Reservoir heterogeneities play a crucial role in governing reservoir performance and management.Traditionally,detailed and inter-well heterogeneity analyses are commonly performed by mapping seismic facies change in t...Reservoir heterogeneities play a crucial role in governing reservoir performance and management.Traditionally,detailed and inter-well heterogeneity analyses are commonly performed by mapping seismic facies change in the seismic data,which is a time-intensive task.Many researchers have utilized a robust Grey-level co-occurrence matrix(GLCM)-based texture attributes to map reservoir heterogeneity.However,these attributes take seismic data as input and might not be sensitive to lateral lithology variation.To incorporate the lithology information,we have developed an innovative impedance-based texture approach using GLCM workflow by integrating 3D acoustic impedance volume(a rock propertybased attribute)obtained from a deep convolution network-based impedance inversion.Our proposed workflow is anticipated to be more sensitive toward mapping lateral changes than the conventional amplitude-based texture approach,wherein seismic data is used as input.To evaluate the improvement,we applied the proposed workflow to the full-stack 3D seismic data from the Poseidon field,NW-shelf,Australia.This study demonstrates that a better demarcation of reservoir gas sands with improved lateral continuity is achievable with the presented approach compared to the conventional approach.In addition,we assess the implication of multi-stage faulting on facies distribution for effective reservoir characterization.This study also suggests a well-bounded potential reservoir facies distribution along the parallel fault lines.Thus,the proposed approach provides an efficient strategy by integrating the impedance information with texture attributes to improve the inference on reservoir heterogeneity,which can serve as a promising tool for identifying potential reservoir zones for both production benefits and fluid storage.展开更多
Canopy and branch architectures in high-density orchards can be crucial in production and fruit quality. The influence of two canopy orientations (Upright and Tilted) in combination with two arm (branch) architectures...Canopy and branch architectures in high-density orchards can be crucial in production and fruit quality. The influence of two canopy orientations (Upright and Tilted) in combination with two arm (branch) architectures (Shortened or Overlapped) on tree growth, yield components, fruit quality, and leaf mineral nutrients in an “Aztec Fuji” apple (Malus domestica Bork.) high-density orchard was studied over five years. Tilted trees with shortened arm configuration (TilShArm) always had significantly larger trunk cross-sectional area (TCSA) than Upright trees with an Overlapped arm configuration (UpOverArm) every year from 2012 to 2016. Trees with a TilShArm system had more cumulative fruit per tree than those with an Upright orientation. Trees with a tilted canopy (TilShArm and TilOverArm) tended to have higher yield per tree and yield per hectare than those with an upright system. Trees with a TilShArm system were more precocious and had more yield per tree than those with an upright canopy orientation in 2012. When values were polled over five years, trees with an upright canopy-shortened arm system (UpShArm) treatment had a lower biennial bearing index (BBI) than those with an upright canopy-overlapped system (UpOverArm). Trees receiving an arm shortening (UpShArm or TilShArm) configuration often had larger fruits than those with overlapped arms (UpOverArm and TilOverArm). Fruit from trees receiving an UpOverArm had higher fruit firmness than those from trees with other canopy-branch arrangements at harvest due to their smaller size. Fruit from trees with a TilShArm and TilOverArm had significantly higher water core and bitter pit but lower sunburn than trees with an upright canopy (UpShArm and UpOverArm). Leaves from trees with an UpOverArm canopy-branch configuration had the lowest leaf Ca but the highest leaf K and Fe concentrations among all treatments.展开更多
Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself disc...Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself discrimination paradigmin the biological immune system,the negative representation of information indicates features such as simplicity and efficiency,which is very suitable for preserving social network privacy.Therefore,we suggest a method to preserve the topology privacy and node attribute privacy of attribute social networks,called AttNetNRI.Specifically,a negative survey-based method is developed to disturb the relationship between nodes in the social network so that the topology structure can be kept private.Moreover,a negative database-based method is proposed to hide node attributes,so that the privacy of node attributes can be preserved while supporting the similarity estimation between different node attributes,which is crucial to the analysis of social networks.To evaluate the performance of the AttNetNRI,empirical studies have been conducted on various attribute social networks and compared with several state-of-the-art methods tailored to preserve the privacy of social networks.The experimental results show the superiority of the developed method in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topology disturbing and attribute hiding parts.The experimental results show the superiority of the developed methods in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topological interference and attribute-hiding components.展开更多
Attribute reduction is a research hotspot in rough set theory. Traditional heuristic attribute reduction methods add the most important attribute to the decision attribute set each time, resulting in multiple redundan...Attribute reduction is a research hotspot in rough set theory. Traditional heuristic attribute reduction methods add the most important attribute to the decision attribute set each time, resulting in multiple redundant attribute calculations, high time consumption, and low reduction efficiency. In this paper, based on the idea of sequential three-branch decision classification domain, attributes are treated as objects of three-branch division, and attributes are divided into core attributes, relatively necessary attributes, and unnecessary attributes using attribute importance and thresholds. Core attributes are added to the decision attribute set, unnecessary attributes are rejected from being added, and relatively necessary attributes are repeatedly divided until the reduction result is obtained. Experiments were conducted on 8 groups of UCI datasets, and the results show that, compared to traditional reduction methods, the method proposed in this paper can effectively reduce time consumption while ensuring classification performance.展开更多
Due to the complexity and variability of carbonate formation leakage zones, lost circulation prediction and control is one of the major challenges of carbonate drilling. It raises well-control risks and production exp...Due to the complexity and variability of carbonate formation leakage zones, lost circulation prediction and control is one of the major challenges of carbonate drilling. It raises well-control risks and production expenses. This research utilizes the H oilfield as an example, employs seismic features to analyze mud loss prediction, and produces a complete set of pre-drilling mud loss prediction solutions. Firstly, 16seismic attributes are calculated based on the post-stack seismic data, and the mud loss rate per unit footage is specified. The sample set is constructed by extracting each attribute from the seismic trace surrounding 15 typical wells, with a ratio of 8:2 between the training set and the test set. With the calibration results for mud loss rate per unit footage, the nonlinear mapping relationship between seismic attributes and mud loss rate per unit size is established using the mixed density network model.Then, the influence of the number of sub-Gausses and the uncertainty coefficient on the model's prediction is evaluated. Finally, the model is used in conjunction with downhole drilling conditions to assess the risk of mud loss in various layers and along the wellbore trajectory. The study demonstrates that the mean relative errors of the model for training data and test data are 6.9% and 7.5%, respectively, and that R2is 90% and 88%, respectively, for training data and test data. The accuracy and efficacy of mud loss prediction may be greatly enhanced by combining 16 seismic attributes with the mud loss rate per unit footage and applying machine learning methods. The mud loss prediction model based on the MDN model can not only predict the mud loss rate but also objectively evaluate the prediction based on the quality of the data and the model.展开更多
