期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Chloroplast Proteomics and the Compartmentation of Plastidial Isoprenoid Biosynthetic Pathways 被引量:15
1
作者 Jacques Joyard Myriam Ferro +4 位作者 Christophe Masselon Daphne Seigneurin-Berny Daniel Salvi Jerome Garin Norbert Rolland 《Molecular Plant》 SCIE CAS CSCD 2009年第6期1154-1180,共27页
Recent advances in the proteomic field have allowed high-throughput experiments to be conducted on chloroplast samples. Many proteomic investigations have focused on either whole chloroplast or sub-plastidial fraction... Recent advances in the proteomic field have allowed high-throughput experiments to be conducted on chloroplast samples. Many proteomic investigations have focused on either whole chloroplast or sub-plastidial fractions. To date, the Plant Protein Database (PPDB, Sun et al., 2009) presents the most exhaustive chloroplast proteome available online. However, the accurate localization of many proteins that were identified in different sub-plastidial compartments remains hypothetical. Ferro et al. (2009) went a step further into the knowledge of Arabidopsis thaliana chloroplast proteins with regards to their accurate localization within the chloroplast by using a semi-quantitative proteomic approach known as spectral counting. Their proteomic strategy was based on the accurate mass and time tags (AMT) database approach and they built up AT_CHLORO, a comprehensive chloroplast proteome database with sub-plastidial localization and curated information on envelope proteins. Comparing these two extensive databases, we focus here on about 100 enzymes involved in the synthesis of chloroplast-specific isoprenoids. Well known pathways (i.e. compartmentation of the methyl erythritol phosphate biosynthetic pathway, of tetrapyrroles and chlorophyll biosynthesis and breakdown within chloroplasts) validate the spectral counting-based strategy. The same strategy was then used to identify the precise localization of the biosynthesis of carotenoids and prenylquinones within chloroplasts (i.e. in envelope membranes, stroma, and/or thylakoids) that remains unclear until now. 展开更多
关键词 non-mevalonate pathway chlorophyll biosynthesis chlorophyll degradation carotenoid biosynthesis prenylquinone biosynthesis ENVELOPE stroma thylakoids.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部