This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli an...This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli and Silvestre(generalized Poisson equation).As a first step,the method expands the initial data function into a sparse series of the fundamental solutions with fast convergence,and,as a second step,makes use of the semigroup or the reproducing kernel property of each of the expanding entries.Experiments show the effectiveness and efficiency of the proposed series solutions.展开更多
This paper addresses the problem of complex and challenging disturbance localization in the current power system operation environment by proposing a disturbance localization method for power systems based on group sp...This paper addresses the problem of complex and challenging disturbance localization in the current power system operation environment by proposing a disturbance localization method for power systems based on group sparse representation and entropy weight method.Three different electrical quantities are selected as observations in the compressed sensing algorithm.The entropy weighting method is employed to calculate the weights of different observations based on their relative disturbance levels.Subsequently,by leveraging the topological information of the power system and pre-designing an overcomplete dictionary of disturbances based on the corresponding system parameter variations caused by disturbances,an improved Joint Generalized Orthogonal Matching Pursuit(J-GOMP)algorithm is utilized for reconstruction.The reconstructed sparse vectors are divided into three parts.If at least two parts have consistent node identifiers,the node is identified as the disturbance node.If the node identifiers in all three parts are inconsistent,further analysis is conducted considering the weights to determine the disturbance node.Simulation results based on the IEEE 39-bus system model demonstrate that the proposed method,utilizing electrical quantity information from only 8 measurement points,effectively locates disturbance positions and is applicable to various disturbance types with strong noise resistance.展开更多
Biological slices are an effective tool for studying the physiological structure and evolutionmechanism of biological systems.However,due to the complexity of preparation technology and the presence of many uncontroll...Biological slices are an effective tool for studying the physiological structure and evolutionmechanism of biological systems.However,due to the complexity of preparation technology and the presence of many uncontrollable factors during the preparation processing,leads to problems such as difficulty in preparing slice images and breakage of slice images.Therefore,we proposed a biological slice image small-scale corruption inpainting algorithm with interpretability based on multi-layer deep sparse representation,achieving the high-fidelity reconstruction of slice images.We further discussed the relationship between deep convolutional neural networks and sparse representation,ensuring the high-fidelity characteristic of the algorithm first.A novel deep wavelet dictionary is proposed that can better obtain image prior and possess learnable feature.And multi-layer deep sparse representation is used to implement dictionary learning,acquiring better signal expression.Compared with methods such as NLABH,Shearlet,Partial Differential Equation(PDE),K-Singular Value Decomposition(K-SVD),Convolutional Sparse Coding,and Deep Image Prior,the proposed algorithm has better subjective reconstruction and objective evaluation with small-scale image data,which realized high-fidelity inpainting,under the condition of small-scale image data.And theOn2-level time complexitymakes the proposed algorithm practical.The proposed algorithm can be effectively extended to other cross-sectional image inpainting problems,such as magnetic resonance images,and computed tomography images.展开更多
Super-resolution techniques are used to reconstruct an image with a high resolution from one or more low-resolution image(s).In this paper,we proposed a single image super-resolution algorithm.It uses the nonlocal mea...Super-resolution techniques are used to reconstruct an image with a high resolution from one or more low-resolution image(s).In this paper,we proposed a single image super-resolution algorithm.It uses the nonlocal mean filter as a prior step to produce a denoised image.The proposed algorithm is based on curvelet transform.It converts the denoised image into low and high frequencies(sub-bands).Then we applied a multi-dimensional interpolation called Lancozos interpolation over both sub-bands.In parallel,we applied sparse representation with over complete dictionary for the denoised image.The proposed algorithm then combines the dictionary learning in the sparse representation and the interpolated sub-bands using inverse curvelet transform to have an image with a higher resolution.The experimental results of the proposed super-resolution algorithm show superior performance and obviously better-recovering images with enhanced edges.The comparison study shows that the proposed super-resolution algorithm outperforms the state-of-the-art.The mean absolute error is 0.021±0.008 and the structural similarity index measure is 0.89±0.08.展开更多
Unconstrained face images are interfered by many factors such as illumination,posture,expression,occlusion,age,accessories and so on,resulting in the randomness of the noise pollution implied in the original samples.I...Unconstrained face images are interfered by many factors such as illumination,posture,expression,occlusion,age,accessories and so on,resulting in the randomness of the noise pollution implied in the original samples.In order to improve the sample quality,a weighted block cooperative sparse representation algorithm is proposed based on visual saliency dictionary.First,the algorithm uses the biological visual attention mechanism to quickly and accurately obtain the face salient target and constructs the visual salient dictionary.Then,a block cooperation framework is presented to perform sparse coding for different local structures of human face,and the weighted regular term is introduced in the sparse representation process to enhance the identification of information hidden in the coding coefficients.Finally,by synthesising the sparse representation results of all visual salient block dictionaries,the global coding residual is obtained and the class label is given.The experimental results on four databases,that is,AR,extended Yale B,LFW and PubFig,indicate that the combination of visual saliency dictionary,block cooperative sparse representation and weighted constraint coding can effectively enhance the accuracy of sparse representation of the samples to be tested and improve the performance of unconstrained face recognition.展开更多