Attribute reduction through the combined approach of Rough Sets(RS)and algebraic topology is an open research topic with significant potential for applications.Several research works have introduced a strong relations...Attribute reduction through the combined approach of Rough Sets(RS)and algebraic topology is an open research topic with significant potential for applications.Several research works have introduced a strong relationship between RS and topology spaces for the attribute reduction problem.However,the mentioned recent methods followed a strategy to construct a new measure for attribute selection.Meanwhile,the strategy for searching for the reduct is still to select each attribute and gradually add it to the reduct.Consequently,those methods tended to be inefficient for high-dimensional datasets.To overcome these challenges,we use the separability property of Hausdorff topology to quickly identify distinguishable attributes,this approach significantly reduces the time for the attribute filtering stage of the algorithm.In addition,we propose the concept of Hausdorff topological homomorphism to construct candidate reducts,this method significantly reduces the number of candidate reducts for the wrapper stage of the algorithm.These are the two main stages that have the most effect on reducing computing time for the attribute reduction of the proposed algorithm,which we call the Cluster Filter Wrapper algorithm based on Hausdorff Topology.Experimental validation on the UCI Machine Learning Repository Data shows that the proposed method achieves efficiency in both the execution time and the size of the reduct.展开更多
Forests,the largest terrestrial carbon sinks,play an important role in carbon sequestration and climate change mitigation.Although forest attributes and environmental factors have been shown to impact aboveground biom...Forests,the largest terrestrial carbon sinks,play an important role in carbon sequestration and climate change mitigation.Although forest attributes and environmental factors have been shown to impact aboveground biomass,their influence on biomass stocks in species-rich forests in southern China,a biodiversity hotspot,has rarely been investigated.In this study,we characterized the effects of environmental factors,forest structure,and species diversity on aboveground biomass stocks of 30 plots(1 ha each) in natural forests located within seven nature reserves distributed across subtropical and marginal tropical zones in Guangxi,China.Our results indicate that forest aboveground biomass stocks in this region are lower than those in mature tropical and subtropical forests in other regions.Furthermore,we found that aboveground biomass was positively correlated with stand age,mean annual precipitation,elevation,structural attributes and species richness,although not with species evenness.When we compared stands with the same basal area,we found that aboveground biomass stock was higher in communities with a higher coefficient of variation of diameter at breast height.These findings highlight the importance of maintaining forest structural diversity and species richness to promote aboveground biomass accumulation and reveal the potential impacts of precipitation changes resulting from climate warming on the ecosystem services of subtropical and northern tropical forests in China.Notably,many natural forests in southern China are not fully stocked.Therefore,their continued growth will increase their carbon storage over time.展开更多
The technological revolution has spawned a new generation of industrial systems,but it has also put forward higher requirements for safety management accuracy,timeliness,and systematicness.Risk assessment needs to evo...The technological revolution has spawned a new generation of industrial systems,but it has also put forward higher requirements for safety management accuracy,timeliness,and systematicness.Risk assessment needs to evolve to address the existing and future challenges by considering the new demands and advancements in safety management.The study aims to propose a systematic and comprehensive risk assessment method to meet the needs of process system safety management.The methodology first incorporates possibility,severity,and dynamicity(PSD)to structure the“51X”evaluation indicator system,including the inherent,management,and disturbance risk factors.Subsequently,the four-tier(risk point-unit-enterprise-region)risk assessment(RA)mathematical model has been established to consider supervision needs.And in conclusion,the application of the PSD-RA method in ammonia refrigeration workshop cases and safety risk monitoring systems is presented to illustrate the feasibility and effectiveness of the proposed PSD-RA method in safety management.The findings show that the PSD-RA method can be well integrated with the needs of safety work informatization,which is also helpful for implementing the enterprise's safety work responsibility and the government's safety supervision responsibility.展开更多
Clothing attribute recognition has become an essential technology,which enables users to automatically identify the characteristics of clothes and search for clothing images with similar attributes.However,existing me...Clothing attribute recognition has become an essential technology,which enables users to automatically identify the characteristics of clothes and search for clothing images with similar attributes.However,existing methods cannot recognize newly added attributes and may fail to capture region-level visual features.To address the aforementioned issues,a region-aware fashion contrastive language-image pre-training(RaF-CLIP)model was proposed.This model aligned cropped and segmented images with category and multiple fine-grained attribute texts,achieving the matching of fashion region and corresponding texts through contrastive learning.Clothing retrieval found suitable clothing based on the user-specified clothing categories and attributes,and to further improve the accuracy of retrieval,an attribute-guided composed network(AGCN)as an additional component on RaF-CLIP was introduced,specifically designed for composed image retrieval.This task aimed to modify the reference image based on textual expressions to retrieve the expected target.By adopting a transformer-based bidirectional attention and gating mechanism,it realized the fusion and selection of image features and attribute text features.Experimental results show that the proposed model achieves a mean precision of 0.6633 for attribute recognition tasks and a recall@10(recall@k is defined as the percentage of correct samples appearing in the top k retrieval results)of 39.18 for composed image retrieval task,satisfying user needs for freely searching for clothing through images and texts.展开更多
The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attr...The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.展开更多
This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in lin...This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in line with the general understanding of the impact different geometries have on RCS but show that geometries can also influence the variance of measured RCS, and typical attributes that reduce RCS increase the variance of the measured RCS. Notably, an increased angle between the front face of a plate and the direction of the radar signal decreased RCS but increased the variance of the RCS measured.展开更多
