期刊文献+
共找到2,475篇文章
< 1 2 124 >
每页显示 20 50 100
Hierarchical CNNPID Based Active Steering Control Method for Intelligent Vehicle Facing Emergency Lane-Changing
1
作者 Wensa Wang Jun Liang +1 位作者 Chaofeng Pan Long Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期355-371,共17页
To resolve the response delay and overshoot problems of intelligent vehicles facing emergency lane-changing due to proportional-integral-differential(PID)parameter variation,an active steering control method based on ... To resolve the response delay and overshoot problems of intelligent vehicles facing emergency lane-changing due to proportional-integral-differential(PID)parameter variation,an active steering control method based on Convolutional Neural Network and PID(CNNPID)algorithm is constructed.First,a steering control model based on normal distribution probability function,steady constant radius steering,and instantaneous lane-change-based active for straight and curved roads is established.Second,based on the active steering control model,a three-dimensional constraint-based fifth-order polynomial equation lane-change path is designed to address the stability problem with supersaturation and sideslip due to emergency lane changing.In addition,a hierarchical CNNPID Controller is constructed which includes two layers to avoid collisions facing emergency lane changing,namely,the lane change path tracking PID control layer and the CNN control performance optimization layer.The scaled conjugate gradient backpropagation-based forward propagation control law is designed to optimize the PID control performance based on input parameters,and the elastic backpropagation-based module is adopted for weight correction.Finally,comparison studies and simulation/real vehicle test results are presented to demonstrate the effectiveness,significance,and advantages of the proposed controller. 展开更多
关键词 Intelligent vehicle Rear-end collision avoidance steering control Dynamics model Neural Network PID control
下载PDF
Error analysis and a new steering law design for spacecraft control system using SGCMGs 被引量:7
2
作者 Jin Jin Jing-Rui Zhang Zao-Zhen Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第5期803-808,共6页
Based on the singular value decomposition theory,this paper analyzed the mechanism of escaping/avoiding singularity using generalized and weighted singularity-robust steering laws for a spacecraft that uses single gim... Based on the singular value decomposition theory,this paper analyzed the mechanism of escaping/avoiding singularity using generalized and weighted singularity-robust steering laws for a spacecraft that uses single gimbal control moment gyros (SGCMGs) as the actuator for the attitude control system.The expression of output-torque error is given at the point of singularity,proving the incompatible relationship between the gimbal rate and the output-torque error.The method of establishing a balance between the gimbal rate and the output-torque error is discussed,and a new steering law is designed.Simulation results show that the proposed steering law can effectively drive SGCMGs to escape away from singularities. 展开更多
关键词 Single gimbal control moment gyros (SGCMGs) Attitude control Singularity analysis steering law
下载PDF
Research on Vehicle Control Technology Using Four-Wheel Independent Steering System 被引量:5
3
作者 陈思忠 舒进 杨林 《Journal of Beijing Institute of Technology》 EI CAS 2006年第1期22-26,共5页
The enhancement of vehicle handling stability and maneuverability through active and independent rear wheels control is presented. Firstly, the configuration of four-wheel independent steering prototype vehide is intr... The enhancement of vehicle handling stability and maneuverability through active and independent rear wheels control is presented. Firstly, the configuration of four-wheel independent steering prototype vehide is introduced briefly. Then the concrete overall design of the electronic controllers of four wheel independent steering system (4WIS) is formulated in details. Under the control strategy of zero sideslip angle at mass center, the mathematical model of 4WIS is established to deduce the equations of separated rear wheel steering angles. According to these equations, simulation analysis for 4WIS vehicle performances is finished to show that 4WIS vehicle can improve the maneuverability greatly at low speed and increase the handling stability at high speed. Finally, the road test of 4WIS vehide has performed to verify the correctness of simulation and show that compared with the conventional four wheel steering (4WS) vehicle, the 4WIS vehicle not only improves the kinematical harmony but also decreases steering resistance and lighten abrasion of tires. 展开更多
关键词 four-wheel independent steering system (4WIS) control strategy four-wheel steering system (4WS)
下载PDF
H∞ control of novel active steering integrated with electric power steering function 被引量:8
4
作者 ZHAO Wan-zhong LI Yi-jun +2 位作者 WANG Chun-yan ZHAO Ting GU Xiao-yue 《Journal of Central South University》 SCIE EI CAS 2013年第8期2151-2157,共7页
