With regard to micro-light-emitting diodes(micro-LEDs),their excellent brightness,low energy consumption,and ultrahigh resolution are significant advantages.However,the large size of traditional inorganic phosphors an...With regard to micro-light-emitting diodes(micro-LEDs),their excellent brightness,low energy consumption,and ultrahigh resolution are significant advantages.However,the large size of traditional inorganic phosphors and the number of side defects have restricted the practical applications of small sized micro-LEDs.Recently,quantum dot(QD)and nonradiative energy transfer(NRET)have been proposed to solve existing problems.QDs possess nanoscale dimensions and high luminous efficiency,and they are suitable for NRET because they are able to nearly contact the micro-LED chip.The NRET between QDs and micro-LED chip further improves the color conversion efficiency(CCE)and effective quantum yield(EQY)of full-color micro-LED devices.In this review,we discuss the NRET mechanism for QD micro-LED devices,and then nano-pillar LED,nano-hole LED,and nano-ring LED are introduced in detail.These structures are beneficial to the NRET between QD and micro-LED,especially nano-ring LED.Finally,the challenges and future envisions have also been described.展开更多
Energy transfer is ubiquitous in natural and artificial lightharvesting systems,and coherent energy transfer,a highly efficient energy transfer process,has been accepted to play a vital role in such systems.However,th...Energy transfer is ubiquitous in natural and artificial lightharvesting systems,and coherent energy transfer,a highly efficient energy transfer process,has been accepted to play a vital role in such systems.However,the energy oscillation of coherent energy transfer is exceedingly difficult to capture because of its evanescence due to the interaction with a thermal environment.Here a microscopic quantum model is used to study the time evolution of electrons triggered energy transfer between coherently coupled donoracceptor molecules in scanning tunneling microscope(STM).A series of topics in the plasmonic nanocavity(PNC)coupled donor-acceptor molecules system are discussed,including resonant and nonresonant coherent energy transfer,dephasing assisted energy transfer,PNC coupling strength dependent energy transfer,Fano resonance of coherently coupled donor-acceptor molecules,and polariton-mediated energy transfer.展开更多
Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted ...Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance.展开更多
Mn^(2+)doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nano-crystals(NCs).However,it is still difficult to understand the interplay of Mn^(2+)luminescenc...Mn^(2+)doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nano-crystals(NCs).However,it is still difficult to understand the interplay of Mn^(2+)luminescence and the matrix self-trapped exciton(STE)emission therein.In this study,Mn^(2+)-doped CsCdCl_(3) NCs are prepared by hot injection,in which CsCdCl_(3) is selected because of its unique crystal structure suitable for STE emission.The blue emission at 441 nm of undoped CsCdCl_(3) NCs originates from the defect states in the NCs.Mn^(2+)doping promotes lattice distortion of CsCdCl_(3) and generates bright orange-red light emission at 656 nm.The en-ergy transfer from the STEs of CsCdCl_(3) to the excited levels of the Mn^(2+)ion is confirmed to be a significant factor in achieving efficient luminescence in CsCdCl_(3):Mn^(2+)NCs.This work highlights the crucial role of energy transfer from STEs to Mn^(2+)dopants in Mn^(2+)-doped halide NCs and lays the groundwork for modifying the luminescence of other metal halide perovskite NCs.展开更多
Machine learning combined with density functional theory(DFT)enables rapid exploration of catalyst descriptors space such as adsorption energy,facilitating rapid and effective catalyst screening.However,there is still...Machine learning combined with density functional theory(DFT)enables rapid exploration of catalyst descriptors space such as adsorption energy,facilitating rapid and effective catalyst screening.However,there is still a lack of models for predicting adsorption energies on oxides,due to the complexity of elemental species and the ambiguous coordination environment.This work proposes an active learning workflow(LeNN)founded on local electronic transfer features(e)and the principle of coordinate rotation invariance.By accurately characterizing the electron transfer to adsorption site atoms and their surrounding geometric structures,LeNN mitigates abrupt feature changes due to different element types and clarifies coordination environments.As a result,it enables the prediction of^(*)H adsorption energy on binary oxide surfaces with a mean absolute error(MAE)below 0.18 eV.Moreover,we incorporate local coverage(θ_(l))and leverage neutral network ensemble to establish an active learning workflow,attaining a prediction MAE below 0.2 eV for 5419 multi-^(*)H adsorption structures.These findings validate the universality and capability of the proposed features in predicting^(*)H adsorption energy on binary oxide surfaces.展开更多
The paper studies stochastic dynamics of a two-degree-of-freedom system,where a primary linear system is connected to a nonlinear energy sink with cubic stiffness nonlinearity and viscous damping.While the primary mas...The paper studies stochastic dynamics of a two-degree-of-freedom system,where a primary linear system is connected to a nonlinear energy sink with cubic stiffness nonlinearity and viscous damping.While the primary mass is subjected to a zero-mean Gaussian white noise excitation,the main objective of this study is to maximise the efficiency of the targeted energy transfer in the system.A surrogate optimisation algorithm is proposed for this purpose and adopted for the stochastic framework.The optimisations are conducted separately for the nonlinear stiffness coefficient alone as well as for both the nonlinear stiffness and damping coefficients together.Three different optimisation cost functions,based on either energy of the system’s components or the dissipated energy,are considered.The results demonstrate some clear trends in values of the nonlinear energy sink coefficients and show the effect of different cost functions on the optimal values of the nonlinear system’s coefficients.展开更多
Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superp...Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superposition waveforms consisting of multi-sinusoidal signals for wireless energy transfer(WET)and orthogonal-frequency-divisionmultiplexing(OFDM)signals for wireless data transfer(WDT).The outdated channel state information(CSI)in aging channels is employed by the transmitter to shape IDET waveforms.With the constraints of transmission power and WDT requirement,the amplitudes and phases of the IDET waveform at the transmitter and the power splitter at the receiver are jointly optimised for maximising the average directcurrent(DC)among a limited number of transmission frames with the existence of carrier-frequencyoffset(CFO).For the amplitude optimisation,the original non-convex problem can be transformed into a reversed geometric programming problem,then it can be effectively solved with existing tools.As for the phase optimisation,the artificial bee colony(ABC)algorithm is invoked in order to deal with the nonconvexity.Iteration between the amplitude optimisation and phase optimisation yields our joint design.Numerical results demonstrate the advantage of our joint design for the IDET waveform shaping with the existence of the CFO and the outdated CSI.展开更多
A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates,which hinders the development of flexible electronics.Proposed here is an electron-cyclotron-...A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates,which hinders the development of flexible electronics.Proposed here is an electron-cyclotron-resonance sputtering system that can batch-fabricate devices directly on flexible substrates under a low temperature by virtue of the polariton energy transfer between the plasma and the material.Flexible graphene nanosheet-embedded carbon(F-GNEC)films are manufactured directly on polyimide,polyethylene terephthalate,and polydimethylsiloxane,and how the substrate bias(electron energy),microwave power(plasma flux and energy),and magnetic field(electron flux)affect the nanostructure of the F-GNEC films is investigated,indicating that electron energy and flux contribute to the formation of standing graphene nanosheets in the film.The films have good uniformity of distribution in a large size(17 mm×17 mm),and tensile and angle sensors with a high gauge factor(0.92)and fast response(50 ms)for a machine hand are obtained by virtue of the unique nanostructure of the F-GNEC film.This work sheds light on the quantum manufacturing of carbon sensors and its applications for intelligent machine hands and virtual-reality technology.展开更多
The phosphors of KY_(1-x)(MoO_(4))_(2-y)(WO_(4))y:xLn^(3+)(Ln^(3+)=Tm^(3+),Dy^(3+),Eu^(3+))were synthesized by using a sol-gel method.Then,the crystal structure,luminescence properties,energy transfer,and white emissi...The phosphors of KY_(1-x)(MoO_(4))_(2-y)(WO_(4))y:xLn^(3+)(Ln^(3+)=Tm^(3+),Dy^(3+),Eu^(3+))were synthesized by using a sol-gel method.Then,the crystal structure,luminescence properties,energy transfer,and white emission of the prepared materials were researched.The molar ratio of the anion group on the photoluminescence(PL)emission and excitation intensity were investigated,revealing that the optimum intensity could be obtained by using=3:1.The optimal Dy^(3+) doping concentration of KY(MoO_(4))1.5(WO4)0.5was obtained.In addition,the color-tunable emissions of Dy^(3+)/Eu^(3+)-codoped KY(MoO_(4))1.5(WO4)0.5phosphors were observed because of the effective energy transfer(ET)from Dy^(3+)to Eu^(3+)ions.Finally,by doping appropriate concentrations of Tm^(3+),Dy^(3+),and Eu^(3+)and different concentrations of(WO_(4))^(2-),white light emitting phosphors KY_(0.92)(WO_(4))2:0.01Tm^(3+),0.06Dy^(3+),0.01Eu^(3+)with excellent color-rending properties were obtained.The chromaticity coordinate was calculated as(x=0.3238,y=0.3173),closing to the artificial daylight(D65,x=0.313,y=0.329)illuminant,and which indicates the potential application of near ultraviolet White light-emitting diodes(WLEDs).展开更多
The nonreciprocity of energy transfer is constructed in a nonlinear asymmetric oscillator system that comprises two nonlinear oscillators with different parameters placed between two identical linear oscillators.The s...The nonreciprocity of energy transfer is constructed in a nonlinear asymmetric oscillator system that comprises two nonlinear oscillators with different parameters placed between two identical linear oscillators.The slow-flow equation of the system is derived by the complexification-averaging method.The semi-analytical solutions to this equation are obtained by the least squares method,which are compared with the numerical solutions obtained by the Runge-Kutta method.The distribution of the average energy in the system is studied under periodic and chaotic vibration states,and the energy transfer along two opposite directions is compared.The effect of the excitation amplitude on the nonreciprocity of the system producing the periodic responses is analyzed,where a three-stage energy transfer phenomenon is observed.In the first stage,the energy transfer along the two opposite directions is approximately equal,whereas in the second stage,the asymmetric energy transfer is observed.The energy transfer is also asymmetric in the third stage,but the direction is reversed compared with the second stage.Moreover,the excitation amplitude for exciting the bifurcation also shows an asymmetric characteristic.Chaotic vibrations are generated around the resonant frequency,irrespective of which linear oscillator is excited.The excitation threshold of these chaotic vibrations is dependent on the linear oscillator that is being excited.In addition,the difference between the energy transfer in the two opposite directions is used to further analyze the nonreciprocity in the system.The results show that the nonreciprocity significantly depends on the excitation frequency and the excitation amplitude.展开更多
The siRNA-loaded lipid nanoparticles have attracted much attention due to its significant gene silencing effect and successful marketization.However,the in vivo distribution and release of siRNA still cannot be effect...The siRNA-loaded lipid nanoparticles have attracted much attention due to its significant gene silencing effect and successful marketization.However,the in vivo distribution and release of siRNA still cannot be effectively monitored.In this study,based on the fluorescence resonance energy transfer(FRET)principle,a fluorescence dye Cy5-modified survivin siRNA was conjugated to nanogolds(Au-DR-siRNA),which were then wrapped with lipid nanoparticles(LNPs)for monitoring the release behaviour of siRNA in vivo.The results showed that once Au-DR-siRNA was released from the LNPs and cleaved by the Dicer enzyme to produce free siRNA in cells,the fluorescence of Cy5 would change from quenched state to activated state,showing the location and time of siRNA release.Besides,the LNPs showed a significant antitumor effect by silencing the survivin gene and a CT imaging function superior to iohexol by nanogolds.Therefore,this work provided not only an effective method for monitoring the pharmacokinetic behaviour of LNP-based siRNA,but also a siRNA delivery system for treating and diagnosing tumors.展开更多