The domestic space can be defined as the sphere that articulates the needs for subjective containment and contextual stimuli.In this sense,questions arise about the indispensable attributes that spaces must possess fo...The domestic space can be defined as the sphere that articulates the needs for subjective containment and contextual stimuli.In this sense,questions arise about the indispensable attributes that spaces must possess for this articulation to take place adequately.Architecture,as the discipline in charge of satisfying the specific spatial needs of those who inhabit these spaces and,in a broader sense,as a concrete contribution to society,must address this relationship in all its complexity and generate concrete responses that incorporate the appropriate spatial attributes during the design processes.The design processes that shape living spaces confront this dialectic,and the manner in which they do so brings identity and character to them.It is believed that the higher the level of variables that are contemplated and weighted,the greater the adequacy of spaces to the changing dynamics of the people who inhabit them.This article focuses on a thorough analysis of these spatial attributes,in parallel to the definition of each one as a particular condition for design,based on their conceptualization,breakdown,and articulation.Conceptually,the following attributes are addressed:flexibility,adaptability,variability,versatility,multiplicity,plurality,integrality,gradualness,incrementality,progressiveness,independence,connectivity,intimacy,and privacy.Each of these attributes is valued as a contribution to creating adequate habitability in contextual terms,with consideration to possible integrations and combinations.展开更多
For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm u...For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm using discernment as the heuristic information was proposed.The reduction algorithm comprehensively considers the dependency degree and neighborhood granulation degree of attributes,allowing for a more accurate measurement of the importance degrees of attributes.Example analyses and experimental results demonstrate the feasibility and effectiveness of the algorithm.展开更多
As e-commerce continues to mature,the advantages of live streaming within the industry have become increasingly apparent,offering significant growth opportunities.Social e-commerce platforms,which are user-centered,in...As e-commerce continues to mature,the advantages of live streaming within the industry have become increasingly apparent,offering significant growth opportunities.Social e-commerce platforms,which are user-centered,integrate social networks with e-commerce by leveraging social interactions to drive product sales and enhance the overall consumer shopping experience.This type of e-commerce fosters engagement and promotes products by merging online communities with shopping behavior,creating a more interactive and dynamic marketplace.It not only retains the traditional e-commerce trading and marketing functions but also adds a social dimension,making live stream anchors crucial figures connecting consumers with products.These anchors can attract consumers with their appearance and charm,and use their expertise on live streaming platforms to guide consumers by recommending live content.They can also interact with their audiences and potentially influence them to purchase the recommended goods.It is evident that the attributes of anchors in live streaming rooms significantly impact consumers’online behavior.Therefore,researching how platform contextual factors regulate consumers’online behavior is of great practical significance.This study employs multilevel regression analysis to support its hypotheses using data.The findings indicate that contextual factors of the platform significantly influence online behavior,enhancing the positive relationship between user attachment and online activities.展开更多
Lubricant diagnosis serves as a crucial accordance for condition-based maintenance(CBM)involving oil changing and wear examination of critical parts in equipment.However,the accuracy of traditional end-to-end diagnosi...Lubricant diagnosis serves as a crucial accordance for condition-based maintenance(CBM)involving oil changing and wear examination of critical parts in equipment.However,the accuracy of traditional end-to-end diagnosis models is often limited by the inconsistency and random fluctuations in multiple monitoring indicators.To address this,an attribute-driven adaptive diagnosis method is developed,involving three attributes:physicochemical,contamination,and wear.Correspondingly,a fuzzy fault tree(termed FFT)-based model is constructed containing the logic correlations from monitoring indicators to attributes and to lubricant failures.In particular,inference rules are integrated to mitigate conflicts arising from the reverse degradation of multiple indicators.With this model,the lubricant conditions can be accurately assessed through rule-based reasoning.Furthermore,to enhance its intelligence,the model is dynamically optimized with lubricant analysis knowledge and monitoring data.For verification,the developed model is tested with lubricant samples from both the fatigue experiment and actual aero-engines.Fatigue experiments reveal that the proposed model can improve the lubricant diagnosis accuracy from 73.4%to 92.6%compared with the existing methods.While for the engine lubricant test,a high accuracy of 90%was achieved.展开更多
AVO (Amplitude variation with offset) technology is widely used in gas hydrate research. BSR (Bottom simulating reflector), caused by the huge difference in wave impedance between the hydrate reservoir and the underly...AVO (Amplitude variation with offset) technology is widely used in gas hydrate research. BSR (Bottom simulating reflector), caused by the huge difference in wave impedance between the hydrate reservoir and the underlying free gas reservoir, is the bottom boundary mark of the hydrate reservoir. Analyzing the AVO attributes of BSR can evaluate hydrate reservoirs. However, the Zoeppritz equation which is the theoretical basis of conventional AVO technology has inherent problems: the Zoeppritz equation does not consider the influence of thin layer thickness on reflection coefficients;the approximation of the Zoeppritz equation assumes that the difference of wave impedance between the two sides of the interface is small. These assumptions are not consistent with the occurrence characteristics of natural gas hydrate. The Brekhovskikh equation, which is more suitable for thin-layer reflection coefficient calculation, is used as the theoretical basis for AVO analysis. The reflection coefficients calculated by the Brekhovskikh equation are complex numbers with phase angles. Therefore, attributes of the reflection coefficient and its phase angle changing with offset are used to analyze the hydrate reservoir's porosity, saturation, and thickness. Finally, the random forest algorithm is used to predict the reservoir porosity, hydrate saturation, and thickness of the hydrate reservoir. In the synthetic data, the inversion results based on the four attributes of the Brekhovskikh equation are better than the conventional inversion results based on the two attributes of Zoeppritz, and the thickness can be accurately predicted. The proposed method also achieves good results in the application of Blake Ridge data. According to the method proposed in this paper, the hydrate reservoir in the area has a high porosity (more than 50%), and a medium saturation (between 10% and 20%). The thickness is mainly between 200m and 300m. It is consistent with the previous results obtained by velocity analysis.展开更多
Decision implication is a form of decision knowledge represen-tation,which is able to avoid generating attribute implications that occur between condition attributes and between decision attributes.Compared with other...Decision implication is a form of decision knowledge represen-tation,which is able to avoid generating attribute implications that occur between condition attributes and between decision attributes.Compared with other forms of decision knowledge representation,decision implication has a stronger knowledge representation capability.Attribute granularization may facilitate the knowledge extraction of different attribute granularity layers and thus is of application significance.Decision implication canonical basis(DICB)is the most compact set of decision implications,which can efficiently represent all knowledge in the decision context.In order to mine all deci-sion information on decision context under attribute granulating,this paper proposes an updated method of DICB.To this end,the paper reduces the update of DICB to the updates of decision premises after deleting an attribute and after adding granulation attributes of some attributes.Based on this,the paper analyzes the changes of decision premises,examines the properties of decision premises,designs an algorithm for incrementally generating DICB,and verifies its effectiveness through experiments.In real life,by using the updated algorithm of DICB,users may obtain all decision knowledge on decision context after attribute granularization.展开更多
