期刊文献+
共找到28,827篇文章
< 1 2 250 >
每页显示 20 50 100
Reservoir heterogeneity analysis using multi-directional textural attributes from deep learning-based enhanced acoustic impedance inversion:A study from Poseidon,NW shelf Australia 被引量:1
1
作者 Anjali Dixit Animesh Mandal Shib Sankar Ganguli 《Energy Geoscience》 EI 2024年第2期202-213,共12页
Reservoir heterogeneities play a crucial role in governing reservoir performance and management.Traditionally,detailed and inter-well heterogeneity analyses are commonly performed by mapping seismic facies change in t... Reservoir heterogeneities play a crucial role in governing reservoir performance and management.Traditionally,detailed and inter-well heterogeneity analyses are commonly performed by mapping seismic facies change in the seismic data,which is a time-intensive task.Many researchers have utilized a robust Grey-level co-occurrence matrix(GLCM)-based texture attributes to map reservoir heterogeneity.However,these attributes take seismic data as input and might not be sensitive to lateral lithology variation.To incorporate the lithology information,we have developed an innovative impedance-based texture approach using GLCM workflow by integrating 3D acoustic impedance volume(a rock propertybased attribute)obtained from a deep convolution network-based impedance inversion.Our proposed workflow is anticipated to be more sensitive toward mapping lateral changes than the conventional amplitude-based texture approach,wherein seismic data is used as input.To evaluate the improvement,we applied the proposed workflow to the full-stack 3D seismic data from the Poseidon field,NW-shelf,Australia.This study demonstrates that a better demarcation of reservoir gas sands with improved lateral continuity is achievable with the presented approach compared to the conventional approach.In addition,we assess the implication of multi-stage faulting on facies distribution for effective reservoir characterization.This study also suggests a well-bounded potential reservoir facies distribution along the parallel fault lines.Thus,the proposed approach provides an efficient strategy by integrating the impedance information with texture attributes to improve the inference on reservoir heterogeneity,which can serve as a promising tool for identifying potential reservoir zones for both production benefits and fluid storage. 展开更多
关键词 Seismic texture attributes Seismic acoustic impedance Multi-directional texture attributes Reservoir heterogeneity Reservoir characterization Poseidon field
下载PDF
Attribute Reduction of Hybrid Decision Information Systems Based on Fuzzy Conditional Information Entropy 被引量:1
2
作者 Xiaoqin Ma Jun Wang +1 位作者 Wenchang Yu Qinli Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2063-2083,共21页
The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attr... The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data. 展开更多
关键词 Hybrid decision information systems fuzzy conditional information entropy attribute reduction fuzzy relationship rough set theory(RST)
下载PDF
Long-Term Impacts of Tree Architectures and Branch Configurations on Tree Growth, Yield, Fruit Quality Attributes, and Leaf Minerals in “Aztec Fuji” Apple
3
作者 Esmaeil Fallahi Michael Jason Kiester Bahar Fallahi 《American Journal of Plant Sciences》 CAS 2024年第9期796-810,共15页
Canopy and branch architectures in high-density orchards can be crucial in production and fruit quality. The influence of two canopy orientations (Upright and Tilted) in combination with two arm (branch) architectures... Canopy and branch architectures in high-density orchards can be crucial in production and fruit quality. The influence of two canopy orientations (Upright and Tilted) in combination with two arm (branch) architectures (Shortened or Overlapped) on tree growth, yield components, fruit quality, and leaf mineral nutrients in an “Aztec Fuji” apple (Malus domestica Bork.) high-density orchard was studied over five years. Tilted trees with shortened arm configuration (TilShArm) always had significantly larger trunk cross-sectional area (TCSA) than Upright trees with an Overlapped arm configuration (UpOverArm) every year from 2012 to 2016. Trees with a TilShArm system had more cumulative fruit per tree than those with an Upright orientation. Trees with a tilted canopy (TilShArm and TilOverArm) tended to have higher yield per tree and yield per hectare than those with an upright system. Trees with a TilShArm system were more precocious and had more yield per tree than those with an upright canopy orientation in 2012. When values were polled over five years, trees with an upright canopy-shortened arm system (UpShArm) treatment had a lower