The size of mineral grain has a significant impact on the initiation and propagation of microcracks within rocks.In this study,fine-,medium-,and coarse-grained granites were used to investigate microcrack evolution an...The size of mineral grain has a significant impact on the initiation and propagation of microcracks within rocks.In this study,fine-,medium-,and coarse-grained granites were used to investigate microcrack evolution and characteristic stress under uniaxial compression using the acoustic emission(AE),digital image correlation(DIC),and nuclear magnetic resonance(NMR)measurements.The experimental results show that the characteristic stress of each granite decreased considerably with increasing grain sizes.The inflection points of the b-value occurred earlier with an increase in grain sizes,indicating that the larger grains promote the generation and propagation of microcracks.The distribution characteristics of the average frequency(AF)and the ratio of rise time to amplitude(RA)indicate that the proportion of shear microcracks increases with increasing grain size.The NMR results indicate that the porosity and the proportion of large pores increased with increasing grain size,which may intensify the microcrack evolution.Moreover,analysis of the DIC and AE event rates suggests that the high-displacement regions could serve as a criterion for the degree of microcrack propagation.The study found that granites with larger grains had a higher proportion of high-displacement regions,which can lead to larger-scale cracking or even spalling.These findings are not only beneficial to understand the pattern of microcrack evolution with different grain sizes,but also provide guidance for rock monitoring and instability assessment.展开更多
The rock fracture characteristics and principal stress directions are crucial for prevention of geological disasters.In this study,we carried out biaxial compression tests on cubic granite samples of 100 mm in side le...The rock fracture characteristics and principal stress directions are crucial for prevention of geological disasters.In this study,we carried out biaxial compression tests on cubic granite samples of 100 mm in side length with different intermediate principal stress gradients in combination with acoustic emission(AE)technique.Results show that the fracture characteristics of granite samples change from‘sudden and aggregated’to‘continuous and dispersed’with the increase of the intermediate principal stress.The effect of increasing intermediate principal stress on AE amplitude is not significant,but it increases the proportions of high-frequency AE signals and shear cracks,which in turn increases the possibility of unstable rock failure.The difference of stress in different directions causes the anisotropy of rock fracture and thus leads to the obvious anisotropic characteristics of wave velocity variations.The anisotropy of wave velocity variations with stress difference is probable to identify the principal stress directions.The AE characteristics and the anisotropy of wave velocity variations of granite under two-dimensional stress are not only beneficial complements for rock fracture characteristic and principal stress direction identification,but also can provide a new analysis method for stability monitoring in practical rock engineering.展开更多
To make clear the emission characteristics of soil N20 from typical green- house vegetable fields in North China, an experiment was conducted in greenhouse tomato field in Shouguang city, Shandong province, China's ...To make clear the emission characteristics of soil N20 from typical green- house vegetable fields in North China, an experiment was conducted in greenhouse tomato field in Shouguang city, Shandong province, China's "Home of Vegetables". The N2O fluxes were observed in four experimental treatments, as follows: none N fertilizer (CK), single organic fertilizer (OM), conventional fertilization (FP) and opti- mized and reduced nitrogen fertilization (OPT), by a close chamber-gas chromato- graph method. The effects of different fertilization treatments on N2O emission and tomato yield were analyzed. The results showed that following the fertilization and ir- rigation, the pulsed emissions of N2O were measured. The N2O emission peak ap- peared after basal fertilizer application and irrigation and could be maintained for about 20 days. While the N2O emission peak caused by topdressing was smaller and last only 3-5 days. The statistical analysis showed that the N2O fluxes were affected by air temperature, soil temperature and WFPS at soil depth of 3 cm. The total contents of soil N2O fluxes had significant differences among experimental groups. The total content orderly was FP of 14. 77 kg/hm^2, OPT of 9. 73 kg/hm^2, OM of 6.84 kg/hm^2 and CK of 2.37 kg/hm^2. The N~:~ emission coefficient ranged from 0.83%-1.10%,which was close to or more than the recommended value (1.0%) by IPCC. Compared with the FP treatment, the tomato yield in OPT treatment, whose application rate of chemical N fertilizer decreased by about 60%, increased by 2.2%. Under the current management measures, the reasonable reduction on ap- plicaUon rate of organic manure and chemical nitrogen fertilizer could effectively re- duce the N=O emissions in greenhouse vegetable fields.展开更多
During the process of constructional backfill mining,the cemented paste backfill(CPB)typically exhibits a high degree of brittleness and limited resistance to failure.In this study,the mechanical and damage evolution ...During the process of constructional backfill mining,the cemented paste backfill(CPB)typically exhibits a high degree of brittleness and limited resistance to failure.In this study,the mechanical and damage evolution characteristics of waste tire steel fiber(WTSF)-modified CPB were studied through uniaxial compression tests,acoustic emission(AE)tests,and scanning electron microscopy(SEM).The results showed that the uniaxial compressive strength(UCS)decreased when the WTSF content was 0.5%,1%,and 1.5%.When the WTSF content reached 1%,the UCS of the modified CPB exhibited a minimal decrease(0.37 MPa)compared to that without WTSF.When the WTSF content was 0.5%,1%,and 1.5%,peak strain of the WTSF-modified CPB increased by 18%,31.33%,and 81.33%,while the elastic modulus decreased by 21.31%,26.21%,and 45.42%,respectively.The addition of WTSF enhances the activity of AE events in the modified CPB,resulting in a slower progression of the entire failure process.After the failure,the modified CPB retained a certain level of load-bearing capacity.Generally,the failure of the CPB was dominated by tensile cracks.After the addition of WTSF,a gradual increase in the proportion of tensile cracks was observed upon loading the modified CPB sample to the pore compaction stage.The three-dimensional localization of AE events showed that the WTSF-modified CPB underwent progressive damage during the loading,and the samples still showed good integrity after failure.Additionally,the response relationship between energy evolution and damage development of WTSF-modified CPB during uniaxial compression was analyzed,and the damage constitutive model of CPB samples with different WTSF contents was constructed.This study provides a theoretical basis for the enhancement of CPB modified by adding WTSF,serving as a valuable reference for the design of CPB constructional backfill.展开更多