Due to the mobility of users in an organization,inclusion of dynamic attributes such as time and location becomes the major challenge in Ciphertext-Policy Attribute-Based Encryption(CP-ABE).By considering this challen...Due to the mobility of users in an organization,inclusion of dynamic attributes such as time and location becomes the major challenge in Ciphertext-Policy Attribute-Based Encryption(CP-ABE).By considering this challenge;we focus to present dynamic time and location information in CP-ABE with mul-ti-authorization.Atfirst,along with the set of attributes of the users,their corre-sponding location is also embedded.Geohash is used to encode the latitude and longitude of the user’s position.Then,decrypt time period and access time period of users are defined using the new time tree(NTT)structure.The NTT sets the encrypted duration of the encrypted data and the valid access time of the private key on the data user’s private key.Besides,single authorization of attribute authority(AA)is extended as multi authorization for enhancing the effectiveness of key generation.Simulation results depict that the proposed CP-ABE achieves better encryption time,decryption time,security level and memory usage.Namely,encryption time and decryption time of the proposed CP-ABE are reduced to 19%and 16%than that of existing CP-ABE scheme.展开更多
The Tongnan secondary negative structure in central Sichuan Basin has controls and influences on the structural framework and petroleum geological conditions in the Gaoshiti-Moxi area.To clarify the controls and influ...The Tongnan secondary negative structure in central Sichuan Basin has controls and influences on the structural framework and petroleum geological conditions in the Gaoshiti-Moxi area.To clarify the controls and influences,the deformation characteristics,structural attributes and evolution process of the Tongnan negative structure were investigated through a series of qualitative and quantitative methods such as balanced profile restoration,area-depth-strain(ADS)analysis,and structural geometric forward numerical simulation,after comprehensive structural interpretation of high-precision 3D seismic data.The results are obtained in three aspects.First,above and below the P/AnP(Permian/pre-Permian)unconformity,the Tongnan negative structure demonstrates vertical differential structural deformation.It experiences two stages of structural stacking and reworking:extensional depression(from the Sinian Dengying Formation to the Permian),and compressional syncline deformation(after the Jurassic).The multi-phase trishear deformation of the preexisting deep normal faults dominated the extensional depression.The primary depression episodes occurred in the periods from the end of Late Proterozoic to the deposition of the 1st–2nd members of the Dengying Formation,and from the deposition of Lower Cambrian Longwangmiao Formation–Middle–Upper Cambrian until the Ordovician.Second,the multi-stage evolution process of the Tongnan negative structure controlled the oil and gas migration and adjustment and present-day differential gas and water distribution between the Tongnan negative structure and the Gaoshiti and Moxi-Longnüsi structural highs.Third,the Ordovician,which is limitedly distributed in the Tongnan negative structure and is truncated by the P/AnP unconformity on the top,has basic geological conditions for the formation of weathering karst carbonate reservoirs.It is a new petroleum target deserving attention.展开更多
There is a constant search for biomaterials from natural products like plants for food and industrial applications.The work embodied in this report aimed at investigating the effects of microwave-assisted and soxhlet ...There is a constant search for biomaterials from natural products like plants for food and industrial applications.The work embodied in this report aimed at investigating the effects of microwave-assisted and soxhlet extraction(MAE and SE) techniques on the functional physicochemical quality characteristics of Moringa oleifera seed oil and proteins extracts. M. oleifera seeds were ground to fine powders and oil was extracted by microwave-assisted and soxhlet extraction techniques using petroleum ether. Quality attributes including yield percent, moisture content,iodine, saponification, specific gravity, viscosity, p H, thiobarbituric acid, acid and peroxide values were measured. Mineral and vitamin contents, chemical/functional groups, fatty acid(FA) composition, and reducing power of the oil were evaluated. Metabolomics of protein extracted from the defatted powders were analyzed by nuclear magnetic resonance(NMR). M. oleifera oil from MAE and SE methods had good yield(34.25 ± 0.0%,28.75 ± 0.0%), low moisture content(0.008 ± 0.0%, 0.011 ± 0.0%), non-drying and unsaturated, moderately saponified, less dense(0.91 ± 0.01, 0.92 ± 0.02 g m L^(-1)), had Newtonian flow, were weakly acidic, showed good content of FAs, recorded strong potential for long shelf-life, showed stability against oxidative rancidity and enzymatic hydrolysis, had very rich deposits of micro-and macro-nutrients as well as water-soluble and lipidsoluble vitamins, and functional groups in the oil were reflective of its content of long-and medium-chain triglycerides(LCT and MCT). Monounsaturated and saturated fatty acids(MUFA and SFA) were detected and the oil has excellent ferric ion reducing power. NMR metabolomic assay revealed the presence of nine essential amino acids(EAAs) in the protein extract. MAE technique is a feasible and acceptable alternative for high throughput extraction of M. oleifera oil with high yield and excellent quality attributes. The study revealed that MAE did not impart any remarkable advantage(s) on the physicochemical properties of M. oleifera seed oil and protein compared to SE technique.展开更多
文摘Reservoir heterogeneities play a crucial role in governing reservoir performance and management.Traditionally,detailed and inter-well heterogeneity analyses are commonly performed by mapping seismic facies change in the seismic data,which is a time-intensive task.Many researchers have utilized a robust Grey-level co-occurrence matrix(GLCM)-based texture attributes to map reservoir heterogeneity.However,these attributes take seismic data as input and might not be sensitive to lateral lithology variation.To incorporate the lithology information,we have developed an innovative impedance-based texture approach using GLCM workflow by integrating 3D acoustic impedance volume(a rock propertybased attribute)obtained from a deep convolution network-based impedance inversion.Our proposed workflow is anticipated to be more sensitive toward mapping lateral changes than the conventional amplitude-based texture approach,wherein seismic data is used as input.To evaluate the improvement,we applied the proposed workflow to the full-stack 3D seismic data from the Poseidon field,NW-shelf,Australia.This study demonstrates that a better demarcation of reservoir gas sands with improved lateral continuity is achievable with the presented approach compared to the conventional approach.In addition,we assess the implication of multi-stage faulting on facies distribution for effective reservoir characterization.This study also suggests a well-bounded potential reservoir facies distribution along the parallel fault lines.Thus,the proposed approach provides an efficient strategy by integrating the impedance information with texture attributes to improve the inference on reservoir heterogeneity,which can serve as a promising tool for identifying potential reservoir zones for both production benefits and fluid storage.