The practice of integrating images from two or more sensors collected from the same area or object is known as image fusion.The goal is to extract more spatial and spectral information from the resulting fused image t...The practice of integrating images from two or more sensors collected from the same area or object is known as image fusion.The goal is to extract more spatial and spectral information from the resulting fused image than from the component images.The images must be fused to improve the spatial and spectral quality of both panchromatic and multispectral images.This study provides a novel picture fusion technique that employs L0 smoothening Filter,Non-subsampled Contour let Transform(NSCT)and Sparse Representation(SR)followed by the Max absolute rule(MAR).The fusion approach is as follows:first,the multispectral and panchromatic images are divided into lower and higher frequency components using the L0 smoothing filter.Then comes the fusion process,which uses an approach that combines NSCT and SR to fuse low frequency components.Similarly,the Max-absolute fusion rule is used to merge high frequency components.Finally,the final image is obtained through the disintegration of fused low and high frequency data.In terms of correlation coefficient,Entropy,spatial frequency,and fusion mutual information,our method outperforms other methods in terms of image quality enhancement and visual evaluation.展开更多
Medical Image Fusion is the synthesizing technology for fusing multi-modal medical information using mathematical procedures to generate better visual on the image content and high-quality image output.Medical image f...Medical Image Fusion is the synthesizing technology for fusing multi-modal medical information using mathematical procedures to generate better visual on the image content and high-quality image output.Medical image fusion represents an indispensible role infixing major solutions for the complicated medical predicaments,while the recent research results have an enhanced affinity towards the preservation of medical image details,leaving color distortion and halo artifacts to remain unaddressed.This paper proposes a novel method of fusing Computer Tomography(CT)and Magnetic Resonance Imaging(MRI)using a hybrid model of Non Sub-sampled Contourlet Transform(NSCT)and Joint Sparse Representation(JSR).This model gratifies the need for precise integration of medical images of different modalities,which is an essential requirement in the diagnosing process towards clinical activities and treating the patients accordingly.In the proposed model,the medical image is decomposed using NSCT which is an efficient shift variant decomposition transformation method.JSR is exercised to extricate the common features of the medical image for the fusion process.The performance analysis of the proposed system proves that the proposed image fusion technique for medical image fusion is more efficient,provides better results,and a high level of distinctness by integrating the advantages of complementary images.The comparative analysis proves that the proposed technique exhibits better-quality than the existing medical image fusion practices.展开更多
To minimize the low classification accuracy and low utilization of spatial information in traditional hyperspectral image classification methods, we propose a new hyperspectral image classification method, which is ba...To minimize the low classification accuracy and low utilization of spatial information in traditional hyperspectral image classification methods, we propose a new hyperspectral image classification method, which is based on the Gabor spatial texture features and nonparametric weighted spectral features, and the sparse representation classification method(Gabor–NWSF and SRC), abbreviated GNWSF–SRC. The proposed(GNWSF–SRC) method first combines the Gabor spatial features and nonparametric weighted spectral features to describe the hyperspectral image, and then applies the sparse representation method. Finally, the classification is obtained by analyzing the reconstruction error. We use the proposed method to process two typical hyperspectral data sets with different percentages of training samples. Theoretical analysis and simulation demonstrate that the proposed method improves the classification accuracy and Kappa coefficient compared with traditional classification methods and achieves better classification performance.展开更多
Aiming at the problems of bispectral analysis when applied to machinery fault diagnosis, a machinery fault feature extraction method based on sparseness-controlled non-negative tensor factorization (SNTF) is propose...Aiming at the problems of bispectral analysis when applied to machinery fault diagnosis, a machinery fault feature extraction method based on sparseness-controlled non-negative tensor factorization (SNTF) is proposed. First, a non-negative tensor factorization(NTF) algorithm is improved by imposing sparseness constraints on it. Secondly, the bispectral images of mechanical signals are obtained and stacked to form a third-order tensor. Thirdly, the improved algorithm is used to extract features, which are represented by a series of basis images from this tensor. Finally, coefficients indicating these basis images' weights in constituting original bispectral images are calculated for fault classification. Experiments on fault diagnosis of gearboxes show that the extracted features can not only reveal some nonlinear characteristics of the system, but also have intuitive meanings with regard to fault characteristic frequencies. These features provide great convenience for the interpretation of the relationships between machinery faults and corresponding bispectra.展开更多