The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation resul...The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection.展开更多
Zero-dimensional environmentally friendly carbon quantum dots(CQDs)combined with two-di-mensional materials have a wide range of applications in optoelec-tronic devices.We combined steady-state and transient absorp-ti...Zero-dimensional environmentally friendly carbon quantum dots(CQDs)combined with two-di-mensional materials have a wide range of applications in optoelec-tronic devices.We combined steady-state and transient absorp-tion spectroscopies to study the energy transfer dynamics between CQDs and molybdenum disulfide(MoS_(2)).Transient absorption plots showed photoinduced absorption and stimulated emission features,which involved the intrinsic and defect states of CQDs.Adding MoS_(2)to CQDs solution,the lowest unoccupied molecular orbital of CQDs transferred energy to MoS_(2),which quenched the intrinsic emission at 390 nm.With addition of MoS_(2),CQD-MoS_(2)composites quenched defect emission at 490 nm and upward absorption,which originated from another energy transfer from the defect state.Two energy transfer paths between CQDs and MoS_(2)were efficiently manipulated by changing the concentration of MoS_(2),which laid a foundation for improving device performance.展开更多
A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which h...A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which has a unique temperature-dependent backward energy transfer process from selftrapped state to^(4)T_(1)energy level of Mn,is used for triggering the temperature alarm.The LSC with redemitted CsPbI_(3)perovskite-polymer composite films on the glass substrate is used for power supply.The spectrally separated nature between the green-emitted OMHs for temperature alarm and red-emitted CsPbI3in LSC for power supply allows for probing the signal light of temperature-responsive OMHs without the interference of LSCs,making it possible to calibrate the temperature visually just by a self-powered brightness detection circuit with LED indicators.Taking advantage of LSC without hot spot effects plaguing the solar cells,as-prepared temperature alarm system can operate well on both sunny and cloudy day.展开更多
The color-tunable white organic light-emitting diode (CT-WOLED) with wide correlation color temperature (CCT) has many advantages in optimizing the artificial light source to adapt to the human physiological cycle. Th...The color-tunable white organic light-emitting diode (CT-WOLED) with wide correlation color temperature (CCT) has many advantages in optimizing the artificial light source to adapt to the human physiological cycle. The research on the change trend of CCT and the law of extending the change range of CCT will help to further improve the performance of this kind of device. The present work fabricated a series of CT-WOLED devices with a simple structure, which are all composed of two ultra-thin phosphor layers (PO-01 and Flrpic) and a spacer interlayer. The yellow interface exciplex (TCTA/PO-T2T) formed between the spacer layer (PO-T2T) and transmission material (TCTA) in EML will decrease the CCT value at low voltage. The relationship between the energy transfer in EML and CCT change trend is investigated by adjusting the interface exciplexes and the thickness of the interlayer or the phosphor layer in devices A, B and C, respectively. The results demonstrate that a simple OLED device with an interlayer inserted between two ultra-thin phosphor layers can achieve a wider CCT span from 3359 K to 6451 K at voltage increases from 2.75 V to 8.25 V. .展开更多
Background: The Tiêu equation has a ground roots approach to the process of Quantum Biology and goes deeper through the incorporation of Quantum Mechanics. The process can be measured in plant, animal, and human ...Background: The Tiêu equation has a ground roots approach to the process of Quantum Biology and goes deeper through the incorporation of Quantum Mechanics. The process can be measured in plant, animal, and human usage through a variety of experimental or testing forms. Animal studies were conducted for which, in the first day of the study all the animals consistently gained dramatic weight, even as a toxic substance was introduced as described in the introduction of the paper to harm animal subjects which induced weight loss through toxicity. Tests can be made by incorporating blood report results. Human patients were also observed to show improvement to their health as administration of the substance was introduced to the biological mechanism and plants were initially exposed to the substance to observe results. This is consistent with the Tiêu equation which provides that wave function is created as the introduction of the substance to the biological mechanism which supports Quantum Mechanics. The Tiêu equation demonstrates that Quantum Mechanics moves a particle by temperature producing energy thru the blood-brain barrier for example. Methods: The methods for the Tiêu equation incorporate animal studies to include the substance administered through laboratory standards using Good Laboratory Practices under Title 40 C.F.R. § 158. Human patients were treated with the substance by medical professionals who are experts in their field and have knowledge to the response of patients. Plant applications were acquired for observation and guidance of ongoing experiments of animals’ representative for the biologics mechanism. Results: The animal studies along with patient blood testing results have been an impressive line that has followed the Tiêu equation to consistently show improvement in the introduction of the innovation to biologic mechanisms. The mechanism responds to the substance by producing energy to the mechanism with efficient effect. For plant observations, plant organisms responded, and were seen as showing improvement thru visual observation.展开更多