Macroscopic grasp of agricultural carbon emissions status, spatial-temporal characteristics as well as driving factors are the basic premise in further research on China’s agricultural carbon emissions. Based on 23 k...Macroscopic grasp of agricultural carbon emissions status, spatial-temporal characteristics as well as driving factors are the basic premise in further research on China’s agricultural carbon emissions. Based on 23 kinds of major carbon emission sources including agricultural materials inputs, paddy ifeld, soil and livestock breeding, this paper ifrstly calculated agricultural carbon emissions from 1995 to 2010, as well as 31 provinces and cities in 2010 in China. We then made a decomposed analysis to the driving factors of carbon emissions with logarithmic mean Divisia index (LMDI) model. The results show:(1) The amount of agricultural carbon emissions is 291.1691 million t in 2010. Compared with 249.5239 million t in 1995, it increased by 16.69%, in which, agricultural materials inputs, paddy ifeld, soil, enteric fermentation, and manure management accounted for 33.59, 22.03, 7.46, 17.53 and 19.39%of total agricultural carbon emissions, respectively. Although the amount exist ups and downs, it shows an overall trend of cyclical rise; (2) There is an obvious difference among regions:the amount of agricultural carbon emissions from top ten zones account for 56.68%, while 9.84%from last 10 zones. The traditional agricultural provinces, especially the major crop production areas are the main source regions. Based on the differences of carbon emission rations, 31 provinces and cities are divided into ifve types, namely agricultural materials dominant type, paddy ifeld dominant type, enteric fermentation dominant type, composite factors dominant type and balanced type. The agricultural carbon emissions intensity in west of China is the highest, followed by the central region, and the east zone is the lowest; (3) Compared with 1995, efifciency, labor and structure factors cut down carbon emissions by 65.78, 27.51 and 3.19%, respectively;while economy factor increase carbon emissions by 113.16%.展开更多
This study investigated the influence of precipitators and wet flue gas desulfurization equipment on characteristics of PM_(2.5)emission from coal-fired power stations.We measured size distribution and removal efficie...This study investigated the influence of precipitators and wet flue gas desulfurization equipment on characteristics of PM_(2.5)emission from coal-fired power stations.We measured size distribution and removal efficiencies,including hybrid electrostatic precipitator/bag filters(ESP/BAGs)which have rarely been studied.A bimodal distribution of particle concentrations was observed at the inlet of each precipitator.After the precipitators,particle concentrations were significantly reduced.Although a bimodal distribution was still observed,all peak positions shifted to the smaller end.The removal efficiencies of hybrid ESP/BAGs reached 99%for PM_(2.5),which is considerably higher than those for other types of precipitators.In particular,the influence of hybrid ESP/BAG operating conditions on the performance of dust removal was explored.The efficiency of hybrid ESP/BAGs decreased by 1.9%when the first electrostatic field was shut down.The concentrations and distributions of particulate matter were also measured in three coal-fired power plants before and after desulfurization devices.The results showed diverse removal efficiencies for different desulfurization towers.The reason for the difference requires further research.We estimated the influence of removal technology for particulate matter on total emissions in China.Substituting ESPs with hybrid ESP/BAGs could reduce the total emissions to 104.3 thousand tons,with 47.48 thousand tons of PM_(2.5).展开更多
The total coal consumption in China is on the rise.The characteristics of CO2 and SO2 emissions in the whole process of coal processing and utilization in China are worthy of study.Based on the five links of the whole...The total coal consumption in China is on the rise.The characteristics of CO2 and SO2 emissions in the whole process of coal processing and utilization in China are worthy of study.Based on the five links of the whole process of coal production and utilization,including coal production,raw coal processing,logistics and transportation,conversion and utilization and resource utilization,this paper summarized and analyzed the energy consumption and pollutant emission sources of these five links,combined with the US Environmental Protection Agency’s AP-42 method and IPCC method,to calculate total pollutant discharge and emission factors,where the emission factors were corrected by conversion efficiency.At the same time,uncertainty analysis is performed about CO2 and SO2 emissions.The results showed that CO2 emissions were 3.657 billion tons,and emission reductions were 61 million tons,and SO2 emissions were 4,844,500 tons,and emission reductions were 10.3595 million tons in 2015.展开更多
Electromagnetic emission(EME) is a kind of physical phenomenon accompanying the process of deformation and fracture of loaded coal and rock and it is of importance in quantitatively analyzing its characteristics.This ...Electromagnetic emission(EME) is a kind of physical phenomenon accompanying the process of deformation and fracture of loaded coal and rock and it is of importance in quantitatively analyzing its characteristics.This will reveal the process of deformation and fracture of coal and predicting dynamic disasters in coal mines.In this study,the G-P(Grassberger and Procaccia) algorithm,calculation steps of the(if only 1 dimension) correlation dimension of time series and the identification standards of chaotic signals are introduced.Furthermore,the correlation dimensions of EME and the acoustic emission(AE) signals of time series during deformation and fracture of coal bodies are calculated and analyzed.The results show that the time series of pulses number of EME and the time series of AE count rate are chaotic and that the saturation embedding dimensions of a K3 coal sample are,respectively,5 and 6.The results can be used to provide basic parameters for predicting of EME and AE time series.展开更多
Acoustic emission tests were performed using a split Hopkinson pressure bar system(SHPB) on 50-mm-diameter bars of granite, limestone, sandstone and skarn. The results show that the amplitude distribution of hits is n...Acoustic emission tests were performed using a split Hopkinson pressure bar system(SHPB) on 50-mm-diameter bars of granite, limestone, sandstone and skarn. The results show that the amplitude distribution of hits is not well centralized around 50 d B, and that some hits with large amplitudes, usually larger than 70 d B, occur in the early stages of each test, which is different from the findings from static and low-loading-rate tests. Furthermore, the dominant frequency range of the recorded acoustic emission waveforms is between 300 k Hz and 500 k Hz, and frequency components higher than 500 k Hz are not significant. The hit with the largest values of amplitude, counts, signal strength, and absolute energy in each test, displays a waveform with similar frequency characteristics and greater correlation with the waveform obtained from the elastic input bar of the split Hopkinson pressure bar system compared with the waveforms of the other hits. This indicates that the hit with the largest values of amplitude, counts, signal strength, and absolute energy is generated by elastic wave propagation instead of fracture within the rock specimen.展开更多