Passive detection of low-slow-small(LSS)targets is easily interfered by direct signal and multipath clutter,and the traditional clutter suppression method has the contradiction between step size and convergence rate.I...Passive detection of low-slow-small(LSS)targets is easily interfered by direct signal and multipath clutter,and the traditional clutter suppression method has the contradiction between step size and convergence rate.In this paper,a frequency domain clutter suppression algorithm based on sparse adaptive filtering is proposed.The pulse compression operation between the error signal and the input reference signal is added to the cost function as a sparsity constraint,and the criterion for filter weight updating is improved to obtain a purer echo signal.At the same time,the step size and penalty factor are brought into the adaptive iteration process,and the input data is used to drive the adaptive changes of parameters such as step size.The proposed algorithm has a small amount of calculation,which improves the robustness to parameters such as step size,reduces the weight error of the filter and has a good clutter suppression performance.展开更多
Sparse representation has recently been proved to be a powerful tool in image processing and object recognition.This paper proposes a novel small target detection algorithm based on this technique.By modelling a small...Sparse representation has recently been proved to be a powerful tool in image processing and object recognition.This paper proposes a novel small target detection algorithm based on this technique.By modelling a small target as a linear combination of certain target samples and then solving a sparse 0-minimization problem,the proposed apporach successfully improves and optimizes the small target representation with innovation.Furthermore,the sparsity concentration index(SCI) is creatively employed to evaluate the coefficients of each block representation and simpfy target identification.In the detection frame,target samples are firstly generated to constitute an over-complete dictionary matrix using Gaussian intensity model(GIM),and then sparse model solvers are applied to finding sparse representation for each sub-image block.Finally,SCI lexicographical evalution of the entire image incorparates with a simple threshold locate target position.The effectiveness and robustness of the proposed algorithm are demonstrated by the exprimental results.展开更多
This paper is mainly to deal with the problem of direction of arrival(DOA) estimations of multiple narrow-band sources impinging on a uniform linear array under impulsive noise environments. By modeling the impulsive ...This paper is mainly to deal with the problem of direction of arrival(DOA) estimations of multiple narrow-band sources impinging on a uniform linear array under impulsive noise environments. By modeling the impulsive noise as α-stable distribution, new methods which combine the sparse signal representation technique and fractional lower order statistics theory are proposed. In the new algorithms, the fractional lower order statistics vectors of the array output signal are sparsely represented on an overcomplete basis and the DOAs can be effectively estimated by searching the sparsest coefficients. To enhance the robustness performance of the proposed algorithms,the improved algorithms are advanced by eliminating the fractional lower order statistics of the noise from the fractional lower order statistics vector of the array output through a linear transformation. Simulation results have shown the effectiveness of the proposed methods for a wide range of highly impulsive environments.展开更多
In this paper, we designed a color visualization model for sparse representation of the whole hyperspectral image, in which, not only the spectral information in the sparse representation but also the spatial informat...In this paper, we designed a color visualization model for sparse representation of the whole hyperspectral image, in which, not only the spectral information in the sparse representation but also the spatial information of the whole image is retained. After the sparse representation, the color labels of the effective elements of the sparse coding dictionary are selected according to the sparse coefficient and then the mixed images are displayed. The generated images maintain spectral distance preservation and have good separability. For local ground objects, the proposed single-pixel mixed array and improved oriented sliver textures methods are integrated to display the specific composition of each pixel. This avoids the confusion of the color presentation in the mixed-pixel color display and can also be used to reconstruct the original hyperspectral data. Finally, the model effectiveness was proved using real data. This method is promising and can find use in many fields, such as energy exploration, environmental monitoring, disaster warning, and so on.展开更多
This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time...This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation.展开更多
The conventional sparse representation-based image classification usually codes the samples independently,which will ignore the correlation information existed in the data.Hence,if we can explore the correlation infor...The conventional sparse representation-based image classification usually codes the samples independently,which will ignore the correlation information existed in the data.Hence,if we can explore the correlation information hidden in the data,the classification result will be improved significantly.To this end,in this paper,a novel weighted supervised spare coding method is proposed to address the image classification problem.The proposed method firstly explores the structural information sufficiently hidden in the data based on the low rank representation.And then,it introduced the extracted structural information to a novel weighted sparse representation model to code the samples in a supervised way.Experimental results show that the proposed method is superiority to many conventional image classification methods.展开更多