Balancing electron transfer and intermediate adsorption ability of bifunctional catalysts via tailoring electronic structures is crucial for green hydrogen production,while it still remains challenging due to lacking ...Balancing electron transfer and intermediate adsorption ability of bifunctional catalysts via tailoring electronic structures is crucial for green hydrogen production,while it still remains challenging due to lacking efficient strategies.Herein,one efficient and universal strategy is developed to greatly regulate electronic structures of the metallic Ni-Fe-P catalysts via in-situ introducing the rare earth(RE)atoms(Ni-Fe-RE-P,RE=La,Ce,Pr,and Nd).Accordingly,the as-prepared optimal Ni-Fe-Ce-P/CC self-supported bifunctional electrodes exhibited superior electrocatalytic activity and excellent stability with the low overpotentials of 247 and 331 mV at 100 mA cm^(-2) for HER and OER,respectively.In the assembled electrolyzer,the Ni-Fe-Ce-P/CC as bifunctional electrodes displayed low operation potential of 1.49 V to achieve a current density of 10 mA cm^(-2),and the catalytic performance can be maintained for 100 h.Experimental results combined with density functional theory(DFT)calculation reveal that Ce doping leads to electron decentralization and crystal structure distortion,which can tailor the band structures and d-band center of Ni-Fe-P,further increasing conductivity and optimizing intermediate adsorption energy.Our work not only proposes a valuable strategy to regulate the electron transfer and intermediate adsorption of electrocatalysts via RE atoms doping,but also provides a deep under-standing of regulation mechanism of metallic electrocatalysts for enhanced water splitting.展开更多
There is an urgent need for novel processes that can integrate different functional nanostructures onto specific substrates,so as to meet the fast-growing need for broad applications in nanoelectronics,nanophotonics,a...There is an urgent need for novel processes that can integrate different functional nanostructures onto specific substrates,so as to meet the fast-growing need for broad applications in nanoelectronics,nanophotonics,and fexible optoelectronics.Existing direct-lithography methods are difficult to use on fexible,nonplanar,and biocompatible surfaces.Therefore,this fabrication is usually accomplished by nanotransfer printing.However,large-scale integration of multiscale nanostructures with unconventional substrates remains challenging because fabrication yields and quality are often limited by the resolution,uniformity,adhesivity,and integrity of the nanostructures formed by direct transfer.Here,we proposed a resist-based transfer strategy enabled by near-zero adhesion,which was achieved by molecular modification to attain a critical surface energy interval.This approach enabled the intact transfer of wafer-scale,ultrathin-resist nanofilms onto arbitrary substrates with mitigated cracking and wrinkling,thereby facilitating the in situ fabrication of nanostructures for functional devices.Applying this approach,fabrication of three-dimensional-stacked multilayer structures with enhanced functionalities,nanoplasmonic structures with~10 nm resolution,and MoS2-based devices with excellent performance was demonstrated on specific substrates.These results collectively demonstrated the high stability,reliability,and throughput of our strategy for optical and electronic device applications.展开更多
The multi-component strategy has proven effective in advancing the performance of organic photovoltaics(OPVs),enhancing photocurrent andfill factor through spectral complementarity and morphology optimization.However,t...The multi-component strategy has proven effective in advancing the performance of organic photovoltaics(OPVs),enhancing photocurrent andfill factor through spectral complementarity and morphology optimization.However,the open-circuit voltage(VOC)mechanism in multi-component systems lacks systematic investiga-tion.In this study,we explore the influence of alloy-like phases on energy level distribution and energy loss mechanisms in multi-component OPVs.Appropriate modulation of donor alloy-like phases maintains the original intermolecular stack-ing,enhances component compatibility,reduces acceptor aggregation,and improves acceptor phase purity,mitigating non-radiative recombination losses.Additionally,suitable alloy-like phase modulation elevates charge transfer(CT)states,reducing the gap between CT and local exciton state,lowering reorganization energy,and alleviating radiative recombination loss below the bandgap.Through synergistic optimization(layer-by-layer method with solid additive),ternary devices based on Y6 acceptor achieve a notable 19.41%power conversion efficiency,offering new insights for the analysis of the energy loss of the multi-component OPVs.展开更多
COVID-19 has devastated numerous nations around the world and has overburdened numerous healthcare systems,which has also caused the loss of livelihoods due to prolonged shutdowns and further led to a cascading effect...COVID-19 has devastated numerous nations around the world and has overburdened numerous healthcare systems,which has also caused the loss of livelihoods due to prolonged shutdowns and further led to a cascading effect on the global economy.COVID-19 infections have an incubation period of 2–7 days,but 40 to 45%of cases are asymptomatic or show mild to moderate respiratory symptoms after the period due to subclinical lung abnormalities,making it more likely to spread the pandemic disease.To restrict the spread of the virus,on-site diagnosis methods that are quicker,more precise,and easily accessible are required.Rapid Antigen Detection Tests and Polymerase Chain Reaction tests are currently the primary methods used to determine the presence of COVID-19 viruses.These tests are typically time-consuming,not accurate,and,more importantly,not available to everyone.Hence,in this review and hypothesis,we proposed equipment that employs the properties of photonics to improve the detection of COVID-19 viruses by taking the advantage of typical binding of coronavirus with angiotensin-converting enzyme 2(ACE2)receptors.This hypothetical model would combine Surface-Enhanced Raman Scattering(SERS)and Fluorescence Resonance Energy Transfer(FRET)to provide great flexibility,high sensitivities,and enhanced accessibility.展开更多
基金supports from the National Natural Science Foundation of China(11904302,61921005)Major Project of the Science and Technology in Fujian Province of China(2019HZ020013)Major Science and Technology Projects in Xiamen of China(3502Z20191015).
文摘With regard to micro-light-emitting diodes(micro-LEDs),their excellent brightness,low energy consumption,and ultrahigh resolution are significant advantages.However,the large size of traditional inorganic phosphors and the number of side defects have restricted the practical applications of small sized micro-LEDs.Recently,quantum dot(QD)and nonradiative energy transfer(NRET)have been proposed to solve existing problems.QDs possess nanoscale dimensions and high luminous efficiency,and they are suitable for NRET because they are able to nearly contact the micro-LED chip.The NRET between QDs and micro-LED chip further improves the color conversion efficiency(CCE)and effective quantum yield(EQY)of full-color micro-LED devices.In this review,we discuss the NRET mechanism for QD micro-LED devices,and then nano-pillar LED,nano-hole LED,and nano-ring LED are introduced in detail.These structures are beneficial to the NRET between QD and micro-LED,especially nano-ring LED.Finally,the challenges and future envisions have also been described.