The acoustic emission(AE)technique can perform non-destructive monitoring of the internal damage development of bamboo and wood materials.In this experiment,the mechanical properties of different bamboo and wood(bambo...The acoustic emission(AE)technique can perform non-destructive monitoring of the internal damage development of bamboo and wood materials.In this experiment,the mechanical properties of different bamboo and wood(bamboo scrimber,bamboo plywood and SPF(Spruce-pine-fir)dimension lumber)during four-point loading tests were compared.The AE activities caused by loadings were investigated through the single parameter analysis and K-means cluster analysis.Results showed that the bending strength of bamboo scrimber was 3.6 times that of bam-boo plywood and 2.7 times that of SPF dimension lumber,respectively.Due to the high strength and toughness of bamboo,the AE signals of the two bamboo products were more abundant than those of SPF dimension lumber.However,the AE evolution trend of the three materials was similar,which all experienced three stages,including gentle period,steady period and steep period,and the area of rupture precursor characteristics could be recognized before the specimen destroyed.Due to the bottom layer was first tensile failure,the main structure of bamboo plywood was destroyed after the stress redistribution.The rupture precursor characteristics could be observed before each peak.Findings put in evidence a good correlation between AE clusters of two bamboo products,while the amplitude and energy of wood signals were lower than those of bamboo.The amplitude and energy from the propagation and aggregation of cracks were greater than those related to micro-cracks initiation.展开更多
Effects of butanol isomers on characteristics of combustion and emission were studied on PFI SI engine. Experiments were operated under the condition of 3 and 5 bar brake mean effective pressure (BMEP) engine loads an...Effects of butanol isomers on characteristics of combustion and emission were studied on PFI SI engine. Experiments were operated under the condition of 3 and 5 bar brake mean effective pressure (BMEP) engine loads and different equivalence ratios (φ=0.83-1.25) with engine speed of 1200 r/min using blends made of 70 vol.% gasoline and 30 vol.% butanol isomers (N30, S30, I30 and T30). The results indicated that compared with gasoline, all butanol isomer blends have higher cylinder pressure. N30 has the highest and most advanced peak pressure, and T30 shows a higher brake specific fuel consumption (BSFC) and lower brake thermal efficiency (BTE). N30 presents a lower UHC emissions and I30 has slightly higher CO emissions than other blends. For unregulated emissions, compared with gasoline, butanol isomer blends have higher acetaldehyde, and N30 produces a higher emission of 1,3-butadiene than other blends. A reduction in benzene, toluene, ethylbenzene and xylene (BTEX) has been found with butanol isomer blends.展开更多
Characteristics of gas emission at the K8206 working face in the Third mine of the Yangquan Coal Group were investigated. The effects of strata movement,advancing velocity of working face,production capacity of workin...Characteristics of gas emission at the K8206 working face in the Third mine of the Yangquan Coal Group were investigated. The effects of strata movement,advancing velocity of working face,production capacity of working face and gas extraction capability of strike high-level entry on gas emission at K8206 working face were analyzed. A regression equation,reflecting the relationship between relative gas emission rate and the production capacity of work-ing faces,was established. Another regression equation showing the relationship between the gas emission rate from adjacent layers when the working face was advancing for one metre and advancing velocity was derived. It can be con-cluded that,1) the amount of gas emitted at the K8206 working face is far greater than that of ordinary top coal caving faces with a dip length of 180-190 m; 2) the dynamic process of gas emission from adjacent layers during the initial mining stage is controlled by the movement of key strata; 3) the amount of gas emitted that needs to be forced out by air is greatly affected by the capability of gas extraction; 4) when the advancing velocity is between 3.5-5.5 m/d or when the output is up to 8-12 kt/d,the gas emission from adjacent layers is almost constant.展开更多
This study investigates the effects of sampling conditions on volatile organic compound(VOC)compositions including different flow restrictors,SUMMA volumes,sampling heights,and wind speeds.Results show that at the six...This study investigates the effects of sampling conditions on volatile organic compound(VOC)compositions including different flow restrictors,SUMMA volumes,sampling heights,and wind speeds.Results show that at the six sampling heights the concentrations of main VOC species were slightly different,while the wind speed had a greater impact on the VOC composition of source profiles.With the increase of wind speed,the weighted percentage of high-carbon aromatic hydrocarbons was higher.Besides,there was an extremely different profile between the normal production and shutdown conditions of the delayed coking unit.To compare the emission characteristics of VOCs in various process units of the S and the C refineries,the samples were collected from the catalytic cracking unit,the continuous catalytic reforming unit,and the delayed coking unit.In the continuous catalytic reforming unit,C3-C5 alkanes and low-carbon aromatic hydrocarbons were the main components collected from the S and the C refineries,accounting for 67.1%and 34.9%,respectively.For the delayed coking unit,the total weighted percentage of high carbon C6-C12 alkanes was significantly higher than other units in the S and the C refineries,accounting for 30.5%and 24.4%,respectively.In the catalytic cracking unit,the low-carbon C2-C5 alkanes were abundant,and the weighted percentage of propylene was higher.The emission characteristics obtained were consistent with the processing technology of production units.The results indicate that the VOC emission characteristics from the same production unit in different refineries have similarities and significant differences which are related to the technological process.The emission characteristics of VOCs could provide the data support for source apportionment work in the production units.展开更多
Advanced multi-channels acoustic emission (A.E) system is used to study the fracture process of alumina material subjected by three-point-bending loading. Using AE counts and AE hits, the location of damage and dama...Advanced multi-channels acoustic emission (A.E) system is used to study the fracture process of alumina material subjected by three-point-bending loading. Using AE counts and AE hits, the location of damage and damage characteristics are discussed. AE energy, AE counts, AE amplitude changing with loading time are analyzed for the notched alumina specimen. It is indicated that AE characteristic parameters reflect the damage process and fracture of material.展开更多
