Developing high-performing non-noble transition metal catalysts for H_(2) evolution from chemical hydrogen storage materials is of great significance for the hydrogen economy system, yet challenging. Herein,we present...Developing high-performing non-noble transition metal catalysts for H_(2) evolution from chemical hydrogen storage materials is of great significance for the hydrogen economy system, yet challenging. Herein,we present for the first time that anomalous metastable hexagonal close-packed Ni nanoparticles induced by heteroatom N doping encapsulated in carbon(N-hcp-Ni/C) can exhibit admirable catalytic performance for ammonia borane(AB) dehydrogenation, prominently outperforming conventional fcc Ni counterpart with similar morphology and favorably presenting the state-of-the-art level.Comprehensive experimental and theoretical studies unravel that unusual hcp phase engineering of Ni together with N doping could induce charge redistribution and modulate electronic structure, thereby facilitating H_(2)O adsorption and expediting H_(2)O dissociation(rate-determining step). As a result, AB dehydrogenation can be substantially boosted with the assistance of N-hcp-Ni/C. Our proposed strategy highlights that unconventional crystal phase engineering coupled with non-metal heteroatom doping is a promising avenue to construct advanced transition metal catalysts for future renewable energy technologies.展开更多
Photocatalytic (PC) / Photoelectrochemical (PEC) water splitting under solar light irradiation is considered as a prospective technique to support the sustainable and renewable H_(2) economy and to reach the ultime go...Photocatalytic (PC) / Photoelectrochemical (PEC) water splitting under solar light irradiation is considered as a prospective technique to support the sustainable and renewable H_(2) economy and to reach the ultime goal of carbon neutral. TiO_(2) based photocatalysts with high chemical stability and excellent photocatalytic properties have great potential for solar-to-H_(2) conversion. To conquer the challenges of the large band-gap and rapid recombination of photo generated electron-holepairs in TiO_(2), non-metal doping turns out to be economic, facile, and effective on boosting the visible light activity. The localized defect states such as oxygen vacancy and Ti^(3+) generated by non-metal doping are located in the band-gap of TiO_(2), which result in the reduction of band-gap, thus a red-shift of the absorption edge. The hetero doping atoms such as B^(3+), I^(7+), S^(4+)/S^(6+), P^(5+) can also act as electron donors or trap sites which facilitate the charge carrier separation and suppress the recombination of electron-hole pairs. In this comprehensive review, we present the most recent advances on non-metal doped TiO_(2) photocatalysts in terms of fundamental aspects, origin of visible light activity and the PC / PEC behaviours for water splitting. In particular, the characteristics of different non-metal elements (N, C, B, S, P, Halogens) as dopants are discussed in details focusing on the synthesis approaches, characterization as well as the efficiency of PC and PEC water splitting. The present review aims at guiding the readers who want quick access to helpful information about how to efficiently improve the performance of photocatalysts by simple doping strategies and could stimulate new intuitive into the new doping strategies.展开更多
With the increasing demand to reduce emissions and save energy,hydraulic reservoirs require new architecture to optimize their weight,space,and volume.Conventional open reservoirs are large,heavy,and easily polluted,a...With the increasing demand to reduce emissions and save energy,hydraulic reservoirs require new architecture to optimize their weight,space,and volume.Conventional open reservoirs are large,heavy,and easily polluted,and threaten the operation of hydraulic systems.A closed reservoir provides the advantages of small volume and light weight,compared to open reservoirs.In this study,a non-metallic pressure reservoir with variable volume is designed and manufactured for closed-circuit hydraulic systems.The reservoir housing is made of rubber,and the Mooney-Rivlin model is chosen based on the rubber strain properties.The FEA simulation for the reservoir is performed using ANSYS Workbench to obtain the structural stiffness.The major contribution is the establishment of mathematical models for this reservoir,including the volume equation changing with height,flow equation,and force balance equation,to explore the output characteristics of this reservoir.Based on these results,simulation models were built to analyze the output characteristics of the reservoir.Moreover,the test rig of a conventional hydraulic system was transformed into a closed-circuit asymmetric hydraulic system for the reservoir,and preliminary verification experiments were conducted on it.The results demonstrate that the designed reservoir can absorb and discharge oil and supercharge pump inlet to benefit system operation.The changes in the volume and pressure with displacements under different volume ratios and frequencies were obtained,which verified the accuracy of the mathematical models.Owing to its lightweight design and small volume,the reservoir can replace conventional open reservoirs,and this lays a foundation for future theoretical research on this reservoir.展开更多
