Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadr...Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadruped robots show great potential in unstructured environments due to their discrete landing positions and large payloads.As the most critical movement unit of a quadruped robot,the limb leg unit(LLU)directly affects movement speed and reliability,and requires a compact and lightweight design.Inspired by the dexterous skeleton–muscle systems of cheetahs and humans,this paper proposes a highly integrated bionic actuator system for a better dynamic performance of an LLU.We propose that a cylinder barrel with multiple element interfaces and internal smooth channels is realized using metal additive manufacturing,and hybrid lattice structures are introduced into the lightweight design of the piston rod.In addition,additive manufacturing and topology optimization are incorporated to reduce the redundant material of the structural parts of the LLU.The mechanical properties of the actuator system are verified by numerical simulation and experiments,and the power density of the actuators is far greater than that of cheetah muscle.The mass of the optimized LLU is reduced by 24.5%,and the optimized LLU shows better response time performance when given a step signal,and presents a good trajectory tracking ability with the increase in motion frequency.展开更多
Background: Chronic ulcers are responsible for considerable morbidity and significantly contribute to the escalation in the cost of health care. Chronic leg ulcers (CLUs) are susceptible to microbial infections and se...Background: Chronic ulcers are responsible for considerable morbidity and significantly contribute to the escalation in the cost of health care. Chronic leg ulcers (CLUs) are susceptible to microbial infections and serious complications such as tissue necrosis and osteomyelitis, can result without the timely control of infections. Recent studies have also reported an increase in the association of fungal infections with chronic non-healing ulcers. Aim: To determine the prevalence of bacterial and fungal infections among patients reporting with chronic leg ulcers in participants without co-morbidities. Methods: A prospective cross-sectional study was conducted among patients with chronic leg ulcers at the National Reconstructive Plastic Surgery and Burns Centre, Korle-Bu Teaching Hospital (NRPS/BC-KBTH) and those who consented were enrolled. Characteristics of the wound as well as micro-organisms cultured from wound swabs were recorded. Results: A total of 50 participants were enrolled for the study with the mean (SD) age of 40.7 (10.7) years. Eighty percent of the participants presented with post traumatic leg ulcers with 80% being artisans and traders in the age group 31 - 50 years. There was no statistically significant association between sex and the organism cultured for post traumatic and cellulitis (p-value > 0.05). The prevalence of bacterial and fungal infection was 79.3% and 20.7% respectively. Pseudomonas species was the most isolated bacteria (61.5%) while Aspergillus niger was the most isolated fungi (41%). Conclusion: From this study, fungal infections should be included in managing chronic leg ulcers, especially among artisans, famers and gardeners even though there was a significantly higher burden of bacterial infections.展开更多
Dear Editor Legumes,the second-largest family of crops,contribute over one-third of human dietary proteins.Soybean(Glycine max L.),common bean(Phaseolus vulgaris L.),pea(Pisum sativum L.),and cowpea(Vigna unguiculata ...Dear Editor Legumes,the second-largest family of crops,contribute over one-third of human dietary proteins.Soybean(Glycine max L.),common bean(Phaseolus vulgaris L.),pea(Pisum sativum L.),and cowpea(Vigna unguiculata L.)are among the most widely culti-vated crop legumes for grain and vegetable and are essential for food security globally.展开更多
This paper presents an effective way to support motion planning of legged mobile robots—Inverted Modelling,based on the equivalent metamorphic mechanism concept.The difference from the previous research is that we he...This paper presents an effective way to support motion planning of legged mobile robots—Inverted Modelling,based on the equivalent metamorphic mechanism concept.The difference from the previous research is that we herein invert the equivalent parallel mechanism.Assuming the leg mechanisms are hybrid links,the body of robot being considered as fixed platform,and ground as moving platform.The motion performance is transformed and measured in the body frame.Terrain and joint limits are used as input parameters to the model,resulting in the representation which is independent of terrains and particular poses in Inverted Modelling.Hence,it can universally be applied to any kind of legged robots as global motion performance framework.Several performance measurements using Inverted Modelling are presented and used in motion performance evaluation.According to the requirements of actual work like motion continuity and stability,motion planning of legged robot can be achieved using different measurements on different terrains.Two cases studies present the simulations of quadruped and hexapod robots walking on rugged roads.The results verify the correctness and effectiveness of the proposed method.展开更多