基金supported by the State Scholarship Fund organized by the China Scholarship Council(CSC).
文摘Energy transfer is ubiquitous in natural and artificial lightharvesting systems,and coherent energy transfer,a highly efficient energy transfer process,has been accepted to play a vital role in such systems.However,the energy oscillation of coherent energy transfer is exceedingly difficult to capture because of its evanescence due to the interaction with a thermal environment.Here a microscopic quantum model is used to study the time evolution of electrons triggered energy transfer between coherently coupled donoracceptor molecules in scanning tunneling microscope(STM).A series of topics in the plasmonic nanocavity(PNC)coupled donor-acceptor molecules system are discussed,including resonant and nonresonant coherent energy transfer,dephasing assisted energy transfer,PNC coupling strength dependent energy transfer,Fano resonance of coherently coupled donor-acceptor molecules,and polariton-mediated energy transfer.
基金supported in part by the MOST Major Research and Development Project(Grant No.2021YFB2900204)the National Natural Science Foundation of China(NSFC)(Grant No.62201123,No.62132004,No.61971102)+3 种基金China Postdoctoral Science Foundation(Grant No.2022TQ0056)in part by the financial support of the Sichuan Science and Technology Program(Grant No.2022YFH0022)Sichuan Major R&D Project(Grant No.22QYCX0168)the Municipal Government of Quzhou(Grant No.2022D031)。
文摘Integrated data and energy transfer(IDET)enables the electromagnetic waves to transmit wireless energy at the same time of data delivery for lowpower devices.In this paper,an energy harvesting modulation(EHM)assisted multi-user IDET system is studied,where all the received signals at the users are exploited for energy harvesting without the degradation of wireless data transfer(WDT)performance.The joint IDET performance is then analysed theoretically by conceiving a practical time-dependent wireless channel.With the aid of the AO based algorithm,the average effective data rate among users are maximized by ensuring the BER and the wireless energy transfer(WET)performance.Simulation results validate and evaluate the IDET performance of the EHM assisted system,which also demonstrates that the optimal number of user clusters and IDET time slots should be allocated,in order to improve the WET and WDT performance.
基金supported by the Guangdong Provincial Science&Technology Project(No.2023A0505050084)the National Natural Science Foundation of China(No.22361132525)+1 种基金the Fundamental Research Funds for the Central Universities(No.2023ZYGXZR002)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01X137).
文摘Mn^(2+)doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nano-crystals(NCs).However,it is still difficult to understand the interplay of Mn^(2+)luminescence and the matrix self-trapped exciton(STE)emission therein.In this study,Mn^(2+)-doped CsCdCl_(3) NCs are prepared by hot injection,in which CsCdCl_(3) is selected because of its unique crystal structure suitable for STE emission.The blue emission at 441 nm of undoped CsCdCl_(3) NCs originates from the defect states in the NCs.Mn^(2+)doping promotes lattice distortion of CsCdCl_(3) and generates bright orange-red light emission at 656 nm.The en-ergy transfer from the STEs of CsCdCl_(3) to the excited levels of the Mn^(2+)ion is confirmed to be a significant factor in achieving efficient luminescence in CsCdCl_(3):Mn^(2+)NCs.This work highlights the crucial role of energy transfer from STEs to Mn^(2+)dopants in Mn^(2+)-doped halide NCs and lays the groundwork for modifying the luminescence of other metal halide perovskite NCs.
基金supported by the National Natural Science Foundation of China(No.52488201)the Natural Science Basic Research Program of Shaanxi(No.2024JC-YBMS-284)+1 种基金the Key Research and Development Program of Shaanxi(No.2024GHYBXM-02)the Fundamental Research Funds for the Central Universities.
文摘Machine learning combined with density functional theory(DFT)enables rapid exploration of catalyst descriptors space such as adsorption energy,facilitating rapid and effective catalyst screening.However,there is still a lack of models for predicting adsorption energies on oxides,due to the complexity of elemental species and the ambiguous coordination environment.This work proposes an active learning workflow(LeNN)founded on local electronic transfer features(e)and the principle of coordinate rotation invariance.By accurately characterizing the electron transfer to adsorption site atoms and their surrounding geometric structures,LeNN mitigates abrupt feature changes due to different element types and clarifies coordination environments.As a result,it enables the prediction of^(*)H adsorption energy on binary oxide surfaces with a mean absolute error(MAE)below 0.18 eV.Moreover,we incorporate local coverage(θ_(l))and leverage neutral network ensemble to establish an active learning workflow,attaining a prediction MAE below 0.2 eV for 5419 multi-^(*)H adsorption structures.These findings validate the universality and capability of the proposed features in predicting^(*)H adsorption energy on binary oxide surfaces.
基金funding for this work from NSF-CMMI 2009270 and EPSRC EP/V034391/1.
文摘The paper studies stochastic dynamics of a two-degree-of-freedom system,where a primary linear system is connected to a nonlinear energy sink with cubic stiffness nonlinearity and viscous damping.While the primary mass is subjected to a zero-mean Gaussian white noise excitation,the main objective of this study is to maximise the efficiency of the targeted energy transfer in the system.A surrogate optimisation algorithm is proposed for this purpose and adopted for the stochastic framework.The optimisations are conducted separately for the nonlinear stiffness coefficient alone as well as for both the nonlinear stiffness and damping coefficients together.Three different optimisation cost functions,based on either energy of the system’s components or the dissipated energy,are considered.The results demonstrate some clear trends in values of the nonlinear energy sink coefficients and show the effect of different cost functions on the optimal values of the nonlinear system’s coefficients.