In recent years, some important research indicated that the visible-light activity of photocatalysts could be enhanced via incorporating p-block non-metal elements into the lattice. In this paper, we investigated the ...In recent years, some important research indicated that the visible-light activity of photocatalysts could be enhanced via incorporating p-block non-metal elements into the lattice. In this paper, we investigated the electronic structures of pure and different non-metal (C, N, S, F, Cl, and Br) doped α-Bi2O3 using first-principles calculations based on the density functional theory. The band structures, the electronic densities of states, and the effective masses of electrons and holes for doped α-Bi2O3 were obtained and analyzed. The N and S dopings narrowed the band gap and reduced the effective mass of the carriers, which are beneficial for the photocatalytic performance. The theoretical predication was further confirmed by the experimental results.展开更多
One of the most pressing concerns for the consumer market is the detection of adulteration in meat products due to their preciousness.The rapid and accurate identification mechanism for lard adulteration in meat produ...One of the most pressing concerns for the consumer market is the detection of adulteration in meat products due to their preciousness.The rapid and accurate identification mechanism for lard adulteration in meat products is highly necessary,for developing a mechanism trusted by consumers and that can be used to make a definitive diagnosis.Fourier Transform Infrared Spectroscopy(FTIR)is used in this work to identify lard adulteration in cow,lamb,and chicken samples.A simplified extraction method was implied to obtain the lipids from pure and adulterated meat.Adulterated samples were obtained by mixing lard with chicken,lamb,and beef with different concentrations(10%–50%v/v).Principal component analysis(PCA)and partial least square(PLS)were used to develop a calibration model at 800–3500 cm^(−1).Three-dimension PCA was successfully used by dividing the spectrum in three regions to classify lard meat adulteration in chicken,lamb,and beef samples.The corresponding FTIR peaks for the lard have been observed at 1159.6,1743.4,2853.1,and 2922.5 cm−1,which differentiate chicken,lamb,and beef samples.The wavenumbers offer the highest determination coefficient R2 value of 0.846 and lowest root mean square error of calibration(RMSEC)and root mean square error prediction(RMSEP)with an accuracy of 84.6%.Even the tiniest fat adulteration up to 10%can be reliably discovered using this methodology.展开更多
This study evaluated the lard enriched with n-3 polyunsaturated fatty acids(PUFAs)on serum lipid composition in rats.The experiment contained two parts:(A)20 crossed pigs(Landrace×Min,60±2 kg)were assigned r...This study evaluated the lard enriched with n-3 polyunsaturated fatty acids(PUFAs)on serum lipid composition in rats.The experiment contained two parts:(A)20 crossed pigs(Landrace×Min,60±2 kg)were assigned randomly into two dietary groups:a control group and a group fed the diet added 10%linseed based on the control diet.This part lasted 56 days and the results showed that the levels of the total n-3 PUFA in lard were improved approximately 2-fold(p<0.05),when pigs were fed 10% flaxseed compared to a control diet of corn.The lard taken from pigs was melted and preserved for rat experiment;(B)45 Sprague-Dawley rats at day 36 were randomly fed one of three diets for 42 days:the diet without added fat,the diet contained 10% common lard from pigs fed a conventional corn ration and the diet contained 10% lard enriched with n-3 PUFA from pigs fed 10% flaxseed.Rats fed lard significantly increased(p<0.05)serum cholesterol levels compared with rats maintained on a diet without lard.However,rats fed the lard enriched with n-3 PUFA significantly decreased the level of low-density lipoprotein cholesterol in serum(p<0.05)and better hepatic antioxidant defense capacities,when compared with rats fed common lard(p<0.05).The results showed that pigs fed diet with n-3 PUFA produced lard enriched with n-3 PUFA and thus provided positive health benefits to the consumers.展开更多