Musculoskeletal pain is common. Because pain is subjective, objectively describing it is crucial. However, pain assessment may cause distress in patients;therefore, physical therapists (PTs) should conduct these tests...Musculoskeletal pain is common. Because pain is subjective, objectively describing it is crucial. However, pain assessment may cause distress in patients;therefore, physical therapists (PTs) should conduct these tests quickly and accurately. Simple and clear instructions are recommended for pain assessment. However, few studies have provided evidence to support this hypothesis. Correspondingly, this study aimed to confirm the effectiveness of specific verbal instructions for pain location during five consecutive Passive Straight Leg Raise (PSLR) tests. The 28 asymptomatic participants (age 27.4 ± 9.6 years) who provided informed consent received five consecutive PSLR tests: three without and two with specific verbal instructions to ascertain pain intensity, quality, and location. The participants drew pain locations on a body chart and described the pain intensity and quality after each test. All participants were interviewed regarding the differences they noted in the presence and absence of specific verbal instructions. Each pain location was classified into one of ten areas for statistical analysis. The proportion of participants who changed the pain location was compared between the tests using McNemar’s test, and the kappa coefficient was confirmed for consistency of pain location. There was a significant difference in the proportion of participants who changed their pain location between the second and third tests and from the third to the fourth test (McNemar’s test: p = 0.003). Kappa coefficients had low consistency (κ = 0.28) just after receiving the specific verbal instructions in the fourth test compared to the third test. Consistency improved in the fifth test (κ = 0.57);93% of the participants answered that the pain location had become clearer. This study revealed the effects of specific verbal instructions in identifying pain locations. This detailed information may help PTs provide appropriate treatment and contribute to reducing pain in clinical settings.展开更多
To explore hostile extraterrestrial landforms and construct an engineering prototype,this paper presents the task-oriented topology system synthesis of reconfigurable legged mobile lander(ReLML)with three operation mo...To explore hostile extraterrestrial landforms and construct an engineering prototype,this paper presents the task-oriented topology system synthesis of reconfigurable legged mobile lander(ReLML)with three operation modes from adjusting,landing,to roving.Compared with our preceding works,the adjusting mode with three rotations(3R)provides a totally novel exploration approach to geometrically matching and securely arriving at complex terrains dangerous to visit currently;the landing mode is redefined by two rotations one translation(2R1T),identical with the tried-and-tested Apollo and Chang'E landers to enhance survivability via reasonable touchdown buffering motion;roving mode also utilizes 2R1T motion for good motion and force properties.The reconfigurable mechanism theory is first brought into synthesizing legged mobile lander integrating active and passive metamorphoses,composed of two types of metamorphic joints and metamorphic execution and transmission mechanisms.To reveal metamorphic principles with multiple finite motions,the finite screw theory is developed to present the procedure from unified mathematical representation,modes and source phase derivations,metamorphic joint and limb design,to final structure assembly.To identify the prototype topology,the 3D optimal selection matrix method is proposed considering three operation modes,five evaluation criteria,and two topological subsystems.Finally,simulation verifies the whole task implementation process to ensure the reasonability of design.展开更多
Background:Through the use of network pharmacology and molecular docking approaches,this study will examine the pharmacological effects of Sanwu Huangqin Tang on restless legs syndrome in order to better understand th...Background:Through the use of network pharmacology and molecular docking approaches,this study will examine the pharmacological effects of Sanwu Huangqin Tang on restless legs syndrome in order to better understand the mechanism of action of Traditional Chinese medicine(TCM)on RLS.Method:Utilise the TCMSP database to collect and select the drug components of Sanwu Huangqin Tang,and the Uniprot database to identify pertinent targets;RLS-related disease targets were obtained from GeneCards,DrugBank,and OMIM databases;and STRING and Cytoscape 3.9.1 software were used to generate an interaction network.KEGG pathway analysis and GO enrichment analysis were performed utilizing the DAVID database.Use Autodock for analyzing the relationships between targets and core components.Result:By using a network pharmacology approach,83 active ingredients and 50 drug-disease intersecting targets were derived for Sanwu Huangqin Tang.The molecular docking results showed that the drug components had strong affinity with the average target targets.Conclusions:This study provides new insights into the mechanism through which Traditional Chinese Medicine(TCM)treats Restless Legs Syndrome(RLS).Furthermore,it lays the foundation for additional research into the mechanism of treatment for RLS through the intervention that addresses various targets and pathways using the active ingredients identified by Sanwu Huangqin Tang.展开更多