biennial bearing index (BBI) than those with an upright canopy-overlapped system (UpOverArm). Trees receiving an arm shortening (UpShArm or TilShArm) configuration often had larger fruits than those with overlapped arms (UpOverArm and TilOverArm). Fruit from trees receiving an UpOverArm had higher fruit firmness than those from trees with other canopy-branch arrangements at harvest due to their smaller size. Fruit from trees with a TilShArm and TilOverArm had significantly higher water core and bitter pit but lower sunburn than trees with an upright canopy (UpShArm and UpOverArm). Leaves from trees with an UpOverArm canopy-branch configuration had the lowest leaf Ca but the highest leaf K and Fe concentrations among all treatments. 展开更多
关键词 Branch Training High-Density Orchard Quality attributes Tree Architecture
下载PDF
A Privacy Preservation Method for Attributed Social Network Based on Negative Representation of Information
4
作者 Hao Jiang Yuerong Liao +2 位作者 Dongdong Zhao Wenjian Luo Xingyi Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期1045-1075,共31页
Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself disc... Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself discrimination paradigmin the biological immune system,the negative representation of information indicates features such as simplicity and efficiency,which is very suitable for preserving social network privacy.Therefore,we suggest a method to preserve the topology privacy and node attribute privacy of attribute social networks,called AttNetNRI.Specifically,a negative survey-based method is developed to disturb the relationship between nodes in the social network so that the topology structure can be kept private.Moreover,a negative database-based method is proposed to hide node attributes,so that the privacy of node attributes can be preserved while supporting the similarity estimation between different node attributes,which is crucial to the analysis of social networks.To evaluate the performance of the AttNetNRI,empirical studies have been conducted on various attribute social networks and compared with several state-of-the-art methods tailored to preserve the privacy of social networks.The experimental results show the superiority of the developed method in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topology disturbing and attribute hiding parts.The experimental results show the superiority of the developed methods in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topological interference and attribute-hiding components. 展开更多
关键词 attributed social network topology privacy node attribute privacy negative representation of information negative survey negative database
下载PDF
Fracture prediction method for deep coalbed methane reservoirs based on seismic texture attributes
5
作者 Zhang Bing Qi Xue-mei +2 位作者 Huang Ya-ping Zhang Hai-feng Huang Fan-rui 《Applied Geophysics》 SCIE CSCD 2024年第4期794-804,881,共12页
Deep coalbed methane(CBM)resources are enormous and have become a hot topic in the unconventional exploration and development of natural gas.The fractures in CBM reservoirs are important channels for the storage and m... Deep coalbed methane(CBM)resources are enormous and have become a hot topic in the unconventional exploration and development of natural gas.The fractures in CBM reservoirs are important channels for the storage and migration of CBM and control the high production and enrichment of CBM.Therefore,fracture prediction in deep CBM reservoirs is of great significance for the exploration and development of CBM.First,the basic principles of calculating texture attributes by gray-level cooccurrence matrix(GLCM)and gray-level run-length matrix(GLRLM)were introduced.A geological model of the deep CBM reservoirs with fractures was then constructed and subjected to seismic forward simulation.The seismic texture attributes were extracted using the GLCM and GLRLM.The research results indicate that the texture attributes calculated by both methods are responsive to fractures,with the 45°and 135°gray level inhomogeneity texture attributes based on the GLRLM showing better identification effects for fractures.Fracture prediction of a deep CBM reservoir in the Ordos Basin was carried out based on the GLRLM texture attributes,providing an important basis for the effi cient development and utilization of deep CBM. 展开更多
关键词 texture attributes deep coalbed methane FRACTURES GLRLM
下载PDF
Attribute Reduction Method Based on Sequential Three-Branch Decision Model
6
作者 Peiyu Su Fu Li 《Applied Mathematics》 2024年第4期257-266,共10页