Continuous biodiesel production from a waste pig-roasting lard,methanol and KOH was carried out in a reciprocating plate reactor(RPR)using a factorial design containing three process factors,namely methanol/lard molar...Continuous biodiesel production from a waste pig-roasting lard,methanol and KOH was carried out in a reciprocating plate reactor(RPR)using a factorial design containing three process factors,namely methanol/lard molar ratio,catalyst loading,and normalized height of the reactor.The main goals were to optimize the influential process factors with respect to biodiesel purity using the response surface methodology and to model the kinetics of the transesterification reaction in order to describe the change of triacylglycerols(TAG)and fatty acid methyl esters(FAME)concentrations along the RPR height.The first-order rate law was proved for both the reaction and the mass transfer.The model of the changing reaction mechanism and mass transfer of TAG was also applicable.Both kinetic models agreed with the experimental concentrations of TAG and FAME determined along the RPR height.展开更多
Discrimination of fatty acids (FAs) of lard in used cooking oil is important in halal determination. The aim of this study was to find the information related to the changes FAs of lard when frying in cooking oil. Q...Discrimination of fatty acids (FAs) of lard in used cooking oil is important in halal determination. The aim of this study was to find the information related to the changes FAs of lard when frying in cooking oil. Quantitative analysis of FAs composition extracted from a series of experiments which involving frying cooking oil spiked with lard at three different parameters; concentration of spiked lard, heating temperatures and period of frying. The samples were analyzed using Gas Chromatography (GC) and Principal Components Analysis (PCA) technique. Multivariate data from chromatograms of FAs were standardized and computed using Unscrambler X10 into covariance matrix and eigenvectors correspond to Principal Components (PCs). Results have shown that the first and second PCs contribute to the FAs mapping which can be visualized by scores and loading plots to discriminate FAs of lard in used cooking oil展开更多
Fish oil (mainly omega 3 polyunsaturated fatty acids), differently from lard (mainly saturated fatty acids) has been suggested to have anti-inflammatory effects associated with amelioration of insulin sensibility. An ...Fish oil (mainly omega 3 polyunsaturated fatty acids), differently from lard (mainly saturated fatty acids) has been suggested to have anti-inflammatory effects associated with amelioration of insulin sensibility. An important role in skeletal muscle insulin resistance development has been recently attributed to mitochondrial dynamic behavior. Mitochondria are dynamic organelles that frequently undergo fission/fusion processes and a shift toward fission process has been associated with skeletal muscle mitochondrial dysfunction and insulin resistance development. The present work aimed to evaluate if the replacement of lard with fish oil in high-fat diet positively affect skeletal muscle mitochondrial dynamic behavior in association with the improvement of insulin-resistance. Body weight gain, systemic insulin-resistance (glucose/insulin ratio), serum TNFα levels and skeletal muscle lipid content were assessed in rats fed a high-lard or high-fish-oil diet for 6 weeks. In skeletal muscle sections, immunohistochemical analysis were performed to detect the presence of insulin receptor substrate 1 (IRS1) and tyrosine phosphorylated IRS1 (key factor in insulin signalling pathway) as well as to detect the main proteins involved in mitochondrial fusion (MFN2 and OPA1) and fission (DRP1 and Fis1) processes. Skeletal muscle mitochondrial ultrastructural features were assessed by electron microscopy. High-fish oil feeding induced lower body weight gain, systemic inflammation and insulin-resistance development as well as skeletal muscle lipid accumulation compared to high-lard feeding. Skeletal muscle sections from high-fish oil fed rats exhibited a greater number of immunoreactive fibers for MFN2 and OPA1 proteins as well as weaker immunostaining for DRP1 and Fis1 compared to sections from high-lard fed rats. Electron microscopy observations suggested a prominent presence of fission events in L rats and fusion events in F rats. The positive effect of the replacement of lard with fish oil in high-fat diet on systemic and skeletal muscle insulin sensibility was associated to changes in mitochondrial dynamic behavior.展开更多