A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a spa...A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a sparse reconstruction problem of the cleaned array covariance matrix, which is processed to eliminate the affection of the noise. Then by using the block of matrices, the information of DOAs which we pursuit are implied in the sparse coefficient matrix. Finally, the sparse reconstruction problem is solved by the improved M-FOCUSS method, which is applied to the situation of block of matrices. This method outperforms its data domain counterpart in terms of noise suppression, and has a better performance in DOA estimation than the customary spatial smoothing technique. Simulation results verify the efficacy of the proposed method.展开更多
In order to effectively improve the quality of recovered images, a single frame super-resolution reconstruction method based on sparse representation is proposed. The combination method of local orientation estimation...In order to effectively improve the quality of recovered images, a single frame super-resolution reconstruction method based on sparse representation is proposed. The combination method of local orientation estimation-based image patch clustering and principal component analysis is used to obtain a series of geometric dictionaries of different orientations in the dictionary learning process. Subsequently, the dictionary of the nearest orientation is adaptively assigned to each of the input patches that need to be represented in the sparse coding process. Moreover, the consistency of gradients is further incorporated into the basic framework to make more substantial progress in preserving more fine edges and producing sharper results. Two groups of experiments on different types of natural images indicate that the proposed method outperforms some state-of- the-art counterparts in terms of both numerical indicators and visual quality.展开更多
Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artif...Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception.展开更多
Face recognition based on few training samples is a challenging task. In daily applications, sufficient training samples may not be obtained and most of the gained training samples are in various illuminations and pos...Face recognition based on few training samples is a challenging task. In daily applications, sufficient training samples may not be obtained and most of the gained training samples are in various illuminations and poses. Non-sufficient training samples could not effectively express various facial conditions, so the improvement of the face recognition rate under the non-sufficient training samples condition becomes a laborious mission. In our work, the facial pose pre-recognition(FPPR) model and the dualdictionary sparse representation classification(DD-SRC) are proposed for face recognition. The FPPR model is based on the facial geometric characteristic and machine learning, dividing a testing sample into full-face and profile. Different poses in a single dictionary are influenced by each other, which leads to a low face recognition rate. The DD-SRC contains two dictionaries, full-face dictionary and profile dictionary, and is able to reduce the interference. After FPPR, the sample is processed by the DD-SRC to find the most similar one in training samples. The experimental results show the performance of the proposed algorithm on olivetti research laboratory(ORL) and face recognition technology(FERET) databases, and also reflect comparisons with SRC, linear regression classification(LRC), and two-phase test sample sparse representation(TPTSSR).展开更多
Traditional unsupervised seismic facies analysis techniques need to assume that seismic data obey mixed Gaussian distribution.However,fi eld seismic data may not meet this condition,thereby leading to wrong classifi c...Traditional unsupervised seismic facies analysis techniques need to assume that seismic data obey mixed Gaussian distribution.However,fi eld seismic data may not meet this condition,thereby leading to wrong classifi cation in the application of this technology.This paper introduces a spectral clustering technique for unsupervised seismic facies analysis.This algorithm is based on on the idea of a graph to cluster the data.Its kem is that seismic data are regarded as points in space,points can be connected with the edge and construct to graphs.When the graphs are divided,the weights of the edges between the different subgraphs are as low as possible,whereas the weights of the inner edges of the subgraph should be as high as possible.That has high computational complexity and entails large memory consumption for spectral clustering algorithm.To solve the problem this paper introduces the idea of sparse representation into spectral clustering.Through the selection of a small number of local sparse representation points,the spectral clustering matrix of all sample points is approximately represented to reduce the cost of spectral clustering operation.Verifi cation of physical model and fi eld data shows that the proposed approach can obtain more accurate seismic facies classification results without considering the data meet any hypothesis.The computing efficiency of this new method is better than that of the conventional spectral clustering method,thereby meeting the application needs of fi eld seismic data.展开更多
基金supported by the Science and Technology Development Fund of Macao SAR(FDCT0128/2022/A,0020/2023/RIB1,0111/2023/AFJ,005/2022/ALC)the Shandong Natural Science Foundation of China(ZR2020MA004)+2 种基金the National Natural Science Foundation of China(12071272)the MYRG 2018-00168-FSTZhejiang Provincial Natural Science Foundation of China(LQ23A010014).