基金financial support of Natural Science Foundation of China(No.61971102,62132004)MOST Major Research and Development Project(No.2021YFB2900204)+1 种基金Sichuan Science and Technology Program(No.2022YFH0022)Key Research and Development Program of Zhejiang Province(No.2022C01093)。
文摘Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superposition waveforms consisting of multi-sinusoidal signals for wireless energy transfer(WET)and orthogonal-frequency-divisionmultiplexing(OFDM)signals for wireless data transfer(WDT).The outdated channel state information(CSI)in aging channels is employed by the transmitter to shape IDET waveforms.With the constraints of transmission power and WDT requirement,the amplitudes and phases of the IDET waveform at the transmitter and the power splitter at the receiver are jointly optimised for maximising the average directcurrent(DC)among a limited number of transmission frames with the existence of carrier-frequencyoffset(CFO).For the amplitude optimisation,the original non-convex problem can be transformed into a reversed geometric programming problem,then it can be effectively solved with existing tools.As for the phase optimisation,the artificial bee colony(ABC)algorithm is invoked in order to deal with the nonconvexity.Iteration between the amplitude optimisation and phase optimisation yields our joint design.Numerical results demonstrate the advantage of our joint design for the IDET waveform shaping with the existence of the CFO and the outdated CSI.
基金support of the National Natural Science Foundation of China(Grant Nos.52275565,NSFC-JSPS:52011540005,and 62104155)the Natural Science Foundation of Guangdong Province(Grant No.2022A1515011667)the Guangdong Kangyi Special Fund(Grant No.2020KZDZX1173).
文摘A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates,which hinders the development of flexible electronics.Proposed here is an electron-cyclotron-resonance sputtering system that can batch-fabricate devices directly on flexible substrates under a low temperature by virtue of the polariton energy transfer between the plasma and the material.Flexible graphene nanosheet-embedded carbon(F-GNEC)films are manufactured directly on polyimide,polyethylene terephthalate,and polydimethylsiloxane,and how the substrate bias(electron energy),microwave power(plasma flux and energy),and magnetic field(electron flux)affect the nanostructure of the F-GNEC films is investigated,indicating that electron energy and flux contribute to the formation of standing graphene nanosheets in the film.The films have good uniformity of distribution in a large size(17 mm×17 mm),and tensile and angle sensors with a high gauge factor(0.92)and fast response(50 ms)for a machine hand are obtained by virtue of the unique nanostructure of the F-GNEC film.This work sheds light on the quantum manufacturing of carbon sensors and its applications for intelligent machine hands and virtual-reality technology.
文摘The phosphors of KY_(1-x)(MoO_(4))_(2-y)(WO_(4))y:xLn^(3+)(Ln^(3+)=Tm^(3+),Dy^(3+),Eu^(3+))were synthesized by using a sol-gel method.Then,the crystal structure,luminescence properties,energy transfer,and white emission of the prepared materials were researched.The molar ratio of the anion group on the photoluminescence(PL)emission and excitation intensity were investigated,revealing that the optimum intensity could be obtained by using=3:1.The optimal Dy^(3+) doping concentration of KY(MoO_(4))1.5(WO4)0.5was obtained.In addition,the color-tunable emissions of Dy^(3+)/Eu^(3+)-codoped KY(MoO_(4))1.5(WO4)0.5phosphors were observed because of the effective energy transfer(ET)from Dy^(3+)to Eu^(3+)ions.Finally,by doping appropriate concentrations of Tm^(3+),Dy^(3+),and Eu^(3+)and different concentrations of(WO_(4))^(2-),white light emitting phosphors KY_(0.92)(WO_(4))2:0.01Tm^(3+),0.06Dy^(3+),0.01Eu^(3+)with excellent color-rending properties were obtained.The chromaticity coordinate was calculated as(x=0.3238,y=0.3173),closing to the artificial daylight(D65,x=0.313,y=0.329)illuminant,and which indicates the potential application of near ultraviolet White light-emitting diodes(WLEDs).
基金Project supported by the National Natural Science Foundation of China(Nos.12172246 and 11872274)the Natural Science Foundation of Tianjin of China(No.19JCZDJC32300)。
文摘The nonreciprocity of energy transfer is constructed in a nonlinear asymmetric oscillator system that comprises two nonlinear oscillators with different parameters placed between two identical linear oscillators.The slow-flow equation of the system is derived by the complexification-averaging method.The semi-analytical solutions to this equation are obtained by the least squares method,which are compared with the numerical solutions obtained by the Runge-Kutta method.The distribution of the average energy in the system is studied under periodic and chaotic vibration states,and the energy transfer along two opposite directions is compared.The effect of the excitation amplitude on the nonreciprocity of the system producing the periodic responses is analyzed,where a three-stage energy transfer phenomenon is observed.In the first stage,the energy transfer along the two opposite directions is approximately equal,whereas in the second stage,the asymmetric energy transfer is observed.The energy transfer is also asymmetric in the third stage,but the direction is reversed compared with the second stage.Moreover,the excitation amplitude for exciting the bifurcation also shows an asymmetric characteristic.Chaotic vibrations are generated around the resonant frequency,irrespective of which linear oscillator is excited.The excitation threshold of these chaotic vibrations is dependent on the linear oscillator that is being excited.In addition,the difference between the energy transfer in the two opposite directions is used to further analyze the nonreciprocity in the system.The results show that the nonreciprocity significantly depends on the excitation frequency and the excitation amplitude.
基金by the National Natural Science Foundation of China(81872812,82073800)the China Postdoctoral Science Fundation(2021TQ0111,2021M691040).
