期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The landing of parameter rays at non-recurrent critical portraits Dedicated to the Memory of Professor Lei Tan 被引量:1
1
作者 Yan Gao Jinsong Zeng 《Science China Mathematics》 SCIE CSCD 2018年第12期2267-2282,共16页
Based on the distortion theory developed by Cui and Tan (2015), we prove the landing of every parameter ray at critical portraits coming from non-recurrent polynomials, thereby generalizing a result of Kiwi (2005).
关键词 CRITICAL portraits non-recurrent IMPRESSIONS
原文传递
Non-recurrence of exp(z)/z
2
作者 Guo Ping ZHAN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第4期703-716,共14页
Abstract In this paper, we consider the dynamics of the map z →* exp(z)/z on the punctured plane C* = C/{0}. We show that for almost every point z∈C*, the w-limit set of z is equal to {0, ∞}. In particular, t... Abstract In this paper, we consider the dynamics of the map z →* exp(z)/z on the punctured plane C* = C/{0}. We show that for almost every point z∈C*, the w-limit set of z is equal to {0, ∞}. In particular, the map is not recurrent. 展开更多
关键词 non-recurrence w-limit set Julia set nesting condition
原文传递
The topology of Julia sets for polynomials 被引量:2
3
作者 尹永成 《Science China Mathematics》 SCIE 2002年第8期1020-1024,共5页
We prove that wandering components of the Julia set of a polynomial are singletons provided each critical point in a wandering Julia component is non-recurrent. This means a conjecture of Branner-Hubbard is true for t... We prove that wandering components of the Julia set of a polynomial are singletons provided each critical point in a wandering Julia component is non-recurrent. This means a conjecture of Branner-Hubbard is true for this kind of polynomials. 展开更多
关键词 CRITICAL point non-recurrent Julia set.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部