Attribute reduction is a research hotspot in rough set theory. Traditional heuristic attribute reduction methods add the most important attribute to the decision attribute set each time, resulting in multiple redundan... Attribute reduction is a research hotspot in rough set theory. Traditional heuristic attribute reduction methods add the most important attribute to the decision attribute set each time, resulting in multiple redundant attribute calculations, high time consumption, and low reduction efficiency. In this paper, based on the idea of sequential three-branch decision classification domain, attributes are treated as objects of three-branch division, and attributes are divided into core attributes, relatively necessary attributes, and unnecessary attributes using attribute importance and thresholds. Core attributes are added to the decision attribute set, unnecessary attributes are rejected from being added, and relatively necessary attributes are repeatedly divided until the reduction result is obtained. Experiments were conducted on 8 groups of UCI datasets, and the results show that, compared to traditional reduction methods, the method proposed in this paper can effectively reduce time consumption while ensuring classification performance. 展开更多
关键词 attribute Reduction Three-Branch Decision Sequential Three-Branch Decision
下载PDF
Machine learning for carbonate formation drilling: Mud loss prediction using seismic attributes and mud loss records
7
作者 Hui-Wen Pang Han-Qing Wang +4 位作者 Yi-Tian Xiao Yan Jin Yun-Hu Lu Yong-Dong Fan Zhen Nie 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1241-1256,共16页
Due to the complexity and variability of carbonate formation leakage zones, lost circulation prediction and control is one of the major challenges of carbonate drilling. It raises well-control risks and production exp... Due to the complexity and variability of carbonate formation leakage zones, lost circulation prediction and control is one of the major challenges of carbonate drilling. It raises well-control risks and production expenses. This research utilizes the H oilfield as an example, employs seismic features to analyze mud loss prediction, and produces a complete set of pre-drilling mud loss prediction solutions. Firstly, 16seismic attributes are calculated based on the post-stack seismic data, and the mud loss rate per unit footage is specified. The sample set is constructed by extracting each attribute from the seismic trace surrounding 15 typical wells, with a ratio of 8:2 between the training set and the test set. With the calibration results for mud loss rate per unit footage, the nonlinear mapping relationship between seismic attributes and mud loss rate per unit size is established using the mixed density network model.Then, the influence of the number of sub-Gausses and the uncertainty coefficient on the model's prediction is evaluated. Finally, the model is used in conjunction with downhole drilling conditions to assess the risk of mud loss in various layers and along the wellbore trajectory. The study demonstrates that the mean relative errors of the model for training data and test data are 6.9% and 7.5%, respectively, and that R2is 90% and 88%, respectively, for training data and test data. The accuracy and efficacy of mud loss prediction may be greatly enhanced by combining 16 seismic attributes with the mud loss rate per unit footage and applying machine learning methods. The mud loss prediction model based on the MDN model can not only predict the mud loss rate but also objectively evaluate the prediction based on the quality of the data and the model. 展开更多
关键词 Lost circulation Risk prediction Machine learning Seismic attributes Mud loss records
下载PDF
Attribute Reduction on Decision Tables Based on Hausdorff Topology
8
作者 Nguyen Long Giang Tran Thanh Dai +3 位作者 Le Hoang Son Tran Thi Ngan Nguyen Nhu Son Cu Nguyen Giap 《Computers, Materials & Continua》 SCIE EI 2024年第11期3097-3124,共28页
Attribute reduction through the combined approach of Rough Sets(RS)and algebraic topology is an open research topic with significant potential for applications.Several research works have introduced a strong relations... Attribute reduction through the combined approach of Rough Sets(RS)and algebraic topology is an open research topic with significant potential for applications.Several research works have introduced a strong relationship between RS and topology spaces for the attribute reduction problem.However,the mentioned recent methods followed a strategy to construct a new measure for attribute selection.Meanwhile,the strategy for searching for the reduct is still to select each attribute and gradually add it to the reduct.Consequently,those methods tended to be inefficient for