The new accelerator project ( HIRFL-CSR ) constructed at the Heavy Ion Research Facility in Lanzhou (HIRFL) is approaching completion. It is a multipurpose cooler-storage-ring system, consisting of a maim ring (C...The new accelerator project ( HIRFL-CSR ) constructed at the Heavy Ion Research Facility in Lanzhou (HIRFL) is approaching completion. It is a multipurpose cooler-storage-ring system, consisting of a maim ring (CSRm), an experimental ring (CSRe) and two transfer beam lines. The UHV system of CSRm is the most representative subsystem in the project. To minimize the beam loss due to charge exchange of the heavy ions with the residual gas molecules, the pressure of the CSRm vacuum system should reach 3.5 × 10^-9 Pa (N2 equivalent) and the pressure of 8 × 10^-10 Pa is expected for very heavy ion such as uranium to make its lifetime longer than 50 s in the ring. Now, the vacuum system of CSRm has been completed and a pressure less than 5 × 10^-10 Pa has been obtained. In this paper the layout of the CSRm vacuum system, the vacuum equipment in CSRm, the treatment method for the CSRm vacuum chambers, and the installation and operation of the system will be reported.展开更多
Thin strain-relaxed Si0.81Ge0.19 films (95 nm) on the Ar+ ion implanted Si substrates with different ener- gies (30 keV,40 keV and 60 keV) at the same implanted dose (3×1015cm-2) were grown by ultra high vacuum c...Thin strain-relaxed Si0.81Ge0.19 films (95 nm) on the Ar+ ion implanted Si substrates with different ener- gies (30 keV,40 keV and 60 keV) at the same implanted dose (3×1015cm-2) were grown by ultra high vacuum chemi- cal vapor deposition (UHVCVD). Rutherford backscattering/ion channeling (RBS/C),Raman spectra as well as atomic force microscopy (AFM) were used to characterize these SiGe films. Investigations by RBS/C demonstrate that these thin Si0.81Ge0.19 films were epitaxially grown on the Ar+ ion implanted Si substrates,although there existed lots of crystal defects. The relaxation extent of Si0.81Ge0.19 films on the Ar+ implanted Si substrates is larger than that in the unimplanted case,which were verified by Raman spectra. Considering the relaxation extent of strain,surface roughness and crystal defects in these SiGe films,the thin relaxed SiGe film on the 30 keV Ar+ implanted Si substrate is optimal.展开更多
Waveguide directional couplers working at 5.712/11.9924 GHz are developed. Even holes symmetrical to the structure are drilled along the central line of the narrow-wall of the waveguide, which are used to couple the e...Waveguide directional couplers working at 5.712/11.9924 GHz are developed. Even holes symmetrical to the structure are drilled along the central line of the narrow-wall of the waveguide, which are used to couple the electromagnetic power from the main-waveguide to the sub-waveguide. The final prototypes have achieved satisfactory performances of high-power, ultra-high-vacuum and high-directivity. The microwave measurement results are also qualified.展开更多
文摘The new accelerator project ( HIRFL-CSR ) constructed at the Heavy Ion Research Facility in Lanzhou (HIRFL) is approaching completion. It is a multipurpose cooler-storage-ring system, consisting of a maim ring (CSRm), an experimental ring (CSRe) and two transfer beam lines. The UHV system of CSRm is the most representative subsystem in the project. To minimize the beam loss due to charge exchange of the heavy ions with the residual gas molecules, the pressure of the CSRm vacuum system should reach 3.5 × 10^-9 Pa (N2 equivalent) and the pressure of 8 × 10^-10 Pa is expected for very heavy ion such as uranium to make its lifetime longer than 50 s in the ring. Now, the vacuum system of CSRm has been completed and a pressure less than 5 × 10^-10 Pa has been obtained. In this paper the layout of the CSRm vacuum system, the vacuum equipment in CSRm, the treatment method for the CSRm vacuum chambers, and the installation and operation of the system will be reported.
基金Partially supported by the National Natural Sciences Foundation of China (No.10075072)
文摘Thin strain-relaxed Si0.81Ge0.19 films (95 nm) on the Ar+ ion implanted Si substrates with different ener- gies (30 keV,40 keV and 60 keV) at the same implanted dose (3×1015cm-2) were grown by ultra high vacuum chemi- cal vapor deposition (UHVCVD). Rutherford backscattering/ion channeling (RBS/C),Raman spectra as well as atomic force microscopy (AFM) were used to characterize these SiGe films. Investigations by RBS/C demonstrate that these thin Si0.81Ge0.19 films were epitaxially grown on the Ar+ ion implanted Si substrates,although there existed lots of crystal defects. The relaxation extent of Si0.81Ge0.19 films on the Ar+ implanted Si substrates is larger than that in the unimplanted case,which were verified by Raman spectra. Considering the relaxation extent of strain,surface roughness and crystal defects in these SiGe films,the thin relaxed SiGe film on the 30 keV Ar+ implanted Si substrate is optimal.
文摘Waveguide directional couplers working at 5.712/11.9924 GHz are developed. Even holes symmetrical to the structure are drilled along the central line of the narrow-wall of the waveguide, which are used to couple the electromagnetic power from the main-waveguide to the sub-waveguide. The final prototypes have achieved satisfactory performances of high-power, ultra-high-vacuum and high-directivity. The microwave measurement results are also qualified.