Lard,a fat rich in saturated fatty acids(SFAs),is regarded as a risk factor for metabolic diseases.In the present study,effect of different lard blended with sunflower oil diets on lipid accumulation in adipose tissue...Lard,a fat rich in saturated fatty acids(SFAs),is regarded as a risk factor for metabolic diseases.In the present study,effect of different lard blended with sunflower oil diets on lipid accumulation in adipose tissue,liver,and serum by mouse model was researched.Body weight,body fat percentage,cross-sectional area of adipocytes,liver triglycerides(TGs),and oil red stained area in mice liver of lard blend sunflower oil(L-SFO)group were significantly lower than those of sunflower oil(SFO)group,whereas no significant differences were observed between mice of lard and L-SFO groups.Serum TG and free fatty acid levels were significantly lower in L-SFO group than in other two groups.Furthermore,data showed that sunflower oil decreased contents of hormonesensitive lipase and carnitine palmitoyl transferase 1(CPT-1)and increased fatty acid synthase activity in liver tissue.A mixture of lard and sunflower oil rather than only sunflower oil or lard might promote body fat loss and reduce lipid accumulation in adipose tissue,serum,and liver by promoting hydrolysis of TG,increasingβ-oxidation of fatty acids.These data suggested that mixing lard and vegetable oil(e.g.sunflower oil)for cooking,or alternate using lard and vegetable oil could be beneficial for reducing body fat.展开更多
A simulate daily oriental dietary pattern(a blend of lard and soybean oil)was performed in this research to investigate influence on liver and kidney function.Sixty mice were randomly divided into 6 groups with diets ...A simulate daily oriental dietary pattern(a blend of lard and soybean oil)was performed in this research to investigate influence on liver and kidney function.Sixty mice were randomly divided into 6 groups with diets of different fat added oils respectively for 12 weeks.Malondialdehyde and uric acid contents in mice fed with blended oil were significantly lower than in those fed only with soybean oil and lard due to the improved activities of antioxidant enzymes.Daily use of a blend of lard with soybean oil significantly increased antioxidant capacity,reduced lipid peroxidation of liver and serum uric acid production,thus protected liver and renal function.It also suggests that the oriental dietary pattern might reduce the risk of gout.展开更多
Metal derivative/graphitic carbon nitride(g-C_(3)N_(4))association is found promising in providing sustainable hydrogen production by photocatalytic water splitting process.Number of works reported on the synthesis an...Metal derivative/graphitic carbon nitride(g-C_(3)N_(4))association is found promising in providing sustainable hydrogen production by photocatalytic water splitting process.Number of works reported on the synthesis and application of various metal based g-C_(3)N_(4)composites are increasing day by day.Mechanism of charge separation varies according to the metal candidate that gets couple with g-C_(3)N_(4).The present article thus explores the interesting chemistry behind various metal based heterojunction and demonstrates the charge separation route.A thorough investigation has been done on the current research trend in the area.As many metal free g-C_(3)N_(4)composites are reported nowadays as an alternative to metal derivatives,here compares metallic and metal free derivatives of g-C_(3)N_(4)based on four critical requirements of an industrial catalyst,ie,activity,stability,cost and toxicity.Challenges and future direction in the area are also discussed with significance.The systematic discussion and schematic illustration of charge transfer process in different heterojunctions with reference to the reported systems,given in the article can definitely contribute to the design and development of more efficient g-C_(3)N_(4)based heterojunctions in future for hydrogen production application.展开更多
基金supported by the National Natural Science Foundation of China (52002412 and 22072186)the Natural Science Foundation of Guangdong Province (2021A1515010575)the Guangzhou Science and Technology Plan General Project (202102020862)。
文摘Developing high-performing non-noble transition metal catalysts for H_(2) evolution from chemical hydrogen storage materials is of great significance for the hydrogen economy system, yet challenging. Herein,we present for the first time that anomalous metastable hexagonal close-packed Ni nanoparticles induced by heteroatom N doping encapsulated in carbon(N-hcp-Ni/C) can exhibit admirable catalytic performance for ammonia borane(AB) dehydrogenation, prominently outperforming conventional fcc Ni counterpart with similar morphology and favorably presenting the state-of-the-art level.Comprehensive experimental and theoretical studies unravel that unusual hcp phase engineering of Ni together with N doping could induce charge redistribution and modulate electronic structure, thereby facilitating H_(2)O adsorption and expediting H_(2)O dissociation(rate-determining step). As a result, AB dehydrogenation can be substantially boosted with the assistance of N-hcp-Ni/C. Our proposed strategy highlights that unconventional crystal phase engineering coupled with non-metal heteroatom doping is a promising avenue to construct advanced transition metal catalysts for future renewable energy technologies.