基金The work is supported by the National Natural Science Foundation of China(Nos.U21A20124 and 52205059)the Key Research and Development Program of Zhejiang Province(No.2022C01039)。
文摘Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadruped robots show great potential in unstructured environments due to their discrete landing positions and large payloads.As the most critical movement unit of a quadruped robot,the limb leg unit(LLU)directly affects movement speed and reliability,and requires a compact and lightweight design.Inspired by the dexterous skeleton–muscle systems of cheetahs and humans,this paper proposes a highly integrated bionic actuator system for a better dynamic performance of an LLU.We propose that a cylinder barrel with multiple element interfaces and internal smooth channels is realized using metal additive manufacturing,and hybrid lattice structures are introduced into the lightweight design of the piston rod.In addition,additive manufacturing and topology optimization are incorporated to reduce the redundant material of the structural parts of the LLU.The mechanical properties of the actuator system are verified by numerical simulation and experiments,and the power density of the actuators is far greater than that of cheetah muscle.The mass of the optimized LLU is reduced by 24.5%,and the optimized LLU shows better response time performance when given a step signal,and presents a good trajectory tracking ability with the increase in motion frequency.
文摘Background: Chronic ulcers are responsible for considerable morbidity and significantly contribute to the escalation in the cost of health care. Chronic leg ulcers (CLUs) are susceptible to microbial infections and serious complications such as tissue necrosis and osteomyelitis, can result without the timely control of infections. Recent studies have also reported an increase in the association of fungal infections with chronic non-healing ulcers. Aim: To determine the prevalence of bacterial and fungal infections among patients reporting with chronic leg ulcers in participants without co-morbidities. Methods: A prospective cross-sectional study was conducted among patients with chronic leg ulcers at the National Reconstructive Plastic Surgery and Burns Centre, Korle-Bu Teaching Hospital (NRPS/BC-KBTH) and those who consented were enrolled. Characteristics of the wound as well as micro-organisms cultured from wound swabs were recorded. Results: A total of 50 participants were enrolled for the study with the mean (SD) age of 40.7 (10.7) years. Eighty percent of the participants presented with post traumatic leg ulcers with 80% being artisans and traders in the age group 31 - 50 years. There was no statistically significant association between sex and the organism cultured for post traumatic and cellulitis (p-value > 0.05). The prevalence of bacterial and fungal infection was 79.3% and 20.7% respectively. Pseudomonas species was the most isolated bacteria (61.5%) while Aspergillus niger was the most isolated fungi (41%). Conclusion: From this study, fungal infections should be included in managing chronic leg ulcers, especially among artisans, famers and gardeners even though there was a significantly higher burden of bacterial infections.
基金This work was supported by the National Key Research&Development Program of China(2022YFE0198000)the National Nature Science Foundation of China(32202470,32202521)+1 种基金the State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products(2021 DC700024-KF202217)the Natural Science Foundation of Zhejiang Province(LQ21C150004).
文摘Dear Editor Legumes,the second-largest family of crops,contribute over one-third of human dietary proteins.Soybean(Glycine max L.),common bean(Phaseolus vulgaris L.),pea(Pisum sativum L.),and cowpea(Vigna unguiculata L.)are among the most widely culti-vated crop legumes for grain and vegetable and are essential for food security globally.
基金National Natural Science Foundation of China(Grant No.51735009)。
文摘This paper presents an effective way to support motion planning of legged mobile robots—Inverted Modelling,based on the equivalent metamorphic mechanism concept.The difference from the previous research is that we herein invert the equivalent parallel mechanism.Assuming the leg mechanisms are hybrid links,the body of robot being considered as fixed platform,and ground as moving platform.The motion performance is transformed and measured in the body frame.Terrain and joint limits are used as input parameters to the model,resulting in the representation which is independent of terrains and particular poses in Inverted Modelling.Hence,it can universally be applied to any kind of legged robots as global motion performance framework.Several performance measurements using Inverted Modelling are presented and used in motion performance evaluation.According to the requirements of actual work like motion continuity and stability,motion planning of legged robot can be achieved using different measurements on different terrains.Two cases studies present the simulations of quadruped and hexapod robots walking on rugged roads.The results verify the correctness and effectiveness of the proposed method.