文摘Canopy and branch architectures in high-density orchards can be crucial in production and fruit quality. The influence of two canopy orientations (Upright and Tilted) in combination with two arm (branch) architectures (Shortened or Overlapped) on tree growth, yield components, fruit quality, and leaf mineral nutrients in an “Aztec Fuji” apple (Malus domestica Bork.) high-density orchard was studied over five years. Tilted trees with shortened arm configuration (TilShArm) always had significantly larger trunk cross-sectional area (TCSA) than Upright trees with an Overlapped arm configuration (UpOverArm) every year from 2012 to 2016. Trees with a TilShArm system had more cumulative fruit per tree than those with an Upright orientation. Trees with a tilted canopy (TilShArm and TilOverArm) tended to have higher yield per tree and yield per hectare than those with an upright system. Trees with a TilShArm system were more precocious and had more yield per tree than those with an upright canopy orientation in 2012. When values were polled over five years, trees with an upright canopy-shortened arm system (UpShArm) treatment had a lower biennial bearing index (BBI) than those with an upright canopy-overlapped system (UpOverArm). Trees receiving an arm shortening (UpShArm or TilShArm) configuration often had larger fruits than those with overlapped arms (UpOverArm and TilOverArm). Fruit from trees receiving an UpOverArm had higher fruit firmness than those from trees with other canopy-branch arrangements at harvest due to their smaller size. Fruit from trees with a TilShArm and TilOverArm had significantly higher water core and bitter pit but lower sunburn than trees with an upright canopy (UpShArm and UpOverArm). Leaves from trees with an UpOverArm canopy-branch configuration had the lowest leaf Ca but the highest leaf K and Fe concentrations among all treatments.
基金supported by the National Natural Science Foundation of China(Nos.62006001,62372001)the Natural Science Foundation of Chongqing City(Grant No.CSTC2021JCYJ-MSXMX0002).
文摘Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself discrimination paradigmin the biological immune system,the negative representation of information indicates features such as simplicity and efficiency,which is very suitable for preserving social network privacy.Therefore,we suggest a method to preserve the topology privacy and node attribute privacy of attribute social networks,called AttNetNRI.Specifically,a negative survey-based method is developed to disturb the relationship between nodes in the social network so that the topology structure can be kept private.Moreover,a negative database-based method is proposed to hide node attributes,so that the privacy of node attributes can be preserved while supporting the similarity estimation between different node attributes,which is crucial to the analysis of social networks.To evaluate the performance of the AttNetNRI,empirical studies have been conducted on various attribute social networks and compared with several state-of-the-art methods tailored to preserve the privacy of social networks.The experimental results show the superiority of the developed method in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topology disturbing and attribute hiding parts.The experimental results show the superiority of the developed methods in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topological interference and attribute-hiding components.
文摘Attribute reduction is a research hotspot in rough set theory. Traditional heuristic attribute reduction methods add the most important attribute to the decision attribute set each time, resulting in multiple redundant attribute calculations, high time consumption, and low reduction efficiency. In this paper, based on the idea of sequential three-branch decision classification domain, attributes are treated as objects of three-branch division, and attributes are divided into core attributes, relatively necessary attributes, and unnecessary attributes using attribute importance and thresholds. Core attributes are added to the decision attribute set, unnecessary attributes are rejected from being added, and relatively necessary attributes are repeatedly divided until the reduction result is obtained. Experiments were conducted on 8 groups of UCI datasets, and the results show that, compared to traditional reduction methods, the method proposed in this paper can effectively reduce time consumption while ensuring classification performance.
基金the financially supported by the National Natural Science Foundation of China(Grant No.52104013)the China Postdoctoral Science Foundation(Grant No.2022T150724)。
文摘Due to the complexity and variability of carbonate formation leakage zones, lost circulation prediction and control is one of the major challenges of carbonate drilling. It raises well-control risks and production expenses. This research utilizes the H oilfield as an example, employs seismic features to analyze mud loss prediction, and produces a complete set of pre-drilling mud loss prediction solutions. Firstly, 16seismic attributes are calculated based on the post-stack seismic data, and the mud loss rate per unit footage is specified. The sample set is constructed by extracting each attribute from the seismic trace surrounding 15 typical wells, with a ratio of 8:2 between the training set and the test set. With the calibration results for mud loss rate per unit footage, the nonlinear mapping relationship between seismic attributes and mud loss rate per unit size is established using the mixed density network model.Then, the influence of the number of sub-Gausses and the uncertainty coefficient on the model's prediction is evaluated. Finally, the model is used in conjunction with downhole drilling conditions to assess the risk of mud loss in various layers and along the wellbore trajectory. The study demonstrates that the mean relative errors of the model for training data and test data are 6.9% and 7.5%, respectively, and that R2is 90% and 88%, respectively, for training data and test data. The accuracy and efficacy of mud loss prediction may be greatly enhanced by combining 16 seismic attributes with the mud loss rate per unit footage and applying machine learning methods. The mud loss prediction model based on the MDN model can not only predict the mud loss rate but also objectively evaluate the prediction based on the quality of the data and the model.