文摘The siRNA-loaded lipid nanoparticles have attracted much attention due to its significant gene silencing effect and successful marketization.However,the in vivo distribution and release of siRNA still cannot be effectively monitored.In this study,based on the fluorescence resonance energy transfer(FRET)principle,a fluorescence dye Cy5-modified survivin siRNA was conjugated to nanogolds(Au-DR-siRNA),which were then wrapped with lipid nanoparticles(LNPs)for monitoring the release behaviour of siRNA in vivo.The results showed that once Au-DR-siRNA was released from the LNPs and cleaved by the Dicer enzyme to produce free siRNA in cells,the fluorescence of Cy5 would change from quenched state to activated state,showing the location and time of siRNA release.Besides,the LNPs showed a significant antitumor effect by silencing the survivin gene and a CT imaging function superior to iohexol by nanogolds.Therefore,this work provided not only an effective method for monitoring the pharmacokinetic behaviour of LNP-based siRNA,but also a siRNA delivery system for treating and diagnosing tumors.
基金the National Natural Science Foundation of China(Grant Nos.62227901,12202068)the Civil Aerospace Pre-research Project(Grant No.D020304).
文摘The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection.
基金supported by the National Natural Science Foundation of China(No.61805134 and No.11974229)Applied Basic Research Program in Shanxi Province,China(No.201801D221016 and No.202103021223254)+2 种基金Scientific and Technological Innovation Pro-grams of Higher Education Institutions in Shanxi(No.2020L0235 and No.2021L257)Linfen Key Re-search and Development Program(No.2028)Graduate Innovation Project in Shanxi Province(No.2022Y498).
文摘Zero-dimensional environmentally friendly carbon quantum dots(CQDs)combined with two-di-mensional materials have a wide range of applications in optoelec-tronic devices.We combined steady-state and transient absorp-tion spectroscopies to study the energy transfer dynamics between CQDs and molybdenum disulfide(MoS_(2)).Transient absorption plots showed photoinduced absorption and stimulated emission features,which involved the intrinsic and defect states of CQDs.Adding MoS_(2)to CQDs solution,the lowest unoccupied molecular orbital of CQDs transferred energy to MoS_(2),which quenched the intrinsic emission at 390 nm.With addition of MoS_(2),CQD-MoS_(2)composites quenched defect emission at 490 nm and upward absorption,which originated from another energy transfer from the defect state.Two energy transfer paths between CQDs and MoS_(2)were efficiently manipulated by changing the concentration of MoS_(2),which laid a foundation for improving device performance.
基金supported by the Natural Science Foundation of China(22075043,21875034,61704093)。
文摘A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which has a unique temperature-dependent backward energy transfer process from selftrapped state to^(4)T_(1)energy level of Mn,is used for triggering the temperature alarm.The LSC with redemitted CsPbI_(3)perovskite-polymer composite films on the glass substrate is used for power supply.The spectrally separated nature between the green-emitted OMHs for temperature alarm and red-emitted CsPbI3in LSC for power supply allows for probing the signal light of temperature-responsive OMHs without the interference of LSCs,making it possible to calibrate the temperature visually just by a self-powered brightness detection circuit with LED indicators.Taking advantage of LSC without hot spot effects plaguing the solar cells,as-prepared temperature alarm system can operate well on both sunny and cloudy day.
文摘The color-tunable white organic light-emitting diode (CT-WOLED) with wide correlation color temperature (CCT) has many advantages in optimizing the artificial light source to adapt to the human physiological cycle. The research on the change trend of CCT and the law of extending the change range of CCT will help to further improve the performance of this kind of device. The present work fabricated a series of CT-WOLED devices with a simple structure, which are all composed of two ultra-thin phosphor layers (PO-01 and Flrpic) and a spacer interlayer. The yellow interface exciplex (TCTA/PO-T2T) formed between the spacer layer (PO-T2T) and transmission material (TCTA) in EML will decrease the CCT value at low voltage. The relationship between the energy transfer in EML and CCT change trend is investigated by adjusting the interface exciplexes and the thickness of the interlayer or the phosphor layer in devices A, B and C, respectively. The results demonstrate that a simple OLED device with an interlayer inserted between two ultra-thin phosphor layers can achieve a wider CCT span from 3359 K to 6451 K at voltage increases from 2.75 V to 8.25 V. .
文摘Background: The Tiêu equation has a ground roots approach to the process of Quantum Biology and goes deeper through the incorporation of Quantum Mechanics. The process can be measured in plant, animal, and human usage through a variety of experimental or testing forms. Animal studies were conducted for which, in the first day of the study all the animals consistently gained dramatic weight, even as a toxic substance was introduced as described in the introduction of the paper to harm animal subjects which induced weight loss through toxicity. Tests can be made by incorporating blood report results. Human patients were also observed to show improvement to their health as administration of the substance was introduced to the biological mechanism and plants were initially exposed to the substance to observe results. This is consistent with the Tiêu equation which provides that wave function is created as the introduction of the substance to the biological mechanism which supports Quantum Mechanics. The Tiêu equation demonstrates that Quantum Mechanics moves a particle by temperature producing energy thru the blood-brain barrier for example. Methods: The methods for the Tiêu equation incorporate animal studies to include the substance administered through laboratory standards using Good Laboratory Practices under Title 40 C.F.R. § 158. Human patients were treated with the substance by medical professionals who are experts in their field and have knowledge to the response of patients. Plant applications were acquired for observation and guidance of ongoing experiments of animals’ representative for the biologics mechanism. Results: The animal studies along with patient blood testing results have been an impressive line that has followed the Tiêu equation to consistently show improvement in the introduction of the innovation to biologic mechanisms. The mechanism responds to the substance by producing energy to the mechanism with efficient effect. For plant observations, plant organisms responded, and were seen as showing improvement thru visual observation.