文摘Musculoskeletal pain is common. Because pain is subjective, objectively describing it is crucial. However, pain assessment may cause distress in patients;therefore, physical therapists (PTs) should conduct these tests quickly and accurately. Simple and clear instructions are recommended for pain assessment. However, few studies have provided evidence to support this hypothesis. Correspondingly, this study aimed to confirm the effectiveness of specific verbal instructions for pain location during five consecutive Passive Straight Leg Raise (PSLR) tests. The 28 asymptomatic participants (age 27.4 ± 9.6 years) who provided informed consent received five consecutive PSLR tests: three without and two with specific verbal instructions to ascertain pain intensity, quality, and location. The participants drew pain locations on a body chart and described the pain intensity and quality after each test. All participants were interviewed regarding the differences they noted in the presence and absence of specific verbal instructions. Each pain location was classified into one of ten areas for statistical analysis. The proportion of participants who changed the pain location was compared between the tests using McNemar’s test, and the kappa coefficient was confirmed for consistency of pain location. There was a significant difference in the proportion of participants who changed their pain location between the second and third tests and from the third to the fourth test (McNemar’s test: p = 0.003). Kappa coefficients had low consistency (κ = 0.28) just after receiving the specific verbal instructions in the fourth test compared to the third test. Consistency improved in the fifth test (κ = 0.57);93% of the participants answered that the pain location had become clearer. This study revealed the effects of specific verbal instructions in identifying pain locations. This detailed information may help PTs provide appropriate treatment and contribute to reducing pain in clinical settings.
基金Supported by National Natural Science Foundation of China(Grant No.51735009)State Key Lab of Mechanical System and Vibration Project of China(Grant No.MSVZD202008)National Aerospace Science Foundation of China(040102).
文摘To explore hostile extraterrestrial landforms and construct an engineering prototype,this paper presents the task-oriented topology system synthesis of reconfigurable legged mobile lander(ReLML)with three operation modes from adjusting,landing,to roving.Compared with our preceding works,the adjusting mode with three rotations(3R)provides a totally novel exploration approach to geometrically matching and securely arriving at complex terrains dangerous to visit currently;the landing mode is redefined by two rotations one translation(2R1T),identical with the tried-and-tested Apollo and Chang'E landers to enhance survivability via reasonable touchdown buffering motion;roving mode also utilizes 2R1T motion for good motion and force properties.The reconfigurable mechanism theory is first brought into synthesizing legged mobile lander integrating active and passive metamorphoses,composed of two types of metamorphic joints and metamorphic execution and transmission mechanisms.To reveal metamorphic principles with multiple finite motions,the finite screw theory is developed to present the procedure from unified mathematical representation,modes and source phase derivations,metamorphic joint and limb design,to final structure assembly.To identify the prototype topology,the 3D optimal selection matrix method is proposed considering three operation modes,five evaluation criteria,and two topological subsystems.Finally,simulation verifies the whole task implementation process to ensure the reasonability of design.
基金The research is financially supported by the Natural Science Research Projects in Anhui Universities[No.KJ2020A0438].
文摘Background:Through the use of network pharmacology and molecular docking approaches,this study will examine the pharmacological effects of Sanwu Huangqin Tang on restless legs syndrome in order to better understand the mechanism of action of Traditional Chinese medicine(TCM)on RLS.Method:Utilise the TCMSP database to collect and select the drug components of Sanwu Huangqin Tang,and the Uniprot database to identify pertinent targets;RLS-related disease targets were obtained from GeneCards,DrugBank,and OMIM databases;and STRING and Cytoscape 3.9.1 software were used to generate an interaction network.KEGG pathway analysis and GO enrichment analysis were performed utilizing the DAVID database.Use Autodock for analyzing the relationships between targets and core components.Result:By using a network pharmacology approach,83 active ingredients and 50 drug-disease intersecting targets were derived for Sanwu Huangqin Tang.The molecular docking results showed that the drug components had strong affinity with the average target targets.Conclusions:This study provides new insights into the mechanism through which Traditional Chinese Medicine(TCM)treats Restless Legs Syndrome(RLS).Furthermore,it lays the foundation for additional research into the mechanism of treatment for RLS through the intervention that addresses various targets and pathways using the active ingredients identified by Sanwu Huangqin Tang.