文摘This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli and Silvestre(generalized Poisson equation).As a first step,the method expands the initial data function into a sparse series of the fundamental solutions with fast convergence,and,as a second step,makes use of the semigroup or the reproducing kernel property of each of the expanding entries.Experiments show the effectiveness and efficiency of the proposed series solutions.
基金funded by the State Grid Jilin Economic Research Institute’s 2022 Practical Re-Search Project on the Construction of Long-Term Power Supply Guarantee Mechanism in Provincial Capital Cities under the New Situation,Grant Number SGJLJY00GPJS2200041.
文摘This paper addresses the problem of complex and challenging disturbance localization in the current power system operation environment by proposing a disturbance localization method for power systems based on group sparse representation and entropy weight method.Three different electrical quantities are selected as observations in the compressed sensing algorithm.The entropy weighting method is employed to calculate the weights of different observations based on their relative disturbance levels.Subsequently,by leveraging the topological information of the power system and pre-designing an overcomplete dictionary of disturbances based on the corresponding system parameter variations caused by disturbances,an improved Joint Generalized Orthogonal Matching Pursuit(J-GOMP)algorithm is utilized for reconstruction.The reconstructed sparse vectors are divided into three parts.If at least two parts have consistent node identifiers,the node is identified as the disturbance node.If the node identifiers in all three parts are inconsistent,further analysis is conducted considering the weights to determine the disturbance node.Simulation results based on the IEEE 39-bus system model demonstrate that the proposed method,utilizing electrical quantity information from only 8 measurement points,effectively locates disturbance positions and is applicable to various disturbance types with strong noise resistance.
基金supported by the National Natural Science Foundation of China(Grant No.61871380)the Shandong Provincial Natural Science Foundation(Grant No.ZR2020MF019)Beijing Natural Science Foundation(Grant No.4172034).
文摘Biological slices are an effective tool for studying the physiological structure and evolutionmechanism of biological systems.However,due to the complexity of preparation technology and the presence of many uncontrollable factors during the preparation processing,leads to problems such as difficulty in preparing slice images and breakage of slice images.Therefore,we proposed a biological slice image small-scale corruption inpainting algorithm with interpretability based on multi-layer deep sparse representation,achieving the high-fidelity reconstruction of slice images.We further discussed the relationship between deep convolutional neural networks and sparse representation,ensuring the high-fidelity characteristic of the algorithm first.A novel deep wavelet dictionary is proposed that can better obtain image prior and possess learnable feature.And multi-layer deep sparse representation is used to implement dictionary learning,acquiring better signal expression.Compared with methods such as NLABH,Shearlet,Partial Differential Equation(PDE),K-Singular Value Decomposition(K-SVD),Convolutional Sparse Coding,and Deep Image Prior,the proposed algorithm has better subjective reconstruction and objective evaluation with small-scale image data,which realized high-fidelity inpainting,under the condition of small-scale image data.And theOn2-level time complexitymakes the proposed algorithm practical.The proposed algorithm can be effectively extended to other cross-sectional image inpainting problems,such as magnetic resonance images,and computed tomography images.
文摘Super-resolution techniques are used to reconstruct an image with a high resolution from one or more low-resolution image(s).In this paper,we proposed a single image super-resolution algorithm.It uses the nonlocal mean filter as a prior step to produce a denoised image.The proposed algorithm is based on curvelet transform.It converts the denoised image into low and high frequencies(sub-bands).Then we applied a multi-dimensional interpolation called Lancozos interpolation over both sub-bands.In parallel,we applied sparse representation with over complete dictionary for the denoised image.The proposed algorithm then combines the dictionary learning in the sparse representation and the interpolated sub-bands using inverse curvelet transform to have an image with a higher resolution.The experimental results of the proposed super-resolution algorithm show superior performance and obviously better-recovering images with enhanced edges.The comparison study shows that the proposed super-resolution algorithm outperforms the state-of-the-art.The mean absolute error is 0.021±0.008 and the structural similarity index measure is 0.89±0.08.