high-dimensional datasets.To overcome these challenges,we use the separability property of Hausdorff topology to quickly identify distinguishable attributes,this approach significantly reduces the time for the attribute filtering stage of the algorithm.In addition,we propose the concept of Hausdorff topological homomorphism to construct candidate reducts,this method significantly reduces the number of candidate reducts for the wrapper stage of the algorithm.These are the two main stages that have the most effect on reducing computing time for the attribute reduction of the proposed algorithm,which we call the Cluster Filter Wrapper algorithm based on Hausdorff Topology.Experimental validation on the UCI Machine Learning Repository Data shows that the proposed method achieves efficiency in both the execution time and the size of the reduct. 展开更多
关键词 Hausdorff topology rough sets topology from rough sets attribute reduction
下载PDF
Aboveground biomass stocks of species-rich natural forests in southern China are influenced by stand structural attributes,species richness and precipitation
9
作者 Wen-Hao Zeng Shi-Dan Zhu +3 位作者 Ying-Hua Luo Wei Shi Yong-Qiang Wang Kun-Fang Cao 《Plant Diversity》 SCIE CAS CSCD 2024年第4期530-536,共7页
Forests,the largest terrestrial carbon sinks,play an important role in carbon sequestration and climate change mitigation.Although forest attributes and environmental factors have been shown to impact aboveground biom... Forests,the largest terrestrial carbon sinks,play an important role in carbon sequestration and climate change mitigation.Although forest attributes and environmental factors have been shown to impact aboveground biomass,their influence on biomass stocks in species-rich forests in southern China,a biodiversity hotspot,has rarely been investigated.In this study,we characterized the effects of environmental factors,forest structure,and species diversity on aboveground biomass stocks of 30 plots(1 ha each) in natural forests located within seven nature reserves distributed across subtropical and marginal tropical zones in Guangxi,China.Our results indicate that forest aboveground biomass stocks in this region are lower than those in mature tropical and subtropical forests in other regions.Furthermore,we found that aboveground biomass was positively correlated with stand age,mean annual precipitation,elevation,structural attributes and species richness,although not with species evenness.When we compared stands with the same basal area,we found that aboveground biomass stock was higher in communities with a higher coefficient of variation of diameter at breast height.These findings highlight the importance of maintaining forest structural diversity and species richness to promote aboveground biomass accumulation and reveal the potential impacts of precipitation changes resulting from climate warming on the ecosystem services of subtropical and northern tropical forests in China.Notably,many natural forests in southern China are not fully stocked.Therefore,their continued growth will increase their carbon storage over time. 展开更多
关键词 Subtropical forest Marginal tropical forest Aboveground biomass Species diversity Forest structural attribute Environment factor
下载PDF
A risk assessment method considering risk attributes and work safety informational needs and its application
10
作者 Cong Luo Yunsheng Zhao Ke Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期253-262,共10页
The technological revolution has spawned a new generation of industrial systems,but it has also put forward higher requirements for safety management accuracy,timeliness,and systematicness.Risk assessment needs to evo... The technological revolution has spawned a new generation of industrial systems,but it has also put forward higher requirements for safety management accuracy,timeliness,and systematicness.Risk assessment needs to evolve to address the existing and future challenges by considering the new demands and advancements in safety management.The study aims to propose a systematic and comprehensive risk assessment method to meet the needs of process system safety management.The methodology first incorporates possibility,severity,and dynamicity(PSD)to structure the“51X”evaluation indicator system,including the inherent,management,and disturbance risk factors.Subsequently,the four-tier(risk point-unit-enterprise-region)risk assessment(RA)mathematical model has been established to consider supervision needs.And in conclusion,the application of the PSD-RA method in ammonia refrigeration workshop cases and safety risk monitoring systems is presented to illustrate the feasibility and effectiveness of the proposed PSD-RA method in safety management.The findings show that the PSD-RA method can be well integrated with the needs of safety work informatization,which is also helpful for implementing the enterprise's safety work responsibility and the government's safety supervision responsibility. 展开更多