Based on seven carbon sources including chemical fertilizer, pesticide, agricultural film, nitrogen fertilization, agricultural machinery, irri- gation and straw burning, the carbon emissions in agricultural productio...Based on seven carbon sources including chemical fertilizer, pesticide, agricultural film, nitrogen fertilization, agricultural machinery, irri- gation and straw burning, the carbon emissions in agricultural production of China during 1995-2011 was calculated. The results showed that both total agricultural carbon emission and per capita agricultural carbon emission overall presented growth trends, and the growth rate began to slow in recent years. The agricultural carbon emission intensity decreased year by year. Straw burning was the primary carbon source in China's agricul- ture, followed by chemical fertilizer. Total agricultural carbon emission in China in 17 years experienced three stages of "fluctuated growth -slow drop-new growth". Finally, suggestions and countermeasures of the low-carbon agriculture development in China from three aspects were proposed.展开更多
As coal mining is extended from shallow to deep areas along the western coalfield,it is of great significance to study weakly cemented sandstone at different depths for underground mining engineering.Sandstones from d...As coal mining is extended from shallow to deep areas along the western coalfield,it is of great significance to study weakly cemented sandstone at different depths for underground mining engineering.Sandstones from depths of 101.5,203.2,317.3,406.9,509.9 and 589.8 m at the Buertai Coal Mine were collected.The characteristic strength,acoustic emission(AE),and energy evolution of sandstone during uniaxial compression tests were analyzed.The results show that the intermediate frequency(125-275 kHz)of shallow rock mainly occurs in the postpeak stage,while deep rock occurs in the prepeak stage.The initiation strength and damage strength of the sandstone at different depths range from 0.23 to 0.50 and 0.63 to 0.84 of peak strength(σ_(c)),respectively,decrease exponentially and are a power function with depth.The precursor strength ranges from 0.88σ_(c)to 0.99σ_(c),increases with depth before reaching a depth of 300 m,and tends to stabilize after 300 m.The ratio of the initiation strength to the damage strength(k)ranges from 0.25 to 0.62 and decreases exponentially with depth.The failure modes of sandstone at different depths are tension-dominated mixed tensile-shear failure.Shear failure mainly occurs at the unstable crack propagation stage.The count of the shear failure bands before the peak strength increases gradually,and increases first and then decreases after the peak strength with burial depth.The cumulative input energy,released elastic energy and dissipated energy increase with depth.The elastic release rate ranges from 0.46×10^(-3)to 198.57×10^(-3)J/(cm^(3)s)and increases exponentially with depth.展开更多
In this work, the influence of discharge modes on the excimer XeCl emission (308 nm) has been studied by adding helium gas into the xenon and chlorine mixture. It is found that the transition from filament discharge t...In this work, the influence of discharge modes on the excimer XeCl emission (308 nm) has been studied by adding helium gas into the xenon and chlorine mixture. It is found that the transition from filament discharge to glow /filament - combined discharge leads to the decrease in excimer emission. We are the first one to use a flowing water film as an outer transparent electrode, and achieve a higher UV intensity, compared with the case by using a metal mesh as the outer electrode. The influence of the gas temperature both in the reactor Tg and in a discharge channel Tc on the excimer emission has been analyzed preliminarily. Finally, it has been expected that the replacement of chlorine gas Cl2 by another chlorine gas may reduce the heat generated in the discharge processes and give rise to the excimer XeCl* radiation.展开更多
Four basic components of the solar radio emission: the quiet sun, the slowly varying component (SVC), the radio burst and the ultra-fast varying component (UFVC) are studied. As their six characteristic parameters: ra...Four basic components of the solar radio emission: the quiet sun, the slowly varying component (SVC), the radio burst and the ultra-fast varying component (UFVC) are studied. As their six characteristic parameters: radiation source, brightness temperature, radiation lifetime, polarized radiation, radiation mechanism, and character of superposition are affirmed.展开更多
This paper examines the effect of equalizing ignition delay in a compression ignition engine.Two sets of tests were conducted,i.e.a set of constant injection timing tests with start of fuel injection at 10°crank ...This paper examines the effect of equalizing ignition delay in a compression ignition engine.Two sets of tests were conducted,i.e.a set of constant injection timing tests with start of fuel injection at 10°crank angle degree(CAD)before top dead center(BTDC)and a set of constant ignition timing tests while also keeping the 10℃AD BTDC injection and adding ignition improver(2-ethylhexylnitrate-,2-EHN)to the fuel mixtures.Soot particles were characterized using DMS-500 instrument in terms of mass,size,and number.The experimental results showed that adding 2-EHN to the model fuel blends reduced the soot surface area,soot mass concentration and soot mean size.Replacing 20 vol%of a C 7-heptane with 20 vol%methyl-decanoate(an oxygenated C 11 molecule)did not affect the ignition delay or rate of fuel air premixing,the peak in-cylinder pressure or heat release rates.Toluene addition(0−22.5 vol%)to heptane increased the mean size of the soot particles generated by only 3%while also resulted in a slight increase in the peak cylinder pressure and peak heat release rates.Blending toluene and methyl-decanoate into heptane without adding 2-EHN increased the premix phase fraction by at least 13%.However,by adding 2-EHN(4×10^(−4)−1.5×10^(−3)),the premixed phase fraction decreased by at least 11%.展开更多
The Au/Al2O3/Al metal/insulator/metal junction(MIMJ) and Au/SiO2/Si metal/insulator/Si junction(MISJ) have been constructed successfully. The light emission of these junctions was mediated by surface plasmon-polariton...The Au/Al2O3/Al metal/insulator/metal junction(MIMJ) and Au/SiO2/Si metal/insulator/Si junction(MISJ) have been constructed successfully. The light emission of these junctions was mediated by surface plasmon-polaritons(SPPs) under surface roughness. The light emission from MISJ was more uniform and stable than that from MIMJ. The light power of MISJ was about 2~3 orders higher than that of MIMJ. The light emission spectrum of MISJ was analyzed especially. In the spectrum, there was one main peak located at the wavelength of 610 nm^640 nm, which was mainly due to the couple of SPP with the surface roughness at the Au/air and Au/SiO2 interfaces. A weak peak located at the shorter wavelength region in the spectrum was also found, which was caused by the direct radiation of doped-Si plasma oscillation.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51927808,11972378 and 52174098).