基金Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20170765National Natural Science Foundation of China,Grant/Award Number:61703201+1 种基金Future Network Scientific Research Fund Project,Grant/Award Number:FNSRFP2021YB26Science Foundation of Nanjing Institute of Technology,Grant/Award Numbers:ZKJ202002,ZKJ202003,and YKJ202019。
文摘Unconstrained face images are interfered by many factors such as illumination,posture,expression,occlusion,age,accessories and so on,resulting in the randomness of the noise pollution implied in the original samples.In order to improve the sample quality,a weighted block cooperative sparse representation algorithm is proposed based on visual saliency dictionary.First,the algorithm uses the biological visual attention mechanism to quickly and accurately obtain the face salient target and constructs the visual salient dictionary.Then,a block cooperation framework is presented to perform sparse coding for different local structures of human face,and the weighted regular term is introduced in the sparse representation process to enhance the identification of information hidden in the coding coefficients.Finally,by synthesising the sparse representation results of all visual salient block dictionaries,the global coding residual is obtained and the class label is given.The experimental results on four databases,that is,AR,extended Yale B,LFW and PubFig,indicate that the combination of visual saliency dictionary,block cooperative sparse representation and weighted constraint coding can effectively enhance the accuracy of sparse representation of the samples to be tested and improve the performance of unconstrained face recognition.
文摘The practice of integrating images from two or more sensors collected from the same area or object is known as image fusion.The goal is to extract more spatial and spectral information from the resulting fused image than from the component images.The images must be fused to improve the spatial and spectral quality of both panchromatic and multispectral images.This study provides a novel picture fusion technique that employs L0 smoothening Filter,Non-subsampled Contour let Transform(NSCT)and Sparse Representation(SR)followed by the Max absolute rule(MAR).The fusion approach is as follows:first,the multispectral and panchromatic images are divided into lower and higher frequency components using the L0 smoothing filter.Then comes the fusion process,which uses an approach that combines NSCT and SR to fuse low frequency components.Similarly,the Max-absolute fusion rule is used to merge high frequency components.Finally,the final image is obtained through the disintegration of fused low and high frequency data.In terms of correlation coefficient,Entropy,spatial frequency,and fusion mutual information,our method outperforms other methods in terms of image quality enhancement and visual evaluation.
文摘Medical Image Fusion is the synthesizing technology for fusing multi-modal medical information using mathematical procedures to generate better visual on the image content and high-quality image output.Medical image fusion represents an indispensible role infixing major solutions for the complicated medical predicaments,while the recent research results have an enhanced affinity towards the preservation of medical image details,leaving color distortion and halo artifacts to remain unaddressed.This paper proposes a novel method of fusing Computer Tomography(CT)and Magnetic Resonance Imaging(MRI)using a hybrid model of Non Sub-sampled Contourlet Transform(NSCT)and Joint Sparse Representation(JSR).This model gratifies the need for precise integration of medical images of different modalities,which is an essential requirement in the diagnosing process towards clinical activities and treating the patients accordingly.In the proposed model,the medical image is decomposed using NSCT which is an efficient shift variant decomposition transformation method.JSR is exercised to extricate the common features of the medical image for the fusion process.The performance analysis of the proposed system proves that the proposed image fusion technique for medical image fusion is more efficient,provides better results,and a high level of distinctness by integrating the advantages of complementary images.The comparative analysis proves that the proposed technique exhibits better-quality than the existing medical image fusion practices.
基金supported by the National Natural Science Foundation of China(No.61275010)the Ph.D.Programs Foundation of Ministry of Education of China(No.20132304110007)+1 种基金the Heilongjiang Natural Science Foundation(No.F201409)the Fundamental Research Funds for the Central Universities(No.HEUCFD1410)
文摘To minimize the low classification accuracy and low utilization of spatial information in traditional hyperspectral image classification methods, we propose a new hyperspectral image classification method, which is based on the Gabor spatial texture features and nonparametric weighted spectral features, and the sparse representation classification method(Gabor–NWSF and SRC), abbreviated GNWSF–SRC. The proposed(GNWSF–SRC) method first combines the Gabor spatial features and nonparametric weighted spectral features to describe the hyperspectral image, and then applies the sparse representation method. Finally, the classification is obtained by analyzing the reconstruction error. We use the proposed method to process two typical hyperspectral data sets with different percentages of training samples. Theoretical analysis and simulation demonstrate that the proposed method improves the classification accuracy and Kappa coefficient compared with traditional classification methods and achieves better classification performance.
