Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded aust...Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded austenitic stainless steel parts is limited owing to the micro bulging distortion that occurs on the back surface of the partial penetration side.In this paper,non-penetration lap laser welding experiments,were conducted on galvanized and SUS304 austenitic stainless steel plates using a fiber laser,to investigate the mechanism of bulging distortion.A comparative experiment of DC01 galvanized steel-Q235 carbon steel lap laser welding was carried out,and the deflection and distortion profile of partially penetrated side of the sheets were measured using a noncontact laser interferometer.In addition,the cold-rolled SUS304 was subjected to heat holding at different temperatures and water quenching after bending to characterize its microstructure under tensile and compressive stress.The results show that,during the heating stage of the thermal cycle of laser lap welding,the partial penetration side of the SUS304 steel sheet generates compressive stress,which extrudes the material in the heat-affected zone to the outside of the back of the SUS304 steel sheet,thereby forming a bulge.The findings of these experiments can be of great value for controlling the distortion of the partial penetrated side of austenitic stainless steel sheet during laser non-penetration lap welding.展开更多
A visual sensing system was established to monitor the weld pool in laser spot welding. The top-hat and bottom-hat transformation algorithms based on mathematical morphology were used to compensate for non-uniform con...A visual sensing system was established to monitor the weld pool in laser spot welding. The top-hat and bottom-hat transformation algorithms based on mathematical morphology were used to compensate for non-uniform contrast of weld pool edge. Moreover, the canny edge detector was applied to extract the weld paol profile. The edge detected results show that the morphological operation is obviously superior to the traditional contrast enhancement method. In addition, the combination of dilation and erosion was applied to eliminate the irrelevant edge details, and the smooth weld pool edge was acquired. Based on the image processing technology described above, the dynamic process of weld pool diameter during laser spot welding was obtained.展开更多
Penetration and non-penetration lap laser welding is the joining method for assembling side facade panels of railway passenger cars,while their fatigue performances and the difference between them are not completely u...Penetration and non-penetration lap laser welding is the joining method for assembling side facade panels of railway passenger cars,while their fatigue performances and the difference between them are not completely understood.In this study,the fatigue resistance and failure behavior of penetration 1.5+0.8-P and non-penetration 0.8+1.5-N laser welded lap joints prepared with 0.8 mm and 1.5 mm cold-rolled 301L plates were investigated.The weld beads showed a solidification microstructure of primary ferrite with good thermal cracking resistance,and their hardness was lower than that of the plates.The 1.5+0.8-P joint exhibited better fatigue resistance to low stress amplitudes,whereas the 0.8+1.5-N joint showed greater resistance to high stress amplitudes.The failure modes of 0.8+1.5-N and 1.5+0.8-P joints were 1.5 mm and 0.8 mm lower lap plate fracture,respectively,and the primary cracks were initiated at welding fusion lines on the lap surface.There were long plastic ribs on the penetration plate fracture,but not on the non-penetration plate fracture.The fatigue resistance stresses in the crack initiation area of the penetration and non-penetration plates calculated based on the mean fatigue limits are 408 MPa and 326 MPa,respectively,which can be used as reference stress for the fatigue design of the laser welded structures.The main reason for the difference in fatigue performance between the two laser welded joints was that the asymmetrical heating in the non-penetration plate thickness resulted in higher residual stress near the welding fusion line.展开更多
Spot laser welding was applied for fastening of protective bearing washers.Corresponding technology and laser welding plants are described. Correlation between appearance of the spot welds and their quality was dis...Spot laser welding was applied for fastening of protective bearing washers.Corresponding technology and laser welding plants are described. Correlation between appearance of the spot welds and their quality was discovered. Mechanism of the welding distortion has been revealed.展开更多
Dissimilar metal joining between NiTi shape memory alloy(SMA) and stainless steel was conducted.A cluster of NiTi SMA wires were first joined with tungsten inert gas(TIG) welding process,then the NiTi SMA TIG weld...Dissimilar metal joining between NiTi shape memory alloy(SMA) and stainless steel was conducted.A cluster of NiTi SMA wires were first joined with tungsten inert gas(TIG) welding process,then the NiTi SMA TIG weld was welded to a stainless steel pipe with laser spot welding process.The microstructure of the welds was examined with an optical microscope and the elemental distribution in the welds was measured by electron probe microanalysis(EPMA).The results show that TiC compounds dispersively distribute in the NiTi SMA TIG weld.However,the amount of TiC compounds greatly decreases around the fusion boundary of the laser spot weld between the NiTi SMA and stainless steel.Mutual diffusion between NiTi shape memory alloy and stainless steel happen within a short distance near the fusion boundary,and intermetallic compounds such as Ni3Ti+(Fe,Ni)Ti appear around the fusion boundary.展开更多
Advanced high strength steel,aluminum alloy and plastic materials are used in the right places for the purpose of reducing the weight of EV(electric vehicle)bodies and in-vehicle parts,and multi-material structures ar...Advanced high strength steel,aluminum alloy and plastic materials are used in the right places for the purpose of reducing the weight of EV(electric vehicle)bodies and in-vehicle parts,and multi-material structures are advancing.Therefore,it is difficult to handle the welding and joining processes of automobile structures by the conventional arc welding and resistance spot welding,which have been applied to steel joining,and various joining processes are being applied depending on the material.Under above mentioned background,the authors have developed some unique joining processes for multi-materials that are used in the right place.This paper introduces the dissimilar metal joining between the galvanized steel and aluminum alloy by laser arc hybrid process,the metal/thermoplastic dissimilar material joining using laser process and the solid-state resistance spot joining process of advanced high strength steel for EV body structural parts.Moreover,the authors describe the high-speed plasma jet GTA(Gas Tungusten Arc)welding process of copper applied to electrical components such as motors.展开更多
文摘Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded austenitic stainless steel parts is limited owing to the micro bulging distortion that occurs on the back surface of the partial penetration side.In this paper,non-penetration lap laser welding experiments,were conducted on galvanized and SUS304 austenitic stainless steel plates using a fiber laser,to investigate the mechanism of bulging distortion.A comparative experiment of DC01 galvanized steel-Q235 carbon steel lap laser welding was carried out,and the deflection and distortion profile of partially penetrated side of the sheets were measured using a noncontact laser interferometer.In addition,the cold-rolled SUS304 was subjected to heat holding at different temperatures and water quenching after bending to characterize its microstructure under tensile and compressive stress.The results show that,during the heating stage of the thermal cycle of laser lap welding,the partial penetration side of the SUS304 steel sheet generates compressive stress,which extrudes the material in the heat-affected zone to the outside of the back of the SUS304 steel sheet,thereby forming a bulge.The findings of these experiments can be of great value for controlling the distortion of the partial penetrated side of austenitic stainless steel sheet during laser non-penetration lap welding.