基金funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under Grant Number 102.05-2021.10.
文摘Attribute reduction through the combined approach of Rough Sets(RS)and algebraic topology is an open research topic with significant potential for applications.Several research works have introduced a strong relationship between RS and topology spaces for the attribute reduction problem.However,the mentioned recent methods followed a strategy to construct a new measure for attribute selection.Meanwhile,the strategy for searching for the reduct is still to select each attribute and gradually add it to the reduct.Consequently,those methods tended to be inefficient for high-dimensional datasets.To overcome these challenges,we use the separability property of Hausdorff topology to quickly identify distinguishable attributes,this approach significantly reduces the time for the attribute filtering stage of the algorithm.In addition,we propose the concept of Hausdorff topological homomorphism to construct candidate reducts,this method significantly reduces the number of candidate reducts for the wrapper stage of the algorithm.These are the two main stages that have the most effect on reducing computing time for the attribute reduction of the proposed algorithm,which we call the Cluster Filter Wrapper algorithm based on Hausdorff Topology.Experimental validation on the UCI Machine Learning Repository Data shows that the proposed method achieves efficiency in both the execution time and the size of the reduct.
基金supported by the Guangxi Key R&D Program (project No. AB16380254)a research project of Guangxi Forestry Department (Guilinkezi [2015] No.5)supported a grant for Bagui Senior Fellow (C33600992001)。
文摘Forests,the largest terrestrial carbon sinks,play an important role in carbon sequestration and climate change mitigation.Although forest attributes and environmental factors have been shown to impact aboveground biomass,their influence on biomass stocks in species-rich forests in southern China,a biodiversity hotspot,has rarely been investigated.In this study,we characterized the effects of environmental factors,forest structure,and species diversity on aboveground biomass stocks of 30 plots(1 ha each) in natural forests located within seven nature reserves distributed across subtropical and marginal tropical zones in Guangxi,China.Our results indicate that forest aboveground biomass stocks in this region are lower than those in mature tropical and subtropical forests in other regions.Furthermore,we found that aboveground biomass was positively correlated with stand age,mean annual precipitation,elevation,structural attributes and species richness,although not with species evenness.When we compared stands with the same basal area,we found that aboveground biomass stock was higher in communities with a higher coefficient of variation of diameter at breast height.These findings highlight the importance of maintaining forest structural diversity and species richness to promote aboveground biomass accumulation and reveal the potential impacts of precipitation changes resulting from climate warming on the ecosystem services of subtropical and northern tropical forests in China.Notably,many natural forests in southern China are not fully stocked.Therefore,their continued growth will increase their carbon storage over time.
基金key technology project for the prevention and control of major workplace safety accidents in 2017 from the State Administration of Work Safety of China-the research on the identification and assessment technology and control system of major risks of enterprises for the prevention and control of severe accidents(Hubei-0002-2017AQ)supported by the Department of Emergency Management of Hubei Province,Wuhan 430064,China.
文摘The technological revolution has spawned a new generation of industrial systems,but it has also put forward higher requirements for safety management accuracy,timeliness,and systematicness.Risk assessment needs to evolve to address the existing and future challenges by considering the new demands and advancements in safety management.The study aims to propose a systematic and comprehensive risk assessment method to meet the needs of process system safety management.The methodology first incorporates possibility,severity,and dynamicity(PSD)to structure the“51X”evaluation indicator system,including the inherent,management,and disturbance risk factors.Subsequently,the four-tier(risk point-unit-enterprise-region)risk assessment(RA)mathematical model has been established to consider supervision needs.And in conclusion,the application of the PSD-RA method in ammonia refrigeration workshop cases and safety risk monitoring systems is presented to illustrate the feasibility and effectiveness of the proposed PSD-RA method in safety management.The findings show that the PSD-RA method can be well integrated with the needs of safety work informatization,which is also helpful for implementing the enterprise's safety work responsibility and the government's safety supervision responsibility.
基金National Natural Science Foundation of China(No.61971121)。
文摘Clothing attribute recognition has become an essential technology,which enables users to automatically identify the characteristics of clothes and search for clothing images with similar attributes.However,existing methods cannot recognize newly added attributes and may fail to capture region-level visual features.To address the aforementioned issues,a region-aware fashion contrastive language-image pre-training(RaF-CLIP)model was proposed.This model aligned cropped and segmented images with category and multiple fine-grained attribute texts,achieving the matching of fashion region and corresponding texts through contrastive learning.Clothing retrieval found suitable clothing based on the user-specified clothing categories and attributes,and to further improve the accuracy of retrieval,an attribute-guided composed network(AGCN)as an additional component on RaF-CLIP was introduced,specifically designed for composed image retrieval.This task aimed to modify the reference image based on textual expressions to retrieve the expected target.By adopting a transformer-based bidirectional attention and gating mechanism,it realized the fusion and selection of image features and attribute text features.Experimental results show that the proposed model achieves a mean precision of 0.6633 for attribute recognition tasks and a recall@10(recall@k is defined as the percentage of correct samples appearing in the top k retrieval results)of 39.18 for composed image retrieval task,satisfying user needs for freely searching for clothing through images and texts.
基金Anhui Province Natural Science Research Project of Colleges and Universities(2023AH040321)Excellent Scientific Research and Innovation Team of Anhui Colleges(2022AH010098).
文摘The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.