关键词 Risk assessment Safey “51X”evaluation indicator system Four-tier risk assessment model Risk attributes Process system
下载PDF
Region-Aware Fashion Contrastive Learning for Unified Attribute Recognition and Composed Retrieval
11
作者 WANG Kangping ZHAO Mingbo 《Journal of Donghua University(English Edition)》 CAS 2024年第4期405-415,共11页
Clothing attribute recognition has become an essential technology,which enables users to automatically identify the characteristics of clothes and search for clothing images with similar attributes.However,existing me... Clothing attribute recognition has become an essential technology,which enables users to automatically identify the characteristics of clothes and search for clothing images with similar attributes.However,existing methods cannot recognize newly added attributes and may fail to capture region-level visual features.To address the aforementioned issues,a region-aware fashion contrastive language-image pre-training(RaF-CLIP)model was proposed.This model aligned cropped and segmented images with category and multiple fine-grained attribute texts,achieving the matching of fashion region and corresponding texts through contrastive learning.Clothing retrieval found suitable clothing based on the user-specified clothing categories and attributes,and to further improve the accuracy of retrieval,an attribute-guided composed network(AGCN)as an additional component on RaF-CLIP was introduced,specifically designed for composed image retrieval.This task aimed to modify the reference image based on textual expressions to retrieve the expected target.By adopting a transformer-based bidirectional attention and gating mechanism,it realized the fusion and selection of image features and attribute text features.Experimental results show that the proposed model achieves a mean precision of 0.6633 for attribute recognition tasks and a recall@10(recall@k is defined as the percentage of correct samples appearing in the top k retrieval results)of 39.18 for composed image retrieval task,satisfying user needs for freely searching for clothing through images and texts. 展开更多
关键词 attribute recognition image retrieval contrastive language-image pre-training(CLIP) image text matching transformer
下载PDF
A Study on Multivariable Interactions Concerning Radar Cross Section Reduction through Geometric Attributes
12
作者 Evan Sharp 《Journal of Applied Mathematics and Physics》 2024年第7期2582-2593,共12页
This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in lin... This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in line with the general understanding of the impact different geometries have on RCS but show that geometries can also influence the variance of measured RCS, and typical attributes that reduce RCS increase the variance of the measured RCS. Notably, an increased angle between the front face of a plate and the direction of the radar signal decreased RCS but increased the variance of the RCS measured. 展开更多
关键词 Radar Cross Section RCS Geometrical attributes RADAR STEALTH
下载PDF
Attributes of Domestic Spaces for Contemporary Habitation-A Secondary Publication
13
作者 Silvina Barraud Caffaratti 《Journal of Architectural Research and Development》 2024年第1期84-92,共9页
The domestic space can be defined as the sphere that articulates the needs for subjective containment and contextual stimuli.In this sense,questions arise about the indispensable attributes that spaces must possess fo... The domestic space can be defined as the sphere that articulates the needs for subjective containment and contextual stimuli.In this sense,questions arise about the indispensable attributes that spaces must possess for this articulation to take place adequately.Architecture,as the discipline in charge of satisfying the specific spatial needs of those who inhabit these spaces and,in a broader sense,as a concrete contribution to society,must address this relationship in all its complexity and generate concrete responses that incorporate the appropriate spatial attributes during the design processes.The design processes that shape living spaces confront this dialectic,and the manner in which they do so brings identity and character to them.It is believed that the higher the level of variables that are contemplated and weighted,the greater the adequacy of spaces to the changing dynamics of the people who inhabit them.This article focuses on a thorough analysis of these spatial attributes,in parallel to the definition of each one as a particular condition for design,based on their conceptualization,breakdown,and articulation.Conceptually,the following attributes are addressed:flexibility,adaptability,variability,versatility,multiplicity,plurality,integrality,gradualness,incrementality,progressiveness,independence,connectivity,intimacy,and privacy.Each of these attributes is valued as a contribution to creating adequate habitability in contextual terms,with consideration to possible integrations and combinations. 展开更多