基金supported by the National Natural Science Foundation of China(U1663225,21805280 and 21805220)the Youth Innovation Foundation of Xiamen City:3502Z20206085+4 种基金Program for Changjiang Scholars and Innovative Research Team in University(IRT_15R52)The Opening Project of PCOSS,Xiamen University,201907the program of introducing Talents of discipline to Universities-111 Project(Grant No.B20002)the project“Depollut Air”of Interreg V France-Wallonie-Vlaanderenthe financial support from the China Scholarship Council(CSC)。
文摘Photocatalytic (PC) / Photoelectrochemical (PEC) water splitting under solar light irradiation is considered as a prospective technique to support the sustainable and renewable H_(2) economy and to reach the ultime goal of carbon neutral. TiO_(2) based photocatalysts with high chemical stability and excellent photocatalytic properties have great potential for solar-to-H_(2) conversion. To conquer the challenges of the large band-gap and rapid recombination of photo generated electron-holepairs in TiO_(2), non-metal doping turns out to be economic, facile, and effective on boosting the visible light activity. The localized defect states such as oxygen vacancy and Ti^(3+) generated by non-metal doping are located in the band-gap of TiO_(2), which result in the reduction of band-gap, thus a red-shift of the absorption edge. The hetero doping atoms such as B^(3+), I^(7+), S^(4+)/S^(6+), P^(5+) can also act as electron donors or trap sites which facilitate the charge carrier separation and suppress the recombination of electron-hole pairs. In this comprehensive review, we present the most recent advances on non-metal doped TiO_(2) photocatalysts in terms of fundamental aspects, origin of visible light activity and the PC / PEC behaviours for water splitting. In particular, the characteristics of different non-metal elements (N, C, B, S, P, Halogens) as dopants are discussed in details focusing on the synthesis approaches, characterization as well as the efficiency of PC and PEC water splitting. The present review aims at guiding the readers who want quick access to helpful information about how to efficiently improve the performance of photocatalysts by simple doping strategies and could stimulate new intuitive into the new doping strategies.
基金Supported by the National Key Research and Development Program of China(Grant No.2018YFB2000700)National Natural Science Foundation of China(Grant No.51890811).
文摘With the increasing demand to reduce emissions and save energy,hydraulic reservoirs require new architecture to optimize their weight,space,and volume.Conventional open reservoirs are large,heavy,and easily polluted,and threaten the operation of hydraulic systems.A closed reservoir provides the advantages of small volume and light weight,compared to open reservoirs.In this study,a non-metallic pressure reservoir with variable volume is designed and manufactured for closed-circuit hydraulic systems.The reservoir housing is made of rubber,and the Mooney-Rivlin model is chosen based on the rubber strain properties.The FEA simulation for the reservoir is performed using ANSYS Workbench to obtain the structural stiffness.The major contribution is the establishment of mathematical models for this reservoir,including the volume equation changing with height,flow equation,and force balance equation,to explore the output characteristics of this reservoir.Based on these results,simulation models were built to analyze the output characteristics of the reservoir.Moreover,the test rig of a conventional hydraulic system was transformed into a closed-circuit asymmetric hydraulic system for the reservoir,and preliminary verification experiments were conducted on it.The results demonstrate that the designed reservoir can absorb and discharge oil and supercharge pump inlet to benefit system operation.The changes in the volume and pressure with displacements under different volume ratios and frequencies were obtained,which verified the accuracy of the mathematical models.Owing to its lightweight design and small volume,the reservoir can replace conventional open reservoirs,and this lays a foundation for future theoretical research on this reservoir.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51072012 and 51272015)
文摘In recent years, some important research indicated that the visible-light activity of photocatalysts could be enhanced via incorporating p-block non-metal elements into the lattice. In this paper, we investigated the electronic structures of pure and different non-metal (C, N, S, F, Cl, and Br) doped α-Bi2O3 using first-principles calculations based on the density functional theory. The band structures, the electronic densities of states, and the effective masses of electrons and holes for doped α-Bi2O3 were obtained and analyzed. The N and S dopings narrowed the band gap and reduced the effective mass of the carriers, which are beneficial for the photocatalytic performance. The theoretical predication was further confirmed by the experimental results.
文摘One of the most pressing concerns for the consumer market is the detection of adulteration in meat products due to their preciousness.The rapid and accurate identification mechanism for lard adulteration in meat products is highly necessary,for developing a mechanism trusted by consumers and that can be used to make a definitive diagnosis.Fourier Transform Infrared Spectroscopy(FTIR)is used in this work to identify lard adulteration in cow,lamb,and chicken samples.A simplified extraction method was implied to obtain the lipids from pure and adulterated meat.Adulterated samples were obtained by mixing lard with chicken,lamb,and beef with different concentrations(10%–50%v/v).Principal component analysis(PCA)and partial least square(PLS)were used to develop a calibration model at 800–3500 cm^(−1).Three-dimension PCA was successfully used by dividing the spectrum in three regions to classify lard meat adulteration in chicken,lamb,and beef samples.The corresponding FTIR peaks for the lard have been observed at 1159.6,1743.4,2853.1,and 2922.5 cm−1,which differentiate chicken,lamb,and beef samples.The wavenumbers offer the highest determination coefficient R2 value of 0.846 and lowest root mean square error of calibration(RMSEC)and root mean square error prediction(RMSEP)with an accuracy of 84.6%.Even the tiniest fat adulteration up to 10%can be reliably discovered using this methodology.