文摘This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in line with the general understanding of the impact different geometries have on RCS but show that geometries can also influence the variance of measured RCS, and typical attributes that reduce RCS increase the variance of the measured RCS. Notably, an increased angle between the front face of a plate and the direction of the radar signal decreased RCS but increased the variance of the RCS measured.
文摘The domestic space can be defined as the sphere that articulates the needs for subjective containment and contextual stimuli.In this sense,questions arise about the indispensable attributes that spaces must possess for this articulation to take place adequately.Architecture,as the discipline in charge of satisfying the specific spatial needs of those who inhabit these spaces and,in a broader sense,as a concrete contribution to society,must address this relationship in all its complexity and generate concrete responses that incorporate the appropriate spatial attributes during the design processes.The design processes that shape living spaces confront this dialectic,and the manner in which they do so brings identity and character to them.It is believed that the higher the level of variables that are contemplated and weighted,the greater the adequacy of spaces to the changing dynamics of the people who inhabit them.This article focuses on a thorough analysis of these spatial attributes,in parallel to the definition of each one as a particular condition for design,based on their conceptualization,breakdown,and articulation.Conceptually,the following attributes are addressed:flexibility,adaptability,variability,versatility,multiplicity,plurality,integrality,gradualness,incrementality,progressiveness,independence,connectivity,intimacy,and privacy.Each of these attributes is valued as a contribution to creating adequate habitability in contextual terms,with consideration to possible integrations and combinations.
基金Anhui Provincial University Research Project(Project Number:2023AH051659)Tongling University Talent Research Initiation Fund Project(Project Number:2022tlxyrc31)+1 种基金Tongling University School-Level Scientific Research Project(Project Number:2021tlxytwh05)Tongling University Horizontal Project(Project Number:2023tlxyxdz237)。
文摘For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm using discernment as the heuristic information was proposed.The reduction algorithm comprehensively considers the dependency degree and neighborhood granulation degree of attributes,allowing for a more accurate measurement of the importance degrees of attributes.Example analyses and experimental results demonstrate the feasibility and effectiveness of the algorithm.
文摘As e-commerce continues to mature,the advantages of live streaming within the industry have become increasingly apparent,offering significant growth opportunities.Social e-commerce platforms,which are user-centered,integrate social networks with e-commerce by leveraging social interactions to drive product sales and enhance the overall consumer shopping experience.This type of e-commerce fosters engagement and promotes products by merging online communities with shopping behavior,creating a more interactive and dynamic marketplace.It not only retains the traditional e-commerce trading and marketing functions but also adds a social dimension,making live stream anchors crucial figures connecting consumers with products.These anchors can attract consumers with their appearance and charm,and use their expertise on live streaming platforms to guide consumers by recommending live content.They can also interact with their audiences and potentially influence them to purchase the recommended goods.It is evident that the attributes of anchors in live streaming rooms significantly impact consumers’online behavior.Therefore,researching how platform contextual factors regulate consumers’online behavior is of great practical significance.This study employs multilevel regression analysis to support its hypotheses using data.The findings indicate that contextual factors of the platform significantly influence online behavior,enhancing the positive relationship between user attachment and online activities.
基金supported in part by the National Natural Science Foundation of China(Nos.52275126 and 52105159)the Science and Technology Planning Project of Shaanxi Province,China(No.2024GX-YBXM-292).
文摘Lubricant diagnosis serves as a crucial accordance for condition-based maintenance(CBM)involving oil changing and wear examination of critical parts in equipment.However,the accuracy of traditional end-to-end diagnosis models is often limited by the inconsistency and random fluctuations in multiple monitoring indicators.To address this,an attribute-driven adaptive diagnosis method is developed,involving three attributes:physicochemical,contamination,and wear.Correspondingly,a fuzzy fault tree(termed FFT)-based model is constructed containing the logic correlations from monitoring indicators to attributes and to lubricant failures.In particular,inference rules are integrated to mitigate conflicts arising from the reverse degradation of multiple indicators.With this model,the lubricant conditions can be accurately assessed through rule-based reasoning.Furthermore,to enhance its intelligence,the model is dynamically optimized with lubricant analysis knowledge and monitoring data.For verification,the developed model is tested with lubricant samples from both the fatigue experiment and actual aero-engines.Fatigue experiments reveal that the proposed model can improve the lubricant diagnosis accuracy from 73.4%to 92.6%compared with the existing methods.While for the engine lubricant test,a high accuracy of 90%was achieved.
基金The research is funded by the National Natural Science Foundation of China(No.12171455)the Original Innovation Research Program of the Chinese Academy of Sciences(CAS)under grant number ZDBS-LY-DQC003the Key Research Programs IGGCAS-2019031.
文摘AVO (Amplitude variation with offset) technology is widely used in gas hydrate research. BSR (Bottom simulating reflector), caused by the huge difference in wave impedance between the hydrate reservoir and the underlying free gas reservoir, is the bottom boundary mark of the hydrate reservoir. Analyzing the AVO attributes of BSR can evaluate hydrate reservoirs. However, the Zoeppritz equation which is the theoretical basis of conventional AVO technology has inherent problems: the Zoeppritz equation does not consider the influence of thin layer thickness on reflection coefficients;the approximation of the Zoeppritz equation assumes that the difference of wave impedance between the two sides of the interface is small. These assumptions are not consistent with the occurrence characteristics of natural gas hydrate. The Brekhovskikh equation, which is more suitable for thin-layer reflection coefficient calculation, is used as the theoretical basis for AVO analysis. The reflection coefficients calculated by the Brekhovskikh equation are complex numbers with phase angles. Therefore, attributes of the reflection coefficient and its phase angle changing with offset are used to analyze the hydrate reservoir's porosity, saturation, and thickness. Finally, the random forest algorithm is used to predict the reservoir porosity, hydrate saturation, and thickness of the hydrate reservoir. In the synthetic data, the inversion results based on the four attributes of the Brekhovskikh equation are better than the conventional inversion results based on the two attributes of Zoeppritz, and the thickness can be accurately predicted. The proposed method also achieves good results in the application of Blake Ridge data. According to the method proposed in this paper, the hydrate reservoir in the area has a high porosity (more than 50%), and a medium saturation (between 10% and 20%). The thickness is mainly between 200m and 300m. It is consistent with the previous results obtained by velocity analysis.