文摘A visual sensing system was established to monitor the weld pool in laser spot welding. The top-hat and bottom-hat transformation algorithms based on mathematical morphology were used to compensate for non-uniform contrast of weld pool edge. Moreover, the canny edge detector was applied to extract the weld paol profile. The edge detected results show that the morphological operation is obviously superior to the traditional contrast enhancement method. In addition, the combination of dilation and erosion was applied to eliminate the irrelevant edge details, and the smooth weld pool edge was acquired. Based on the image processing technology described above, the dynamic process of weld pool diameter during laser spot welding was obtained.
基金Supported by Scientific Research and Development Projects of China Railway Corporation(Grant No.2017J011-C).
文摘Penetration and non-penetration lap laser welding is the joining method for assembling side facade panels of railway passenger cars,while their fatigue performances and the difference between them are not completely understood.In this study,the fatigue resistance and failure behavior of penetration 1.5+0.8-P and non-penetration 0.8+1.5-N laser welded lap joints prepared with 0.8 mm and 1.5 mm cold-rolled 301L plates were investigated.The weld beads showed a solidification microstructure of primary ferrite with good thermal cracking resistance,and their hardness was lower than that of the plates.The 1.5+0.8-P joint exhibited better fatigue resistance to low stress amplitudes,whereas the 0.8+1.5-N joint showed greater resistance to high stress amplitudes.The failure modes of 0.8+1.5-N and 1.5+0.8-P joints were 1.5 mm and 0.8 mm lower lap plate fracture,respectively,and the primary cracks were initiated at welding fusion lines on the lap surface.There were long plastic ribs on the penetration plate fracture,but not on the non-penetration plate fracture.The fatigue resistance stresses in the crack initiation area of the penetration and non-penetration plates calculated based on the mean fatigue limits are 408 MPa and 326 MPa,respectively,which can be used as reference stress for the fatigue design of the laser welded structures.The main reason for the difference in fatigue performance between the two laser welded joints was that the asymmetrical heating in the non-penetration plate thickness resulted in higher residual stress near the welding fusion line.
文摘Spot laser welding was applied for fastening of protective bearing washers.Corresponding technology and laser welding plants are described. Correlation between appearance of the spot welds and their quality was discovered. Mechanism of the welding distortion has been revealed.
基金Project(50974046/E041607) supported by the National Natural Science Foundation of China
文摘Dissimilar metal joining between NiTi shape memory alloy(SMA) and stainless steel was conducted.A cluster of NiTi SMA wires were first joined with tungsten inert gas(TIG) welding process,then the NiTi SMA TIG weld was welded to a stainless steel pipe with laser spot welding process.The microstructure of the welds was examined with an optical microscope and the elemental distribution in the welds was measured by electron probe microanalysis(EPMA).The results show that TiC compounds dispersively distribute in the NiTi SMA TIG weld.However,the amount of TiC compounds greatly decreases around the fusion boundary of the laser spot weld between the NiTi SMA and stainless steel.Mutual diffusion between NiTi shape memory alloy and stainless steel happen within a short distance near the fusion boundary,and intermetallic compounds such as Ni3Ti+(Fe,Ni)Ti appear around the fusion boundary.
文摘Advanced high strength steel,aluminum alloy and plastic materials are used in the right places for the purpose of reducing the weight of EV(electric vehicle)bodies and in-vehicle parts,and multi-material structures are advancing.Therefore,it is difficult to handle the welding and joining processes of automobile structures by the conventional arc welding and resistance spot welding,which have been applied to steel joining,and various joining processes are being applied depending on the material.Under above mentioned background,the authors have developed some unique joining processes for multi-materials that are used in the right place.This paper introduces the dissimilar metal joining between the galvanized steel and aluminum alloy by laser arc hybrid process,the metal/thermoplastic dissimilar material joining using laser process and the solid-state resistance spot joining process of advanced high strength steel for EV body structural parts.Moreover,the authors describe the high-speed plasma jet GTA(Gas Tungusten Arc)welding process of copper applied to electrical components such as motors.