基金Supported by the National Key R&D Program of China(2018YFD0501202)
文摘This study evaluated the lard enriched with n-3 polyunsaturated fatty acids(PUFAs)on serum lipid composition in rats.The experiment contained two parts:(A)20 crossed pigs(Landrace×Min,60±2 kg)were assigned randomly into two dietary groups:a control group and a group fed the diet added 10%linseed based on the control diet.This part lasted 56 days and the results showed that the levels of the total n-3 PUFA in lard were improved approximately 2-fold(p<0.05),when pigs were fed 10% flaxseed compared to a control diet of corn.The lard taken from pigs was melted and preserved for rat experiment;(B)45 Sprague-Dawley rats at day 36 were randomly fed one of three diets for 42 days:the diet without added fat,the diet contained 10% common lard from pigs fed a conventional corn ration and the diet contained 10% lard enriched with n-3 PUFA from pigs fed 10% flaxseed.Rats fed lard significantly increased(p<0.05)serum cholesterol levels compared with rats maintained on a diet without lard.However,rats fed the lard enriched with n-3 PUFA significantly decreased the level of low-density lipoprotein cholesterol in serum(p<0.05)and better hepatic antioxidant defense capacities,when compared with rats fed common lard(p<0.05).The results showed that pigs fed diet with n-3 PUFA produced lard enriched with n-3 PUFA and thus provided positive health benefits to the consumers.
基金Supported by the Ministry of Education,Science and Technological Development of the Republic of Serbia(ProjectⅢ45001)the Project 0-14-18 of the SASA Branch in Nis,Serbia.
文摘Continuous biodiesel production from a waste pig-roasting lard,methanol and KOH was carried out in a reciprocating plate reactor(RPR)using a factorial design containing three process factors,namely methanol/lard molar ratio,catalyst loading,and normalized height of the reactor.The main goals were to optimize the influential process factors with respect to biodiesel purity using the response surface methodology and to model the kinetics of the transesterification reaction in order to describe the change of triacylglycerols(TAG)and fatty acid methyl esters(FAME)concentrations along the RPR height.The first-order rate law was proved for both the reaction and the mass transfer.The model of the changing reaction mechanism and mass transfer of TAG was also applicable.Both kinetic models agreed with the experimental concentrations of TAG and FAME determined along the RPR height.
文摘Discrimination of fatty acids (FAs) of lard in used cooking oil is important in halal determination. The aim of this study was to find the information related to the changes FAs of lard when frying in cooking oil. Quantitative analysis of FAs composition extracted from a series of experiments which involving frying cooking oil spiked with lard at three different parameters; concentration of spiked lard, heating temperatures and period of frying. The samples were analyzed using Gas Chromatography (GC) and Principal Components Analysis (PCA) technique. Multivariate data from chromatograms of FAs were standardized and computed using Unscrambler X10 into covariance matrix and eigenvectors correspond to Principal Components (PCs). Results have shown that the first and second PCs contribute to the FAs mapping which can be visualized by scores and loading plots to discriminate FAs of lard in used cooking oil
文摘Fish oil (mainly omega 3 polyunsaturated fatty acids), differently from lard (mainly saturated fatty acids) has been suggested to have anti-inflammatory effects associated with amelioration of insulin sensibility. An important role in skeletal muscle insulin resistance development has been recently attributed to mitochondrial dynamic behavior. Mitochondria are dynamic organelles that frequently undergo fission/fusion processes and a shift toward fission process has been associated with skeletal muscle mitochondrial dysfunction and insulin resistance development. The present work aimed to evaluate if the replacement of lard with fish oil in high-fat diet positively affect skeletal muscle mitochondrial dynamic behavior in association with the improvement of insulin-resistance. Body weight gain, systemic insulin-resistance (glucose/insulin ratio), serum TNFα levels and skeletal muscle lipid content were assessed in rats fed a high-lard or high-fish-oil diet for 6 weeks. In skeletal muscle sections, immunohistochemical analysis were performed to detect the presence of insulin receptor substrate 1 (IRS1) and tyrosine phosphorylated IRS1 (key factor in insulin signalling pathway) as well as to detect the main proteins involved in mitochondrial fusion (MFN2 and OPA1) and fission (DRP1 and Fis1) processes. Skeletal muscle mitochondrial ultrastructural features were assessed by electron microscopy. High-fish oil feeding induced lower body weight gain, systemic inflammation and insulin-resistance development as well as skeletal muscle lipid accumulation compared to high-lard feeding. Skeletal muscle sections from high-fish oil fed rats exhibited a greater number of immunoreactive fibers for MFN2 and OPA1 proteins as well as weaker immunostaining for DRP1 and Fis1 compared to sections from high-lard fed rats. Electron microscopy observations suggested a prominent presence of fission events in L rats and fusion events in F rats. The positive effect of the replacement of lard with fish oil in high-fat diet on systemic and skeletal muscle insulin sensibility was associated to changes in mitochondrial dynamic behavior.
