期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Bioactivity of silk fibroin peptides on vascular endothelial cells
1
作者 Mengnan Dai Meng Li +3 位作者 Peixuan Li Boyu Zhang Jianmei Xu Jiannan Wang 《Frontiers of Materials Science》 SCIE CSCD 2024年第1期85-94,共10页
To determine the contribution of non-repetitive domains to the bioactivity of the heavy chain in silk fibroin(SF)macromolecules,a gene motif f(1)encoding this fragment and its multimers(f(4)and f(8))were biosynthesize... To determine the contribution of non-repetitive domains to the bioactivity of the heavy chain in silk fibroin(SF)macromolecules,a gene motif f(1)encoding this fragment and its multimers(f(4)and f(8))were biosynthesized from Escherichia coli BL21.Based on the positive application potential of SF materials for the vascular tissue engineering,this study focused on examining the active response of these polypeptides to vascular endothelial cells.Biosynthetic polypeptides F(1),F(4),and F(8)were separately grafted onto the surfaces of bioinert polyethylene terephthalate(PET)films,resulting in remarkable improvements in the spread and proliferation of human umbilical vein endothelial cells(HUVECs).Using the same grafting dose,the activity of cells on polypeptide-modified PET films enhanced with the increase of the molecular weight of those grafted polypeptides from F(1)to F(8).Meanwhile,the growth of cells on the surface of the alkaline-treated PET film was improved,indicating that the hydrophilicity of the surface material had influence on the growth of HUVECs.Moreover,on surfaces with the same water contact angle,the spread and proliferation activity of cells on PET films were significantly lower than those on polypeptide-modified PET films. 展开更多
关键词 silk fibroin heavy chain non-repetitive fragment cytoactive endothelial cell
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部