基金The National Natural Science Foundation of China (No.50875048)the Natural Science Foundation of Jiangsu Province (No.BK2007115)the National High Technology Research and Development Program of China (863 Program)(No.2007AA04Z421)
文摘Aiming at the problems of bispectral analysis when applied to machinery fault diagnosis, a machinery fault feature extraction method based on sparseness-controlled non-negative tensor factorization (SNTF) is proposed. First, a non-negative tensor factorization(NTF) algorithm is improved by imposing sparseness constraints on it. Secondly, the bispectral images of mechanical signals are obtained and stacked to form a third-order tensor. Thirdly, the improved algorithm is used to extract features, which are represented by a series of basis images from this tensor. Finally, coefficients indicating these basis images' weights in constituting original bispectral images are calculated for fault classification. Experiments on fault diagnosis of gearboxes show that the extracted features can not only reveal some nonlinear characteristics of the system, but also have intuitive meanings with regard to fault characteristic frequencies. These features provide great convenience for the interpretation of the relationships between machinery faults and corresponding bispectra.
文摘Passive detection of low-slow-small(LSS)targets is easily interfered by direct signal and multipath clutter,and the traditional clutter suppression method has the contradiction between step size and convergence rate.In this paper,a frequency domain clutter suppression algorithm based on sparse adaptive filtering is proposed.The pulse compression operation between the error signal and the input reference signal is added to the cost function as a sparsity constraint,and the criterion for filter weight updating is improved to obtain a purer echo signal.At the same time,the step size and penalty factor are brought into the adaptive iteration process,and the input data is used to drive the adaptive changes of parameters such as step size.The proposed algorithm has a small amount of calculation,which improves the robustness to parameters such as step size,reduces the weight error of the filter and has a good clutter suppression performance.
基金supported by the Inter-governmental Science and Technology Cooperation Project (2009DFA12870)
文摘Sparse representation has recently been proved to be a powerful tool in image processing and object recognition.This paper proposes a novel small target detection algorithm based on this technique.By modelling a small target as a linear combination of certain target samples and then solving a sparse 0-minimization problem,the proposed apporach successfully improves and optimizes the small target representation with innovation.Furthermore,the sparsity concentration index(SCI) is creatively employed to evaluate the coefficients of each block representation and simpfy target identification.In the detection frame,target samples are firstly generated to constitute an over-complete dictionary matrix using Gaussian intensity model(GIM),and then sparse model solvers are applied to finding sparse representation for each sub-image block.Finally,SCI lexicographical evalution of the entire image incorparates with a simple threshold locate target position.The effectiveness and robustness of the proposed algorithm are demonstrated by the exprimental results.
基金supported in part by the National Natural Science Foundation of China(61301228,61371091)the Fundamental Research Funds for the Central Universities(3132014212)
文摘This paper is mainly to deal with the problem of direction of arrival(DOA) estimations of multiple narrow-band sources impinging on a uniform linear array under impulsive noise environments. By modeling the impulsive noise as α-stable distribution, new methods which combine the sparse signal representation technique and fractional lower order statistics theory are proposed. In the new algorithms, the fractional lower order statistics vectors of the array output signal are sparsely represented on an overcomplete basis and the DOAs can be effectively estimated by searching the sparsest coefficients. To enhance the robustness performance of the proposed algorithms,the improved algorithms are advanced by eliminating the fractional lower order statistics of the noise from the fractional lower order statistics vector of the array output through a linear transformation. Simulation results have shown the effectiveness of the proposed methods for a wide range of highly impulsive environments.
基金supported by the National Natural Science Foundation of China (Grant No.61275010,61077079)the State Key Program of National Natural Science Foundation of Heilongjiang Province of China (No.ZD201216)the Fundamental Research Funds for the Central Universities (No.HEUCF130820)
文摘In this paper, we designed a color visualization model for sparse representation of the whole hyperspectral image, in which, not only the spectral information in the sparse representation but also the spatial information of the whole image is retained. After the sparse representation, the color labels of the effective elements of the sparse coding dictionary are selected according to the sparse coefficient and then the mixed images are displayed. The generated images maintain spectral distance preservation and have good separability. For local ground objects, the proposed single-pixel mixed array and improved oriented sliver textures methods are integrated to display the specific composition of each pixel. This avoids the confusion of the color presentation in the mixed-pixel color display and can also be used to reconstruct the original hyperspectral data. Finally, the model effectiveness was proved using real data. This method is promising and can find use in many fields, such as energy exploration, environmental monitoring, disaster warning, and so on.
基金supported by the National Natural Science Foundation of China(61072120)
文摘This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation.