关键词 attributes Domestic space Design processes
下载PDF
Attribute Reduction of Neighborhood Rough Set Based on Discernment
14
作者 Biqing Wang 《Journal of Electronic Research and Application》 2024年第1期80-85,共6页
For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm u... For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm using discernment as the heuristic information was proposed.The reduction algorithm comprehensively considers the dependency degree and neighborhood granulation degree of attributes,allowing for a more accurate measurement of the importance degrees of attributes.Example analyses and experimental results demonstrate the feasibility and effectiveness of the algorithm. 展开更多
关键词 Neighborhood rough set attribute reduction DISCERNMENT ALGORITHM
下载PDF
Research on the Influence of Anchor Attributes on Consumers’Online Behaviors in Social E-Commerce Platforms:The Moderating Effect of Platform Contextual Factors
15
作者 Xiaodong Yang Gi Young Chung 《Proceedings of Business and Economic Studies》 2024年第5期186-193,共8页
As e-commerce continues to mature,the advantages of live streaming within the industry have become increasingly apparent,offering significant growth opportunities.Social e-commerce platforms,which are user-centered,in... As e-commerce continues to mature,the advantages of live streaming within the industry have become increasingly apparent,offering significant growth opportunities.Social e-commerce platforms,which are user-centered,integrate social networks with e-commerce by leveraging social interactions to drive product sales and enhance the overall consumer shopping experience.This type of e-commerce fosters engagement and promotes products by merging online communities with shopping behavior,creating a more interactive and dynamic marketplace.It not only retains the traditional e-commerce trading and marketing functions but also adds a social dimension,making live stream anchors crucial figures connecting consumers with products.These anchors can attract consumers with their appearance and charm,and use their expertise on live streaming platforms to guide consumers by recommending live content.They can also interact with their audiences and potentially influence them to purchase the recommended goods.It is evident that the attributes of anchors in live streaming rooms significantly impact consumers’online behavior.Therefore,researching how platform contextual factors regulate consumers’online behavior is of great practical significance.This study employs multilevel regression analysis to support its hypotheses using data.The findings indicate that contextual factors of the platform significantly influence online behavior,enhancing the positive relationship between user attachment and online activities. 展开更多
关键词 Anchor attribute User attachment Consumers’online behaviors Contextual factors
下载PDF
Attribute-driven Fuzzy Fault Tree Model for Adaptive Lubricant Failure Diagnosis
16
作者 Shuo Wang Yishi Chang +2 位作者 Tonghai Wu Zhidong Han Yaguo Lei 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第3期207-215,共9页
Lubricant diagnosis serves as a crucial accordance for condition-based maintenance(CBM)involving oil changing and wear examination of critical parts in equipment.However,the accuracy of traditional end-to-end diagnosi... Lubricant diagnosis serves as a crucial accordance for condition-based maintenance(CBM)involving oil changing and wear examination of critical parts in equipment.However,the accuracy of traditional end-to-end diagnosis models is often limited by the inconsistency and random fluctuations in multiple monitoring indicators.To address this,an attribute-driven adaptive diagnosis method is developed,involving three attributes:physicochemical,contamination,and wear.Correspondingly,a fuzzy fault tree(termed FFT)-based model is constructed containing the logic correlations from monitoring indicators to attributes and to lubricant failures.In particular,inference rules are integrated to mitigate conflicts arising from the reverse degradation of multiple indicators.With this model,the lubricant conditions can be accurately assessed through rule-based reasoning.Furthermore,to enhance its intelligence,the model is dynamically optimized with lubricant analysis knowledge and monitoring data.For verification,the developed model is tested with lubricant samples from both the fatigue experiment and actual aero-engines.Fatigue experiments reveal that the proposed model can improve the lubricant diagnosis accuracy from 73.4%to 92.6%compared with the existing methods.While for the engine lubricant test,a high accuracy of 90%was achieved. 展开更多