文摘The size of mineral grain has a significant impact on the initiation and propagation of microcracks within rocks.In this study,fine-,medium-,and coarse-grained granites were used to investigate microcrack evolution and characteristic stress under uniaxial compression using the acoustic emission(AE),digital image correlation(DIC),and nuclear magnetic resonance(NMR)measurements.The experimental results show that the characteristic stress of each granite decreased considerably with increasing grain sizes.The inflection points of the b-value occurred earlier with an increase in grain sizes,indicating that the larger grains promote the generation and propagation of microcracks.The distribution characteristics of the average frequency(AF)and the ratio of rise time to amplitude(RA)indicate that the proportion of shear microcracks increases with increasing grain size.The NMR results indicate that the porosity and the proportion of large pores increased with increasing grain size,which may intensify the microcrack evolution.Moreover,analysis of the DIC and AE event rates suggests that the high-displacement regions could serve as a criterion for the degree of microcrack propagation.The study found that granites with larger grains had a higher proportion of high-displacement regions,which can lead to larger-scale cracking or even spalling.These findings are not only beneficial to understand the pattern of microcrack evolution with different grain sizes,but also provide guidance for rock monitoring and instability assessment.
基金This work was financially supported by the National Key Research and Development Program of China(Grant No.2021YFC2900500)the International(Regional)Cooperation and Exchange Program of National Natural Science Foundation of China(Grant No.52161135301)the Special Fund for Basic Scientific Research Operations in Universities(Grant No.2282020cxqd055).
文摘The rock fracture characteristics and principal stress directions are crucial for prevention of geological disasters.In this study,we carried out biaxial compression tests on cubic granite samples of 100 mm in side length with different intermediate principal stress gradients in combination with acoustic emission(AE)technique.Results show that the fracture characteristics of granite samples change from‘sudden and aggregated’to‘continuous and dispersed’with the increase of the intermediate principal stress.The effect of increasing intermediate principal stress on AE amplitude is not significant,but it increases the proportions of high-frequency AE signals and shear cracks,which in turn increases the possibility of unstable rock failure.The difference of stress in different directions causes the anisotropy of rock fracture and thus leads to the obvious anisotropic characteristics of wave velocity variations.The anisotropy of wave velocity variations with stress difference is probable to identify the principal stress directions.The AE characteristics and the anisotropy of wave velocity variations of granite under two-dimensional stress are not only beneficial complements for rock fracture characteristic and principal stress direction identification,but also can provide a new analysis method for stability monitoring in practical rock engineering.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201103039)Shandong Provincial Natural Science Foundation,China(ZR2013DQ023)+1 种基金Science and Technology Development Plan Project of Shandong Province(2013GNC11204)Major Agricultural Application Technology Innovation Project of Shandong Province(Study on Environmental Regulation and Fertilizer Application Techniques for High Yield and High Efficiency Utilization of Greenhouse Tomato)~~
文摘To make clear the emission characteristics of soil N20 from typical green- house vegetable fields in North China, an experiment was conducted in greenhouse tomato field in Shouguang city, Shandong province, China's "Home of Vegetables". The N2O fluxes were observed in four experimental treatments, as follows: none N fertilizer (CK), single organic fertilizer (OM), conventional fertilization (FP) and opti- mized and reduced nitrogen fertilization (OPT), by a close chamber-gas chromato- graph method. The effects of different fertilization treatments on N2O emission and tomato yield were analyzed. The results showed that following the fertilization and ir- rigation, the pulsed emissions of N2O were measured. The N2O emission peak ap- peared after basal fertilizer application and irrigation and could be maintained for about 20 days. While the N2O emission peak caused by topdressing was smaller and last only 3-5 days. The statistical analysis showed that the N2O fluxes were affected by air temperature, soil temperature and WFPS at soil depth of 3 cm. The total contents of soil N2O fluxes had significant differences among experimental groups. The total content orderly was FP of 14. 77 kg/hm^2, OPT of 9. 73 kg/hm^2, OM of 6.84 kg/hm^2 and CK of 2.37 kg/hm^2. The N~:~ emission coefficient ranged from 0.83%-1.10%,which was close to or more than the recommended value (1.0%) by IPCC. Compared with the FP treatment, the tomato yield in OPT treatment, whose application rate of chemical N fertilizer decreased by about 60%, increased by 2.2%. Under the current management measures, the reasonable reduction on ap- plicaUon rate of organic manure and chemical nitrogen fertilizer could effectively re- duce the N=O emissions in greenhouse vegetable fields.
基金financially supported by the National Natural Science Foundation of China(Nos.52274143 and 51874284).
文摘During the process of constructional backfill mining,the cemented paste backfill(CPB)typically exhibits a high degree of brittleness and limited resistance to failure.In this study,the mechanical and damage evolution characteristics of waste tire steel fiber(WTSF)-modified CPB were studied through uniaxial compression tests,acoustic emission(AE)tests,and scanning electron microscopy(SEM).The results showed that the uniaxial compressive strength(UCS)decreased when the WTSF content was 0.5%,1%,and 1.5%.When the WTSF content reached 1%,the UCS of the modified CPB exhibited a minimal decrease(0.37 MPa)compared to that without WTSF.When the WTSF content was 0.5%,1%,and 1.5%,peak strain of the WTSF-modified CPB increased by 18%,31.33%,and 81.33%,while the elastic modulus decreased by 21.31%,26.21%,and 45.42%,respectively.The addition of WTSF enhances the activity of AE events in the modified CPB,resulting in a slower progression of the entire failure process.After the failure,the modified CPB retained a certain level of load-bearing capacity.Generally,the failure of the CPB was dominated by tensile cracks.After the addition of WTSF,a gradual increase in the proportion of tensile cracks was observed upon loading the modified CPB sample to the pore compaction stage.The three-dimensional localization of AE events showed that the WTSF-modified CPB underwent progressive damage during the loading,and the samples still showed good integrity after failure.Additionally,the response relationship between energy evolution and damage development of WTSF-modified CPB during uniaxial compression was analyzed,and the damage constitutive model of CPB samples with different WTSF contents was constructed.This study provides a theoretical basis for the enhancement of CPB modified by adding WTSF,serving as a valuable reference for the design of CPB constructional backfill.