基金This research was funded by the National Key Research and Development Program of China(2016YDF0501200).
文摘Lard,a fat rich in saturated fatty acids(SFAs),is regarded as a risk factor for metabolic diseases.In the present study,effect of different lard blended with sunflower oil diets on lipid accumulation in adipose tissue,liver,and serum by mouse model was researched.Body weight,body fat percentage,cross-sectional area of adipocytes,liver triglycerides(TGs),and oil red stained area in mice liver of lard blend sunflower oil(L-SFO)group were significantly lower than those of sunflower oil(SFO)group,whereas no significant differences were observed between mice of lard and L-SFO groups.Serum TG and free fatty acid levels were significantly lower in L-SFO group than in other two groups.Furthermore,data showed that sunflower oil decreased contents of hormonesensitive lipase and carnitine palmitoyl transferase 1(CPT-1)and increased fatty acid synthase activity in liver tissue.A mixture of lard and sunflower oil rather than only sunflower oil or lard might promote body fat loss and reduce lipid accumulation in adipose tissue,serum,and liver by promoting hydrolysis of TG,increasingβ-oxidation of fatty acids.These data suggested that mixing lard and vegetable oil(e.g.sunflower oil)for cooking,or alternate using lard and vegetable oil could be beneficial for reducing body fat.
基金supported by the grants of Innovation and Entrepreneurship Investment Project in Hunan(2017GK5009)Postgraduate Scientific Research and Innovation Project of Hunan(CX20190500)+1 种基金the Hunan Collaborative Innovation Center of Animal Production Safety,Laboratory of Animal Clinical Toxicology at The Department of Veterinary,Hunan Agriculture UniversityAnimal Health Care Engineering Technology Research Center of Hunan Agricultural University。
文摘A simulate daily oriental dietary pattern(a blend of lard and soybean oil)was performed in this research to investigate influence on liver and kidney function.Sixty mice were randomly divided into 6 groups with diets of different fat added oils respectively for 12 weeks.Malondialdehyde and uric acid contents in mice fed with blended oil were significantly lower than in those fed only with soybean oil and lard due to the improved activities of antioxidant enzymes.Daily use of a blend of lard with soybean oil significantly increased antioxidant capacity,reduced lipid peroxidation of liver and serum uric acid production,thus protected liver and renal function.It also suggests that the oriental dietary pattern might reduce the risk of gout.
文摘Metal derivative/graphitic carbon nitride(g-C_(3)N_(4))association is found promising in providing sustainable hydrogen production by photocatalytic water splitting process.Number of works reported on the synthesis and application of various metal based g-C_(3)N_(4)composites are increasing day by day.Mechanism of charge separation varies according to the metal candidate that gets couple with g-C_(3)N_(4).The present article thus explores the interesting chemistry behind various metal based heterojunction and demonstrates the charge separation route.A thorough investigation has been done on the current research trend in the area.As many metal free g-C_(3)N_(4)composites are reported nowadays as an alternative to metal derivatives,here compares metallic and metal free derivatives of g-C_(3)N_(4)based on four critical requirements of an industrial catalyst,ie,activity,stability,cost and toxicity.Challenges and future direction in the area are also discussed with significance.The systematic discussion and schematic illustration of charge transfer process in different heterojunctions with reference to the reported systems,given in the article can definitely contribute to the design and development of more efficient g-C_(3)N_(4)based heterojunctions in future for hydrogen production application.