Based on the traditional active steering system, a novel active steering system integrated with electric power steering function was introduced, which can achieve the functions of both active steering and electric pow... Based on the traditional active steering system, a novel active steering system integrated with electric power steering function was introduced, which can achieve the functions of both active steering and electric power steering. In view of the interference from road random signal and sensor noise in the novel active steering system, the H∞ control model of the novel active steering system was built. With satisfying steering feel, good robust performance and steering stability being the control objectives, the H∞ controller for the novel active front steering (AFS) system was designed. The simulation results show that the novel AFS system with H∞ control strategy can attenuate the road interference quickly, and there is no resonance peak in the bode diagram. It can make the driver obtain more useful information in the low frequency range, and attenuate the road interference better in the high frequency range, thus the driver can get more satisfying road feeling. Therefore, the designed H∞ controller can synthesize the advantages of both robust performance and robust stability, and has certain contribution to the design of novel AFS system. 展开更多
关键词 vehicle engineering active steering electric power steering H∞ control
下载PDF
Disturbance Observer Based Control for Four Wheel Steering Vehicles With Model Reference 被引量:11
5
作者 Shuyou Yu Jing Wang +1 位作者 Yan Wang Hong Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第6期1121-1127,共7页
This paper presents a disturbance observer based control strategy for four wheel steering systems in order to improve vehicle handling stability. By combination of feedforward control and feedback control, the front a... This paper presents a disturbance observer based control strategy for four wheel steering systems in order to improve vehicle handling stability. By combination of feedforward control and feedback control, the front and rear wheel steering angles are controlled simultaneously to follow both the desired sideslip angle and the yaw rate of the reference vehicle model.A nonlinear three degree-of-freedom four wheel steering vehicle model containing lateral, yaw and roll motions is built up, which also takes the dynamic effects of crosswind into consideration.The disturbance observer based control method is provided to cope with ignored nonlinear dynamics and to handle exogenous disturbances. Finally, a simulation experiment is carried out,which shows that the proposed four wheel steering vehicle can guarantee handling stability and present strong robustness against external disturbances. 展开更多
关键词 Disturbance observer based control four wheel steering handling stability model reference.
下载PDF
Study on Steering Control Strategy for High-Speed Tracked Vehicle with Hydrostatic Drive 被引量:3
6
作者 杨磊 马彪 李和言 《Journal of Beijing Institute of Technology》 EI CAS 2010年第2期158-164,共7页
Steering control strategy for high-speed tracked vehicle with hydrostatic drive is designed based on analyzing the fundamental steering theories of the hydrostatic drive tracked vehicle. The strategy is completed by t... Steering control strategy for high-speed tracked vehicle with hydrostatic drive is designed based on analyzing the fundamental steering theories of the hydrostatic drive tracked vehicle. The strategy is completed by the cooperation between integrated steering control unit and pump & motor displacement controller. The steering simulation is conducted by using Simulink of Matlab. It is indicated that this steering control strategy can reduce the average vehicle speed automatically to achieve the driver's expected steering radius exactly in the case of en- suring not exceeding the system pressure threshold and no sideslip. 展开更多
关键词 hydrostatic drive tracked vehicle stepless steering control strategy speed regulation
下载PDF
A Novel Integrated Stability Control Based on Differential Braking and Active Steering for Four-axle Trucks 被引量:8
7
作者 Buyang Zhang Changfu Zong +2 位作者 Guoying Chen Yanjun Huang Ting Xu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第1期174-194,共21页
Di erential braking and active steering have already been integrated to overcome their shortcomings. However, existing research mainly focuses on two-axle vehicles and controllers are mostly designed to use one contro... Di erential braking and active steering have already been integrated to overcome their shortcomings. However, existing research mainly focuses on two-axle vehicles and controllers are mostly designed to use one control method to improve the other. Moreover, many experiments are needed to improve the robustness; therefore, these control methods are underutilized. This paper proposes an integrated control system specially designed for multi-axle vehicles, in which the desired lateral force and yaw moment of vehicles are determined by the sliding mode control algorithm. The output of the sliding mode control is distributed to the suitable wheels based on the abilities and potentials of the two control methods. Moreover, in this method, fewer experiments are needed, and the robustness and simultaneity are both guaranteed. To simplify the optimization system and to improve the computation speed, seven simple optimization subsystems are designed for the determination of control outputs on each wheel. The simulation results show that the proposed controller obviously enhances the stability of multi-axle trucks. The system improves 68% of the safe velocity, and its performance is much better than both di erential braking and active steering. This research proposes an integrated control system that can simultaneously invoke di erential braking and active steering of multi-axle vehicles to fully utilize the abilities and potentials of the two control methods. 展开更多
