期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Non-phosgene synthesis of hexamethylene-1,6-diisocyanate from thermal decomposition of hexamethylene-1,6-dicarbamate over Zn–Co bimetallic supported ZSM-5 catalyst 被引量:2
1
作者 Yan Cao Yafang Chi +3 位作者 Ammar Muhammad Peng He liguo Wang Huiquan Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第3期549-555,共7页
A non-phosgene route for the synthesis of hexamethylene-1,6-diisocyanate(HDI) was developed via catalytic decomposition of hexamethylene-1,6-dicarbamate(HDC) over Zn–Co bi-metallic supported ZSM-5 catalyst.The cataly... A non-phosgene route for the synthesis of hexamethylene-1,6-diisocyanate(HDI) was developed via catalytic decomposition of hexamethylene-1,6-dicarbamate(HDC) over Zn–Co bi-metallic supported ZSM-5 catalyst.The catalyst was characterized by FTIR and XRD analyses. Three solvents dioctyl sebacate(DOS), dibutyl sebacate(DBS) and 1-butyl-3-methylimidazolium tetrafluoroborate(BMIMBF_4) were investigated and compared; DOS gave better performance. The catalytic performances for thermal decomposition of HDC to HDI using DOS as solvent were then investigated, and the results showed that, under the optimized reaction conditions, i.e.,10 wt%concentration of HDC in DOS, 250 °C temperature, 60 min reaction time, 83.8% yield of HDI had been achieved over Zn–Co/ZSM-5. Decomposition of the intermediate hexamethylene-1-carbamate-6-isocyanate(HMI) over Zn–Co/ZSM-5 in DOS solvent was further studied and the results indicated that yield of HDI from HMI reached to 69.6%(98.6% HDI selectively) at 270 °C, which further increased the yield of the total HDI(HDI_(tol)) to as high as 95.0%. Recycling of catalyst showed that HDI and HMI yield slightly decreased, and by-product yield increased after the catalyst was reused for 4 times. At last possible reaction mechanism was proposed. 展开更多
关键词 non-phosgenE Thermal decomposition Hexamethylene-1 6-diisocyanate Hexamethylene-1 6-dicarbamate BIMETALLIC SUPPORTED ZSM-5 catalyst
下载PDF
Important Green Chemistry and Catalysis: Non-phosgene Syntheses of Isocyanates - Thermal Cracking Way 被引量:5
2
作者 Peixue Wang Shimin Liu Youquan Deng 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2017年第6期821-835,共15页
Currently, industrial production of isocyanates, or diisocyanates in particular, has been exclusively based on phosgene processes. Phosgene is extremely toxic and large amounts of corrosive HC1 are produced as a side ... Currently, industrial production of isocyanates, or diisocyanates in particular, has been exclusively based on phosgene processes. Phosgene is extremely toxic and large amounts of corrosive HC1 are produced as a side product. In the view of environment protection and society safety, development of non-phosgene processes for isocyanates production will be highly desired, and this should be one of the most important missions for green chemistry and catalysis. In this review, efforts for development of non-phosgene method for syntheses of isocyanates, i.e., catalytic syntheses of N-substituted carbamates from nitro- or amino-compounds with CO, dimethyl carbonate (DMC), urea and even CO2 etc. as carbonyl sources, then thermal cracking of N-substituted carbamates to afford corresponding i socyanates, are summarized, and a brief prospect for non-phosgene syntheses of isocyanates is also addressed. 展开更多
关键词 non-phosgenE N-substituted carbamates ISOCYANATES carbonylation agent CATALYSIS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部