关键词 lubricant failure diagnosis fuzzy fault tree attribute guidance rule reasoning
下载PDF
Anomalous node detection in attributed social networks using dual variational autoencoder with generative adversarial networks
17
作者 Wasim Khan Shafiqul Abidin +5 位作者 Mohammad Arif Mohammad Ishrat Mohd Haleem Anwar Ahamed Shaikh Nafees Akhtar Farooqui Syed Mohd Faisal 《Data Science and Management》 2024年第2期89-98,共10页
Many types of real-world information systems, including social media and e-commerce platforms, can be modelled by means of attribute-rich, connected networks. The goal of anomaly detection in artificial intelligence i... Many types of real-world information systems, including social media and e-commerce platforms, can be modelled by means of attribute-rich, connected networks. The goal of anomaly detection in artificial intelligence is to identify illustrations that deviate significantly from the main distribution of data or that differ from known cases. Anomalous nodes in node-attributed networks can be identified with greater precision if both graph and node attributes are taken into account. Almost all of the studies in this area focus on supervised techniques for spotting outliers. While supervised algorithms for anomaly detection work well in theory, they cannot be applied to real-world applications owing to a lack of labelled data. Considering the possible data distribution, our model employs a dual variational autoencoder (VAE), while a generative adversarial network (GAN) assures that the model is robust to adversarial training. The dual VAEs are used in another capacity: as a fake-node generator. Adversarial training is used to ensure that our latent codes have a Gaussian or uniform distribution. To provide a fair presentation of the graph, the discriminator instructs the generator to generate latent variables with distributions that are more consistent with the actual distribution of the data. Once the model has been learned, the discriminator is used for anomaly detection via reconstruction loss which has been trained to distinguish between the normal and artificial distributions of data. First, using a dual VAE, our model simultaneously captures cross-modality interactions between topological structure and node characteristics and overcomes the problem of unlabeled anomalies, allowing us to better understand the network sparsity and nonlinearity. Second, the proposed model considers the regularization of the latent codes while solving the issue of unregularized embedding techniques that can quickly lead to unsatisfactory representation. Finally, we use the discriminator reconstruction loss for anomaly detection as the discriminator is well-trained to separate the normal and generated data distributions because reconstruction-based loss does not include the adversarial component. Experiments conducted on attributed networks demonstrate the effectiveness of the proposed model and show that it greatly surpasses the previous methods. The area under the curve scores of our proposed model for the BlogCatalog, Flickr, and Enron datasets are 0.83680, 0.82020, and 0.71180, respectively, proving the effectiveness of the proposed model. The result of the proposed model on the Enron dataset is slightly worse than other models;we attribute this to the dataset’s low dimensionality as the most probable explanation. 展开更多
关键词 Anomaly detection deep learning attributed networks autoencoder Dual variational-autoencoder Generative adversarial networks
下载PDF
Application of 3D GPR attribute technology in archaeological investigations 被引量:5
18
作者 赵文轲 田钢 +3 位作者 王帮兵 石战结 林金鑫 《Applied Geophysics》 SCIE CSCD 2012年第3期261-269,359,360,共11页