关键词 Di erential braking Active steering Vertical tire force calculation Multi-axle truck Integrated control
下载PDF
Theoretical and Experimental Investigation of Driver Noncooperative-Game Steering Control Behavior 被引量:5
8
作者 Xiaoxiang Na David Cole 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第1期189-205,共17页
This paper investigates two noncooperative-game strategies which may be used to represent a human driver's steering control behavior in response to vehicle automated steering intervention.The first strategy,namely... This paper investigates two noncooperative-game strategies which may be used to represent a human driver's steering control behavior in response to vehicle automated steering intervention.The first strategy,namely the Nash strategy is derived based on the assumption that a Nash equilibrium is reached in a noncooperative game of vehicle path-following control involving a driver and a vehicle automated steering controller.The second one,namely the Stackelberg strategy is derived based on the assumption that a Stackelberg equilibrium is reached in a similar context.A simulation study is performed to study the differences between the two proposed noncooperativegame strategies.An experiment using a fixed-base driving simulator is carried out to measure six test drivers'steering behavior in response to vehicle automated steering intervention.The Nash strategy is then fitted to measured driver steering wheel angles following a model identification procedure.Control weight parameters involved in the Nash strategy are identified.It is found that the proposed Nash strategy with the identified control weights is capable of representing the trend of measured driver steering behavior and vehicle lateral responses.It is also found that the proposed Nash strategy is superior to the classic driver steering control strategy which has widely been used for modeling driver steering control over the past.A discussion on improving automated steering control using the gained knowledge of driver noncooperative-game steering control behavior was made. 展开更多
关键词 DRIVER EXPERIMENT model identification noncooperative game steering control strategy vehicle
下载PDF
Application of H infinite control to ship steering system 被引量:6
9
作者 LIU Sheng YU Ping LI Yan-yan DU Yan-chun 《Journal of Marine Science and Application》 2006年第1期6-11,共6页
Because the general object of ship steering control system is singular, the state Of rudder force and the state of disturbance are separated, and the generalized yaw output disturhance is obtained. Furthermore, singul... Because the general object of ship steering control system is singular, the state Of rudder force and the state of disturbance are separated, and the generalized yaw output disturhance is obtained. Furthermore, singular system control problem of ship yaw and sway coupled system is transferred into nonsingular standard control problem. Then according to the linear fractional denoting algorithm of the rational function parameter perturbation system, the Linear Fractional Transform (LFT) model of yaw and sway coupled motion is solved, which is used to design the ship steering robust control system. For the ship steering system with the uncertain parameters, the robust control law is designed based on H^∞ μ-synthesis. And the robust performance of the system is analyzed and the simulation validation is made. Simulation results show that the designed control system has excellent control effect and robustness. 展开更多
关键词 ship steering H^∞ control parameter perturbation ROBUSTNESS
下载PDF
Controller Design for Electric Power Steering System Using T-S Fuzzy Model Approach 被引量:5
10
作者 Xin Li Xue-Ping Zhao Jie Chen 《International Journal of Automation and computing》 EI 2009年第2期198-203,共6页
Pressure ripples in electric power steering (EPS) systems can be caused by the phase lag between the driver s steering torque and steer angle, the nonlinear frictions, and the disturbances from road and sensor noise... Pressure ripples in electric power steering (EPS) systems can be caused by the phase lag between the driver s steering torque and steer angle, the nonlinear frictions, and the disturbances from road and sensor noise especially during high-frequency maneuvers. This paper investigates the use of the robust fuzzy control method for actively reducing pressure ripples for EPS systems. Remarkable progress on steering maneuverability is achieved. The EPS dynamics is described with an eight-order nonlinear state-space model and approximated by a Takagi-Sugeno (T-S) fuzzy model with time-varying delays and external disturbances. A stabilization approach is then presented for nonlinear time-delay systems through fuzzy state feedback controller in parallel distributed compensation (PDC) structure. The closed-loop stability conditions of EPS system with the fuzzy controller are parameterized in terms of the linear matrix inequality (LMI) problem. Simulations and experiments using the proposed robust fuzzy controller and traditional PID controller have been carried out for EPS systems. Both the simulation and experiment results show that the proposed fuzzy controller can reduce the torque ripples and allow us to have a good steering feeling and stable driving. 展开更多
关键词 Electric power steering (EPS) fuzzy control Takagi-Sugeno (T-S) model parallel distributed compensation (PDC) timedelay linear matrix inequality (LMI).