基金support from the National Key Technology R&D Program of China(2021YFB3500801,2022YFC3901503,2022YFB3504302)the Natural Science Foundation and Overseas Talent Projects of Jiangxi Province(20232BAB214025,20232BCJ25044).
文摘Balancing electron transfer and intermediate adsorption ability of bifunctional catalysts via tailoring electronic structures is crucial for green hydrogen production,while it still remains challenging due to lacking efficient strategies.Herein,one efficient and universal strategy is developed to greatly regulate electronic structures of the metallic Ni-Fe-P catalysts via in-situ introducing the rare earth(RE)atoms(Ni-Fe-RE-P,RE=La,Ce,Pr,and Nd).Accordingly,the as-prepared optimal Ni-Fe-Ce-P/CC self-supported bifunctional electrodes exhibited superior electrocatalytic activity and excellent stability with the low overpotentials of 247 and 331 mV at 100 mA cm^(-2) for HER and OER,respectively.In the assembled electrolyzer,the Ni-Fe-Ce-P/CC as bifunctional electrodes displayed low operation potential of 1.49 V to achieve a current density of 10 mA cm^(-2),and the catalytic performance can be maintained for 100 h.Experimental results combined with density functional theory(DFT)calculation reveal that Ce doping leads to electron decentralization and crystal structure distortion,which can tailor the band structures and d-band center of Ni-Fe-P,further increasing conductivity and optimizing intermediate adsorption energy.Our work not only proposes a valuable strategy to regulate the electron transfer and intermediate adsorption of electrocatalysts via RE atoms doping,but also provides a deep under-standing of regulation mechanism of metallic electrocatalysts for enhanced water splitting.
基金supported by the National Key Research and Development Program of China(No.2022YFB4602600)the National Natural Science Foundation of China(No.52221001)Hunan Provincial Innovation Foundation for Postgraduate(No.CX20220406)。
文摘There is an urgent need for novel processes that can integrate different functional nanostructures onto specific substrates,so as to meet the fast-growing need for broad applications in nanoelectronics,nanophotonics,and fexible optoelectronics.Existing direct-lithography methods are difficult to use on fexible,nonplanar,and biocompatible surfaces.Therefore,this fabrication is usually accomplished by nanotransfer printing.However,large-scale integration of multiscale nanostructures with unconventional substrates remains challenging because fabrication yields and quality are often limited by the resolution,uniformity,adhesivity,and integrity of the nanostructures formed by direct transfer.Here,we proposed a resist-based transfer strategy enabled by near-zero adhesion,which was achieved by molecular modification to attain a critical surface energy interval.This approach enabled the intact transfer of wafer-scale,ultrathin-resist nanofilms onto arbitrary substrates with mitigated cracking and wrinkling,thereby facilitating the in situ fabrication of nanostructures for functional devices.Applying this approach,fabrication of three-dimensional-stacked multilayer structures with enhanced functionalities,nanoplasmonic structures with~10 nm resolution,and MoS2-based devices with excellent performance was demonstrated on specific substrates.These results collectively demonstrated the high stability,reliability,and throughput of our strategy for optical and electronic device applications.
基金Zhejiang Provincial Natural Science Foundation,Grant/Award Numbers:LQ23E030002,LZ23B040001National Natural Science Foundation of China,Grant/Award Numbers:52303226,21971049+1 种基金Hangzhou Normal University,Grant/Award Number:4095C50222204002National Key Research and Development Program of China,Grant/Award Number:2019YFA0705902。
文摘The multi-component strategy has proven effective in advancing the performance of organic photovoltaics(OPVs),enhancing photocurrent andfill factor through spectral complementarity and morphology optimization.However,the open-circuit voltage(VOC)mechanism in multi-component systems lacks systematic investiga-tion.In this study,we explore the influence of alloy-like phases on energy level distribution and energy loss mechanisms in multi-component OPVs.Appropriate modulation of donor alloy-like phases maintains the original intermolecular stack-ing,enhances component compatibility,reduces acceptor aggregation,and improves acceptor phase purity,mitigating non-radiative recombination losses.Additionally,suitable alloy-like phase modulation elevates charge transfer(CT)states,reducing the gap between CT and local exciton state,lowering reorganization energy,and alleviating radiative recombination loss below the bandgap.Through synergistic optimization(layer-by-layer method with solid additive),ternary devices based on Y6 acceptor achieve a notable 19.41%power conversion efficiency,offering new insights for the analysis of the energy loss of the multi-component OPVs.
文摘COVID-19 has devastated numerous nations around the world and has overburdened numerous healthcare systems,which has also caused the loss of livelihoods due to prolonged shutdowns and further led to a cascading effect on the global economy.COVID-19 infections have an incubation period of 2–7 days,but 40 to 45%of cases are asymptomatic or show mild to moderate respiratory symptoms after the period due to subclinical lung abnormalities,making it more likely to spread the pandemic disease.To restrict the spread of the virus,on-site diagnosis methods that are quicker,more precise,and easily accessible are required.Rapid Antigen Detection Tests and Polymerase Chain Reaction tests are currently the primary methods used to determine the presence of COVID-19 viruses.These tests are typically time-consuming,not accurate,and,more importantly,not available to everyone.Hence,in this review and hypothesis,we proposed equipment that employs the properties of photonics to improve the detection of COVID-19 viruses by taking the advantage of typical binding of coronavirus with angiotensin-converting enzyme 2(ACE2)receptors.This hypothetical model would combine Surface-Enhanced Raman Scattering(SERS)and Fluorescence Resonance Energy Transfer(FRET)to provide great flexibility,high sensitivities,and enhanced accessibility.