基金supported by the National Natural Science Foundation of China (71273105)the Fundamental Research Funds for the Central Universities,China (2013YB12)
文摘Macroscopic grasp of agricultural carbon emissions status, spatial-temporal characteristics as well as driving factors are the basic premise in further research on China’s agricultural carbon emissions. Based on 23 kinds of major carbon emission sources including agricultural materials inputs, paddy ifeld, soil and livestock breeding, this paper ifrstly calculated agricultural carbon emissions from 1995 to 2010, as well as 31 provinces and cities in 2010 in China. We then made a decomposed analysis to the driving factors of carbon emissions with logarithmic mean Divisia index (LMDI) model. The results show:(1) The amount of agricultural carbon emissions is 291.1691 million t in 2010. Compared with 249.5239 million t in 1995, it increased by 16.69%, in which, agricultural materials inputs, paddy ifeld, soil, enteric fermentation, and manure management accounted for 33.59, 22.03, 7.46, 17.53 and 19.39%of total agricultural carbon emissions, respectively. Although the amount exist ups and downs, it shows an overall trend of cyclical rise; (2) There is an obvious difference among regions:the amount of agricultural carbon emissions from top ten zones account for 56.68%, while 9.84%from last 10 zones. The traditional agricultural provinces, especially the major crop production areas are the main source regions. Based on the differences of carbon emission rations, 31 provinces and cities are divided into ifve types, namely agricultural materials dominant type, paddy ifeld dominant type, enteric fermentation dominant type, composite factors dominant type and balanced type. The agricultural carbon emissions intensity in west of China is the highest, followed by the central region, and the east zone is the lowest; (3) Compared with 1995, efifciency, labor and structure factors cut down carbon emissions by 65.78, 27.51 and 3.19%, respectively;while economy factor increase carbon emissions by 113.16%.
基金Supported by the National Basic Research Pro-gram of China(973 Program)(2013CB228506).
文摘This study investigated the influence of precipitators and wet flue gas desulfurization equipment on characteristics of PM_(2.5)emission from coal-fired power stations.We measured size distribution and removal efficiencies,including hybrid electrostatic precipitator/bag filters(ESP/BAGs)which have rarely been studied.A bimodal distribution of particle concentrations was observed at the inlet of each precipitator.After the precipitators,particle concentrations were significantly reduced.Although a bimodal distribution was still observed,all peak positions shifted to the smaller end.The removal efficiencies of hybrid ESP/BAGs reached 99%for PM_(2.5),which is considerably higher than those for other types of precipitators.In particular,the influence of hybrid ESP/BAG operating conditions on the performance of dust removal was explored.The efficiency of hybrid ESP/BAGs decreased by 1.9%when the first electrostatic field was shut down.The concentrations and distributions of particulate matter were also measured in three coal-fired power plants before and after desulfurization devices.The results showed diverse removal efficiencies for different desulfurization towers.The reason for the difference requires further research.We estimated the influence of removal technology for particulate matter on total emissions in China.Substituting ESPs with hybrid ESP/BAGs could reduce the total emissions to 104.3 thousand tons,with 47.48 thousand tons of PM_(2.5).
基金Supported by the Major Science and Technology Projects of Shanxi Province(No.20181102017)the Open Project Program of State Key Laboratory of Petroleum Pollution Control(No.PPC2017010)+1 种基金CNPC Research Institute of Safety and Environmental Technologythe Fundamental Research Funds for the Central Universities(No.2009QH03).
文摘The total coal consumption in China is on the rise.The characteristics of CO2 and SO2 emissions in the whole process of coal processing and utilization in China are worthy of study.Based on the five links of the whole process of coal production and utilization,including coal production,raw coal processing,logistics and transportation,conversion and utilization and resource utilization,this paper summarized and analyzed the energy consumption and pollutant emission sources of these five links,combined with the US Environmental Protection Agency’s AP-42 method and IPCC method,to calculate total pollutant discharge and emission factors,where the emission factors were corrected by conversion efficiency.At the same time,uncertainty analysis is performed about CO2 and SO2 emissions.The results showed that CO2 emissions were 3.657 billion tons,and emission reductions were 61 million tons,and SO2 emissions were 4,844,500 tons,and emission reductions were 10.3595 million tons in 2015.
基金Projects 50427401 supported by the National Natural Science Foundation of China2006BAK03B06 by the National Eleventh Five-Year Key Science & Technology Project of China+2 种基金the New Century Excellent Talent Program from the Ministry of Education (No.NCET-07-0799)the Fok Ying-Tong Education Foundation for Young Teachers in Higher Education Institutions of China (No.111053)the Beijing Science and Technology New Star Plan (No.2006A081)
文摘Electromagnetic emission(EME) is a kind of physical phenomenon accompanying the process of deformation and fracture of loaded coal and rock and it is of importance in quantitatively analyzing its characteristics.This will reveal the process of deformation and fracture of coal and predicting dynamic disasters in coal mines.In this study,the G-P(Grassberger and Procaccia) algorithm,calculation steps of the(if only 1 dimension) correlation dimension of time series and the identification standards of chaotic signals are introduced.Furthermore,the correlation dimensions of EME and the acoustic emission(AE) signals of time series during deformation and fracture of coal bodies are calculated and analyzed.The results show that the time series of pulses number of EME and the time series of AE count rate are chaotic and that the saturation embedding dimensions of a K3 coal sample are,respectively,5 and 6.The results can be used to provide basic parameters for predicting of EME and AE time series.