Ground penetrating radar (GPR) attribute technology has been applied to many aspects in recent years but there are very few examples in the field of archaeology. Especially how can we extract effective attributes fr... Ground penetrating radar (GPR) attribute technology has been applied to many aspects in recent years but there are very few examples in the field of archaeology. Especially how can we extract effective attributes from the two- or three-dimensional radar data so that we can map and describe numerous archaeological targets in a large cultural site? In this paper, we applied GPR attribute technology to investigate the ancient Nanzhao castle-site in Tengchong, Yunnan Province. In order to get better archaeological target (the ancient wall, the ancient kiln site, and the ancient tomb) analysis and description, we collated the GPR data by collected standardization and then put them to the seismic data processing and interpretation workstation. The data was processed, including a variety of GPR attribute extraction, analysis, and optimization and combined with the archaeological drilling data. We choose the RMS Amplitude, Average Peak Amplitude, Instantaneous Phase, and Maximum Peak Time to interpret three archaeological targets. By comparative analysis, we have clarified that we should use different attributes to interpret different archaeological targets and the results of attribute analysis after horizon tracking is much better than the results based on a time slice. 展开更多
关键词 GPR attribute archaeological investigation
下载PDF
Using 4C OBS to reveal the distribution and velocity attributes of gas hydrates at the northern continental slope of South China Sea 被引量:7
19
作者 沙志彬 张明 +2 位作者 张光学 梁金强 苏丕波 《Applied Geophysics》 SCIE CSCD 2015年第4期555-563,628,629,共11页
To investigate the distribution and velocity attributes of gas hydrates in the northern continental slope of South China Sea, Guangzhou Marine Geological Survey conducted four-component (4C) ocean-bottom seismometer... To investigate the distribution and velocity attributes of gas hydrates in the northern continental slope of South China Sea, Guangzhou Marine Geological Survey conducted four-component (4C) ocean-bottom seismometer (OBS) surveys. A case study is presented to show the results of acquiring and processing OBS data for detecting gas hydrates. Key processing steps such as repositioning, reorientation, PZ summation, and mirror imaging are discussed. Repositioning and reorientation find the correct location and direction of nodes. PZ summation matches P- and Z-components and sums them to separate upgoing and downgoing waves. Upgoing waves are used in conventional imaging, whereas downgoing waves are used in mirror imaging. Mirror imaging uses the energy of the receiver ghost reflection to improve the illumination of shallow structures, where gas hydrates and the associated bottom-simulating reflections (BSRs) are located. We developed a new method of velocity analysis using mirror imaging. The proposed method is based on velocity scanning and iterative prestack time migration. The final imaging results are promising. When combined with the derived velocity field, we can characterize the BSR and shallow structures; hence, we conclude that using 4C OBS can reveal the distribution and velocity attributes of gas hydrates. 展开更多
关键词 gas hydrates velocity attributes ocean-bottom seismometer PZ summation mirror imaging
下载PDF
Seismic attribute extraction based on HHT and its application in a marine carbonate area 被引量:5
20
作者 黄亚平 耿建华 +4 位作者 钟广法 郭彤楼 蒲勇 丁孔芸 麻纪强 《Applied Geophysics》 SCIE CSCD 2011年第2期125-133,177,共10页
The Hilbert-Huang transform(HHT) is a new analysis method suitable for nonlinear and non-stationary signals.It is very appropriate to seismic signals because they show both non-stationary and nonlinear characteristi... The Hilbert-Huang transform(HHT) is a new analysis method suitable for nonlinear and non-stationary signals.It is very appropriate to seismic signals because they show both non-stationary and nonlinear characteristics.We first introduce the realization of HHT empirical mode decomposition(EMD) and then comparatively analyze three instantaneous frequency algorithms based on intrinsic mode functions(IMF) resulting from EMD,of which one uses the average instantaneous frequency of two sample intervals having higher resolution which can determine that the signal frequency components change with time.The method is used with 3-D poststack migrated seismic data of marine carbonate strata in southern China to effectively extract the three instantaneous attributes.The instantaneous phase attributes of the second intrinsic mode functions(IMF2) better describe the reef facies of the platform margin and the IMF2 instantaneous frequency attribute has better zoning.Combining analysis of the three IMF2 instantaneous seismic attributes and drilling data can identify the distribution of sedimentary facies well. 展开更多
关键词 Hilbert-Huang transform empirical mode decomposition instantaneous frequency seismic attributes
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部