基金This research is funded by the National Natural Science Foundation of China(61771154).
文摘The conventional sparse representation-based image classification usually codes the samples independently,which will ignore the correlation information existed in the data.Hence,if we can explore the correlation information hidden in the data,the classification result will be improved significantly.To this end,in this paper,a novel weighted supervised spare coding method is proposed to address the image classification problem.The proposed method firstly explores the structural information sufficiently hidden in the data based on the low rank representation.And then,it introduced the extracted structural information to a novel weighted sparse representation model to code the samples in a supervised way.Experimental results show that the proposed method is superiority to many conventional image classification methods.
基金Supported by the National Natural Science Foundation of China (61072098 61072099+1 种基金 60736006)PCSIRT-IRT1005
文摘A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a sparse reconstruction problem of the cleaned array covariance matrix, which is processed to eliminate the affection of the noise. Then by using the block of matrices, the information of DOAs which we pursuit are implied in the sparse coefficient matrix. Finally, the sparse reconstruction problem is solved by the improved M-FOCUSS method, which is applied to the situation of block of matrices. This method outperforms its data domain counterpart in terms of noise suppression, and has a better performance in DOA estimation than the customary spatial smoothing technique. Simulation results verify the efficacy of the proposed method.
基金The National Natural Science Foundation of China(No.61374194,No.61403081)the National Key Science&Technology Pillar Program of China(No.2014BAG01B03)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20140638)Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘In order to effectively improve the quality of recovered images, a single frame super-resolution reconstruction method based on sparse representation is proposed. The combination method of local orientation estimation-based image patch clustering and principal component analysis is used to obtain a series of geometric dictionaries of different orientations in the dictionary learning process. Subsequently, the dictionary of the nearest orientation is adaptively assigned to each of the input patches that need to be represented in the sparse coding process. Moreover, the consistency of gradients is further incorporated into the basic framework to make more substantial progress in preserving more fine edges and producing sharper results. Two groups of experiments on different types of natural images indicate that the proposed method outperforms some state-of- the-art counterparts in terms of both numerical indicators and visual quality.
文摘Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception.
基金supported by the National Natural Science Foundation of China(6137901061772421)
文摘Face recognition based on few training samples is a challenging task. In daily applications, sufficient training samples may not be obtained and most of the gained training samples are in various illuminations and poses. Non-sufficient training samples could not effectively express various facial conditions, so the improvement of the face recognition rate under the non-sufficient training samples condition becomes a laborious mission. In our work, the facial pose pre-recognition(FPPR) model and the dualdictionary sparse representation classification(DD-SRC) are proposed for face recognition. The FPPR model is based on the facial geometric characteristic and machine learning, dividing a testing sample into full-face and profile. Different poses in a single dictionary are influenced by each other, which leads to a low face recognition rate. The DD-SRC contains two dictionaries, full-face dictionary and profile dictionary, and is able to reduce the interference. After FPPR, the sample is processed by the DD-SRC to find the most similar one in training samples. The experimental results show the performance of the proposed algorithm on olivetti research laboratory(ORL) and face recognition technology(FERET) databases, and also reflect comparisons with SRC, linear regression classification(LRC), and two-phase test sample sparse representation(TPTSSR).
基金This work was supported by National Natural Science Foundation of China(Nos.U1562218,41604107,and 41804126).
文摘Traditional unsupervised seismic facies analysis techniques need to assume that seismic data obey mixed Gaussian distribution.However,fi eld seismic data may not meet this condition,thereby leading to wrong classifi cation in the application of this technology.This paper introduces a spectral clustering technique for unsupervised seismic facies analysis.This algorithm is based on on the idea of a graph to cluster the data.Its kem is that seismic data are regarded as points in space,points can be connected with the edge and construct to graphs.When the graphs are divided,the weights of the edges between the different subgraphs are as low as possible,whereas the weights of the inner edges of the subgraph should be as high as possible.That has high computational complexity and entails large memory consumption for spectral clustering algorithm.To solve the problem this paper introduces the idea of sparse representation into spectral clustering.Through the selection of a small number of local sparse representation points,the spectral clustering matrix of all sample points is approximately represented to reduce the cost of spectral clustering operation.Verifi cation of physical model and fi eld data shows that the proposed approach can obtain more accurate seismic facies classification results without considering the data meet any hypothesis.The computing efficiency of this new method is better than that of the conventional spectral clustering method,thereby meeting the application needs of fi eld seismic data.