下载PDF
Hazard-evaluation-oriented Moving Horizon Parallel Steering Control for Driver-Automation Collaboration During Automated Driving 被引量:8
11
作者 Hongyan Guo Linhuan Song +5 位作者 Jun Liu Fei-Yue Wang Dongpu Cao Hong Chen Chen Lv Partick Chi-Kwong Luk 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第6期1062-1073,共12页
Prompted by emerging developments in connected and automated vehicles, parallel steering control, one aspect of parallel driving, has become highly important for intelligent vehicles for easing the burden and ensuring... Prompted by emerging developments in connected and automated vehicles, parallel steering control, one aspect of parallel driving, has become highly important for intelligent vehicles for easing the burden and ensuring the safety of human drivers. This paper presents a parallel steering control framework for an intelligent vehicle using moving horizon optimization.The framework considers lateral stability, collision avoidance and actuator saturation and describes them as constraints, which can blend the operation of a human driver and a parallel steering controller effectively. Moreover, the road hazard and the steering operation error are employed to evaluate the operational hazardous of an intelligent vehicle. Under the hazard evaluation,the intelligent vehicle will be mainly operated by the human driver when the vehicle operates in a safe and stable manner.The automated steering driving objective will play an active role and regulate the steering operations of the intelligent vehicle based on the hazard evaluation. To verify the effectiveness of the proposed hazard-evaluation-oriented moving horizon parallel steering control approach, various validations are conducted, and the results are compared with a parallel steering scheme that does not consider automated driving situations. The results illustrate that the proposed parallel steering controller achieves acceptable performance under both conventional conditions and hazardous conditions. 展开更多
关键词 Hazard evaluation intelligent vehicle atera stability moving horizon optimization paralle steering control
下载PDF
Vehicle Active Steering Control Research Based on Two-DOF Robust Internal Model Control 被引量:12
12
作者 WU Jian LIU Yahui +3 位作者 WANG Fengbo BAO Chunjiang SUN Qun ZHAO Youqun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期739-746,共8页
Because of vehicle's external disturbances and model uncertainties,robust control algorithms have obtained popularity in vehicle stability control.The robust control usually gives up performance in order to guarantee... Because of vehicle's external disturbances and model uncertainties,robust control algorithms have obtained popularity in vehicle stability control.The robust control usually gives up performance in order to guarantee the robustness of the control algorithm,therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness.The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties.In order to separate the design process of model tracking from the robustness design process,the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization.Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm,on the basis of a nonlinear vehicle simulation model with a magic tyre model.Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance,which can enhance the vehicle stability and handling,regardless of variations of the vehicle model parameters and the external crosswind interferences.Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained. 展开更多
关键词 active steering internal model control model tracking robust performance crosswind disturbances
下载PDF
Generalized Internal Model Robust Control for Active Front Steering Intervention 被引量:8
13
作者 WU Jian ZHAO Youqun +2 位作者 JI Xuewu LIU Yahui ZHANG Lipeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第2期285-293,共9页
Because of the tire nonlinearity and vehicle's parameters'uncertainties,robust control methods based on the worst cases,such as H_∞,μsynthesis,have been widely used in active front steering control,however,in orde... Because of the tire nonlinearity and vehicle's parameters'uncertainties,robust control methods based on the worst cases,such as H_∞,μsynthesis,have been widely used in active front steering control,however,in order to guarantee the stability of active front steering system(AFS)controller,the robust control is at the cost of performance so that the robust controller is a little conservative and has low performance for AFS control.In this paper,a generalized internal model robust control(GIMC)that can overcome the contradiction between performance and stability is used in the AFS control.In GIMC,the Youla parameterization is used in an improved way.And GIMC controller includes two sections:a high performance controller designed for the nominal vehicle model and a robust controller compensating the vehicle parameters'uncertainties and some external disturbances.Simulations of double lane change(DLC)maneuver and that of braking on split-μroad are conducted to compare the performance and stability of the GIMC control,the nominal performance PID controller and the H_∞controller.Simulation results show that the high nominal performance PID controller will be unstable under some extreme situations because of large vehicle's parameters variations,H_∞controller is conservative so that the performance is a little low,and only the GIMC controller overcomes the contradiction between performance and robustness,which can both ensure the stability of the AFS controller and guarantee the high performance of the AFS controller.Therefore,the GIMC method proposed for AFS can overcome some disadvantages of control methods used by current AFS system,that is,can solve the instability of PID or LQP control methods and the low performance of the standard H_∞controller. 展开更多
