic wave equation,large spatial grid and high dominant frequency of source cause numerical dispersion,staggeredgrid finite difference method,which can reduce the step spatial size and increase the order of difference,will multiply the calculation amount and reduce the efficiency of solving wave equation.The optimal nearly analytic discrete(ONAD)method can accurately solve the wave equation by using the combination of displacement and gradient of spatial nodes to approach the spatial partial derivative under rough grid and high-frequency condition.In this study,the ONAD method is introduced into the field of reverse-time migration(RTM)for performing forward-and reverse-time extrapolation of a two-dimensional acoustic equation,and the RTM based on ONAD method is realized via normalized cross-correlation imaging condition,effectively suppressed the numerical dispersion and improved the imaging accuracy.Using ONAD method to image the groove model and SEG/EAGE salt dome model by RTM,and comparing with the migration sections obtained by staggered-grid finite difference method with the same time order 2 nd and space order 4 th,results show that the RTM based on ONAD method can effectively suppress numerical dispersion caused by the high frequency components in source and shot records,and archive accurate imaging of complex geological structures especially the fine structure,and the migration sections of the measured data show that ONAD method has practical application value.