基金Projects(51204206,41272304,41372278) supported by the National Natural Science Foundation of ChinaProject(20110162120057) supported by Ph D Program Foundation of Ministry of Education ChinaProject(201012200232) supported by the Freedom Explore Program of Central South University,China
文摘Acoustic emission tests were performed using a split Hopkinson pressure bar system(SHPB) on 50-mm-diameter bars of granite, limestone, sandstone and skarn. The results show that the amplitude distribution of hits is not well centralized around 50 d B, and that some hits with large amplitudes, usually larger than 70 d B, occur in the early stages of each test, which is different from the findings from static and low-loading-rate tests. Furthermore, the dominant frequency range of the recorded acoustic emission waveforms is between 300 k Hz and 500 k Hz, and frequency components higher than 500 k Hz are not significant. The hit with the largest values of amplitude, counts, signal strength, and absolute energy in each test, displays a waveform with similar frequency characteristics and greater correlation with the waveform obtained from the elastic input bar of the split Hopkinson pressure bar system compared with the waveforms of the other hits. This indicates that the hit with the largest values of amplitude, counts, signal strength, and absolute energy is generated by elastic wave propagation instead of fracture within the rock specimen.
基金This paper was supported in part by Project funded by the National Natural Science Foundation of China(Grant Nos.32071700 and 31570559).
文摘The acoustic emission(AE)technique can perform non-destructive monitoring of the internal damage development of bamboo and wood materials.In this experiment,the mechanical properties of different bamboo and wood(bamboo scrimber,bamboo plywood and SPF(Spruce-pine-fir)dimension lumber)during four-point loading tests were compared.The AE activities caused by loadings were investigated through the single parameter analysis and K-means cluster analysis.Results showed that the bending strength of bamboo scrimber was 3.6 times that of bam-boo plywood and 2.7 times that of SPF dimension lumber,respectively.Due to the high strength and toughness of bamboo,the AE signals of the two bamboo products were more abundant than those of SPF dimension lumber.However,the AE evolution trend of the three materials was similar,which all experienced three stages,including gentle period,steady period and steep period,and the area of rupture precursor characteristics could be recognized before the specimen destroyed.Due to the bottom layer was first tensile failure,the main structure of bamboo plywood was destroyed after the stress redistribution.The rupture precursor characteristics could be observed before each peak.Findings put in evidence a good correlation between AE clusters of two bamboo products,while the amplitude and energy of wood signals were lower than those of bamboo.The amplitude and energy from the propagation and aggregation of cracks were greater than those related to micro-cracks initiation.
基金Projects(51776016,51606006) supported by the National Natural Science Foundation of ChinaProjects(3172025,3182030) supported by Beijing Natural Science Foundation,China+4 种基金Project(2017YFB0103401) supported by National Key Research and Development ProgramProject(NELMS2017A10) funded by the National Engineering Laboratory for Mobile Source Emission Control Technology,ChinaProject(2018RC017) supported by the Talents Foundation of Beijing Jiaotong University,ChinaProject(DE-EE0006864) supported by the Department of EnergyProject(201507090044) supported by China Scholarship Council
文摘Effects of butanol isomers on characteristics of combustion and emission were studied on PFI SI engine. Experiments were operated under the condition of 3 and 5 bar brake mean effective pressure (BMEP) engine loads and different equivalence ratios (φ=0.83-1.25) with engine speed of 1200 r/min using blends made of 70 vol.% gasoline and 30 vol.% butanol isomers (N30, S30, I30 and T30). The results indicated that compared with gasoline, all butanol isomer blends have higher cylinder pressure. N30 has the highest and most advanced peak pressure, and T30 shows a higher brake specific fuel consumption (BSFC) and lower brake thermal efficiency (BTE). N30 presents a lower UHC emissions and I30 has slightly higher CO emissions than other blends. For unregulated emissions, compared with gasoline, butanol isomer blends have higher acetaldehyde, and N30 produces a higher emission of 1,3-butadiene than other blends. A reduction in benzene, toluene, ethylbenzene and xylene (BTEX) has been found with butanol isomer blends.
基金Projects 50374066 supported by the National Natural Science Foundation of ChinaNCET-05-0478 by the Program for New Century Excellent Talents in University
文摘Characteristics of gas emission at the K8206 working face in the Third mine of the Yangquan Coal Group were investigated. The effects of strata movement,advancing velocity of working face,production capacity of working face and gas extraction capability of strike high-level entry on gas emission at K8206 working face were analyzed. A regression equation,reflecting the relationship between relative gas emission rate and the production capacity of work-ing faces,was established. Another regression equation showing the relationship between the gas emission rate from adjacent layers when the working face was advancing for one metre and advancing velocity was derived. It can be con-cluded that,1) the amount of gas emitted at the K8206 working face is far greater than that of ordinary top coal caving faces with a dip length of 180-190 m; 2) the dynamic process of gas emission from adjacent layers during the initial mining stage is controlled by the movement of key strata; 3) the amount of gas emitted that needs to be forced out by air is greatly affected by the capability of gas extraction; 4) when the advancing velocity is between 3.5-5.5 m/d or when the output is up to 8-12 kt/d,the gas emission from adjacent layers is almost constant.
基金This study was funded by the Natural Key Research and Development Program(Grant No.2016YFC0801301)the SINOPEC Program(Grant No.319022-10).
文摘This study investigates the effects of sampling conditions on volatile organic compound(VOC)compositions including different flow restrictors,SUMMA volumes,sampling heights,and wind speeds.Results show that at the six sampling heights the concentrations of main VOC species were slightly different,while the wind speed had a greater impact on the VOC composition of source profiles.With the increase of wind speed,the weighted percentage of high-carbon aromatic hydrocarbons was higher.Besides,there was an extremely different profile between the normal production and shutdown conditions of the delayed coking unit.To compare the emission characteristics of VOCs in various process units of the S and the C refineries,the samples were collected from the catalytic cracking unit,the continuous catalytic reforming unit,and the delayed coking unit.In the continuous catalytic reforming unit,C3-C5 alkanes and low-carbon aromatic hydrocarbons were the main components collected from the S and the C refineries,accounting for 67.1%and 34.9%,respectively.For the delayed coking unit,the total weighted percentage of high carbon C6-C12 alkanes was significantly higher than other units in the S and the C refineries,accounting for 30.5%and 24.4%,respectively.In the catalytic cracking unit,the low-carbon C2-C5 alkanes were abundant,and the weighted percentage of propylene was higher.The emission characteristics obtained were consistent with the processing technology of production units.The results indicate that the VOC emission characteristics from the same production unit in different refineries have similarities and significant differences which are related to the technological process.The emission characteristics of VOCs could provide the data support for source apportionment work in the production units.