基金supported by the National Natural Science Foundation of China (Nos.61972238,62072294).
文摘Decision implication is a form of decision knowledge represen-tation,which is able to avoid generating attribute implications that occur between condition attributes and between decision attributes.Compared with other forms of decision knowledge representation,decision implication has a stronger knowledge representation capability.Attribute granularization may facilitate the knowledge extraction of different attribute granularity layers and thus is of application significance.Decision implication canonical basis(DICB)is the most compact set of decision implications,which can efficiently represent all knowledge in the decision context.In order to mine all deci-sion information on decision context under attribute granulating,this paper proposes an updated method of DICB.To this end,the paper reduces the update of DICB to the updates of decision premises after deleting an attribute and after adding granulation attributes of some attributes.Based on this,the paper analyzes the changes of decision premises,examines the properties of decision premises,designs an algorithm for incrementally generating DICB,and verifies its effectiveness through experiments.In real life,by using the updated algorithm of DICB,users may obtain all decision knowledge on decision context after attribute granularization.
文摘Due to the mobility of users in an organization,inclusion of dynamic attributes such as time and location becomes the major challenge in Ciphertext-Policy Attribute-Based Encryption(CP-ABE).By considering this challenge;we focus to present dynamic time and location information in CP-ABE with mul-ti-authorization.Atfirst,along with the set of attributes of the users,their corre-sponding location is also embedded.Geohash is used to encode the latitude and longitude of the user’s position.Then,decrypt time period and access time period of users are defined using the new time tree(NTT)structure.The NTT sets the encrypted duration of the encrypted data and the valid access time of the private key on the data user’s private key.Besides,single authorization of attribute authority(AA)is extended as multi authorization for enhancing the effectiveness of key generation.Simulation results depict that the proposed CP-ABE achieves better encryption time,decryption time,security level and memory usage.Namely,encryption time and decryption time of the proposed CP-ABE are reduced to 19%and 16%than that of existing CP-ABE scheme.
基金Supported by the National Natural Science Foundation of China(U19B6003-01).
文摘The Tongnan secondary negative structure in central Sichuan Basin has controls and influences on the structural framework and petroleum geological conditions in the Gaoshiti-Moxi area.To clarify the controls and influences,the deformation characteristics,structural attributes and evolution process of the Tongnan negative structure were investigated through a series of qualitative and quantitative methods such as balanced profile restoration,area-depth-strain(ADS)analysis,and structural geometric forward numerical simulation,after comprehensive structural interpretation of high-precision 3D seismic data.The results are obtained in three aspects.First,above and below the P/AnP(Permian/pre-Permian)unconformity,the Tongnan negative structure demonstrates vertical differential structural deformation.It experiences two stages of structural stacking and reworking:extensional depression(from the Sinian Dengying Formation to the Permian),and compressional syncline deformation(after the Jurassic).The multi-phase trishear deformation of the preexisting deep normal faults dominated the extensional depression.The primary depression episodes occurred in the periods from the end of Late Proterozoic to the deposition of the 1st–2nd members of the Dengying Formation,and from the deposition of Lower Cambrian Longwangmiao Formation–Middle–Upper Cambrian until the Ordovician.Second,the multi-stage evolution process of the Tongnan negative structure controlled the oil and gas migration and adjustment and present-day differential gas and water distribution between the Tongnan negative structure and the Gaoshiti and Moxi-Longnüsi structural highs.Third,the Ordovician,which is limitedly distributed in the Tongnan negative structure and is truncated by the P/AnP unconformity on the top,has basic geological conditions for the formation of weathering karst carbonate reservoirs.It is a new petroleum target deserving attention.
基金funded by International Foundation for Science(IFS)and Organisation for the Prohibition of Chemical Weapons(OPCW)research grant awarded to Dr.Chukwuebuka Emmanuel Umeyor in 2019(Grant number:I-2-F-6448-1).
文摘There is a constant search for biomaterials from natural products like plants for food and industrial applications.The work embodied in this report aimed at investigating the effects of microwave-assisted and soxhlet extraction(MAE and SE) techniques on the functional physicochemical quality characteristics of Moringa oleifera seed oil and proteins extracts. M. oleifera seeds were ground to fine powders and oil was extracted by microwave-assisted and soxhlet extraction techniques using petroleum ether. Quality attributes including yield percent, moisture content,iodine, saponification, specific gravity, viscosity, p H, thiobarbituric acid, acid and peroxide values were measured. Mineral and vitamin contents, chemical/functional groups, fatty acid(FA) composition, and reducing power of the oil were evaluated. Metabolomics of protein extracted from the defatted powders were analyzed by nuclear magnetic resonance(NMR). M. oleifera oil from MAE and SE methods had good yield(34.25 ± 0.0%,28.75 ± 0.0%), low moisture content(0.008 ± 0.0%, 0.011 ± 0.0%), non-drying and unsaturated, moderately saponified, less dense(0.91 ± 0.01, 0.92 ± 0.02 g m L^(-1)), had Newtonian flow, were weakly acidic, showed good content of FAs, recorded strong potential for long shelf-life, showed stability against oxidative rancidity and enzymatic hydrolysis, had very rich deposits of micro-and macro-nutrients as well as water-soluble and lipidsoluble vitamins, and functional groups in the oil were reflective of its content of long-and medium-chain triglycerides(LCT and MCT). Monounsaturated and saturated fatty acids(MUFA and SFA) were detected and the oil has excellent ferric ion reducing power. NMR metabolomic assay revealed the presence of nine essential amino acids(EAAs) in the protein extract. MAE technique is a feasible and acceptable alternative for high throughput extraction of M. oleifera oil with high yield and excellent quality attributes. The study revealed that MAE did not impart any remarkable advantage(s) on the physicochemical properties of M. oleifera seed oil and protein compared to SE technique.