基金Sponsored by the National Natural Science Foundation of China(10772027,10602080)
文摘Advanced multi-channels acoustic emission (A.E) system is used to study the fracture process of alumina material subjected by three-point-bending loading. Using AE counts and AE hits, the location of damage and damage characteristics are discussed. AE energy, AE counts, AE amplitude changing with loading time are analyzed for the notched alumina specimen. It is indicated that AE characteristic parameters reflect the damage process and fracture of material.
文摘Based on seven carbon sources including chemical fertilizer, pesticide, agricultural film, nitrogen fertilization, agricultural machinery, irri- gation and straw burning, the carbon emissions in agricultural production of China during 1995-2011 was calculated. The results showed that both total agricultural carbon emission and per capita agricultural carbon emission overall presented growth trends, and the growth rate began to slow in recent years. The agricultural carbon emission intensity decreased year by year. Straw burning was the primary carbon source in China's agricul- ture, followed by chemical fertilizer. Total agricultural carbon emission in China in 17 years experienced three stages of "fluctuated growth -slow drop-new growth". Finally, suggestions and countermeasures of the low-carbon agriculture development in China from three aspects were proposed.
基金This work was supported by the National Natural Science Foundation of China(Nos.U1910206,51874312,51861145403)Science and Technology Project of Inner Mongolia Autonomous Region(No.2019GG140)Major Scientific and Technological Innovation Project of Shandong Province(Nos.2019SDZY01,2019SDZY02).These sources of supports are gratefully acknowledged.
文摘As coal mining is extended from shallow to deep areas along the western coalfield,it is of great significance to study weakly cemented sandstone at different depths for underground mining engineering.Sandstones from depths of 101.5,203.2,317.3,406.9,509.9 and 589.8 m at the Buertai Coal Mine were collected.The characteristic strength,acoustic emission(AE),and energy evolution of sandstone during uniaxial compression tests were analyzed.The results show that the intermediate frequency(125-275 kHz)of shallow rock mainly occurs in the postpeak stage,while deep rock occurs in the prepeak stage.The initiation strength and damage strength of the sandstone at different depths range from 0.23 to 0.50 and 0.63 to 0.84 of peak strength(σ_(c)),respectively,decrease exponentially and are a power function with depth.The precursor strength ranges from 0.88σ_(c)to 0.99σ_(c),increases with depth before reaching a depth of 300 m,and tends to stabilize after 300 m.The ratio of the initiation strength to the damage strength(k)ranges from 0.25 to 0.62 and decreases exponentially with depth.The failure modes of sandstone at different depths are tension-dominated mixed tensile-shear failure.Shear failure mainly occurs at the unstable crack propagation stage.The count of the shear failure bands before the peak strength increases gradually,and increases first and then decreases after the peak strength with burial depth.The cumulative input energy,released elastic energy and dissipated energy increase with depth.The elastic release rate ranges from 0.46×10^(-3)to 198.57×10^(-3)J/(cm^(3)s)and increases exponentially with depth.
文摘In this work, the influence of discharge modes on the excimer XeCl emission (308 nm) has been studied by adding helium gas into the xenon and chlorine mixture. It is found that the transition from filament discharge to glow /filament - combined discharge leads to the decrease in excimer emission. We are the first one to use a flowing water film as an outer transparent electrode, and achieve a higher UV intensity, compared with the case by using a metal mesh as the outer electrode. The influence of the gas temperature both in the reactor Tg and in a discharge channel Tc on the excimer emission has been analyzed preliminarily. Finally, it has been expected that the replacement of chlorine gas Cl2 by another chlorine gas may reduce the heat generated in the discharge processes and give rise to the excimer XeCl* radiation.
文摘Four basic components of the solar radio emission: the quiet sun, the slowly varying component (SVC), the radio burst and the ultra-fast varying component (UFVC) are studied. As their six characteristic parameters: radiation source, brightness temperature, radiation lifetime, polarized radiation, radiation mechanism, and character of superposition are affirmed.
文摘This paper examines the effect of equalizing ignition delay in a compression ignition engine.Two sets of tests were conducted,i.e.a set of constant injection timing tests with start of fuel injection at 10°crank angle degree(CAD)before top dead center(BTDC)and a set of constant ignition timing tests while also keeping the 10℃AD BTDC injection and adding ignition improver(2-ethylhexylnitrate-,2-EHN)to the fuel mixtures.Soot particles were characterized using DMS-500 instrument in terms of mass,size,and number.The experimental results showed that adding 2-EHN to the model fuel blends reduced the soot surface area,soot mass concentration and soot mean size.Replacing 20 vol%of a C 7-heptane with 20 vol%methyl-decanoate(an oxygenated C 11 molecule)did not affect the ignition delay or rate of fuel air premixing,the peak in-cylinder pressure or heat release rates.Toluene addition(0−22.5 vol%)to heptane increased the mean size of the soot particles generated by only 3%while also resulted in a slight increase in the peak cylinder pressure and peak heat release rates.Blending toluene and methyl-decanoate into heptane without adding 2-EHN increased the premix phase fraction by at least 13%.However,by adding 2-EHN(4×10^(−4)−1.5×10^(−3)),the premixed phase fraction decreased by at least 11%.
基金National Natural Science Foundation of China(69576006)
文摘The Au/Al2O3/Al metal/insulator/metal junction(MIMJ) and Au/SiO2/Si metal/insulator/Si junction(MISJ) have been constructed successfully. The light emission of these junctions was mediated by surface plasmon-polaritons(SPPs) under surface roughness. The light emission from MISJ was more uniform and stable than that from MIMJ. The light power of MISJ was about 2~3 orders higher than that of MIMJ. The light emission spectrum of MISJ was analyzed especially. In the spectrum, there was one main peak located at the wavelength of 610 nm^640 nm, which was mainly due to the couple of SPP with the surface roughness at the Au/air and Au/SiO2 interfaces. A weak peak located at the shorter wavelength region in the spectrum was also found, which was caused by the direct radiation of doped-Si plasma oscillation.