关键词 active front steering system generalized internal model robust control H_∞ optimization PID split-μ road
下载PDF
Cooperative game theory-based steering law design of a CMG system
14
作者 HUA Bing NI Rui +2 位作者 ZHENG Mohong WU Yunhua CHEN Zhiming 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期185-196,共12页
Spacecraft require a large-angle manoeuvre when performing agile manoeuvring tasks, therefore a control moment gyroscope(CMG) is employed to provide a strong moment.However, the control of the CMG system easily falls ... Spacecraft require a large-angle manoeuvre when performing agile manoeuvring tasks, therefore a control moment gyroscope(CMG) is employed to provide a strong moment.However, the control of the CMG system easily falls into singularity, which renders the actuator unable to output the required moment. To solve the singularity problem of CMGs, the control law design of a CMG system based on a cooperative game is proposed. First, the cooperative game model is constructed according to the quadratic programming problem, and the cooperative strategy is constructed. When the strategy falls into singularity, the weighting coefficient is introduced to carry out the strategy game to achieve the optimal strategy. In theory, it is proven that the cooperative game manipulation law of the CMG system converges, the sum of the CMG frame angular velocities is minimized, the energy consumption is small, and there is no output torque error. Then, the CMG group system is simulated.When the CMG system is near the singular point, it can quickly escape the singularity. When the CMG system falls into the singularity, it can also escape the singularity. Considering the optimization of angular momentum and energy consumption, the feasibility of the CMG system steering law based on a cooperative game is proven. 展开更多
关键词 control moment gyroscopes(CMG) cooperative game theory steering laws
下载PDF
HUMAN-SIMULATING VEHICLE STEERING CONTROL ALGORITHM 被引量:1
15
作者 XU Youchun LI Keqiang +1 位作者 CHANG Ming CHEN Jun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第2期233-236,共4页
A new vehicle steering control algorithm is presented. Unlike the traditional methods do, the algorithm uses a sigmoid function to describe the principle of the human driver's steering strategy. Based on this functio... A new vehicle steering control algorithm is presented. Unlike the traditional methods do, the algorithm uses a sigmoid function to describe the principle of the human driver's steering strategy. Based on this function, a human simulating vehicle steering model, human-simulating steering control(HS) algorithm is designed. In order to improve the adaptability to different environments, a parameter adaptive adjustment algorithm is presented. This algorithm can online modify the value of the key parameters of the HS real time. HS controller is used on a vehicle equipped with computer vision system and computer controlled steering actuator system, the result from the automatic vehicle steering experiment shows that the HS algorithm gives good performance at different speed, even at the maximum speed of 172 km/h. 展开更多
关键词 Human-simulating control Sigmoid function steering algorithm
下载PDF
Steering Control of Wheeled Armored Vehicle with Brushless DC Motor 被引量:1
16
作者 陈慧岩 王京起 郑培 《Journal of Beijing Institute of Technology》 EI CAS 2005年第3期310-313,共4页
Considering the steering characters of one type of wheeled armored vehicle, a brushless direct current (DC) motor is adapted as the actuator for steering control. After investigating the known algorithms, one kind o... Considering the steering characters of one type of wheeled armored vehicle, a brushless direct current (DC) motor is adapted as the actuator for steering control. After investigating the known algorithms, one kind of algorithm, which combines the fuzzy logic control with the self-adapting PID control and the startup and pre-hrake control, is put forward. Then a test-bed is constructed, and an experiment is conducted. The result of experiment confirms the validity of this algorithm in steering control of wheeled armored vehicle with brushless DC motor. 展开更多
关键词 steering control DC motor wheeled armored vehicle
下载PDF
Neural-Fuzzy-Based Adaptive Sliding Mode Automatic Steering Control of Vision-based Unmanned Electric Vehicles 被引量:2
17
作者 Jinghua Guo Keqiang Li +2 位作者 Jingjing Fan Yugong Luo Jingyao Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第5期56-68,共13页
This paper presents a novel neural-fuzzy-based adaptive sliding mode automatic steering control strategy to improve the driving performance of vision-based unmanned electric vehicles with time-varying and uncertain pa... This paper presents a novel neural-fuzzy-based adaptive sliding mode automatic steering control strategy to improve the driving performance of vision-based unmanned electric vehicles with time-varying and uncertain parameters.Primarily,the kinematic and dynamic models which accurately express the steering behaviors of vehicles are constructed,and in which the relationship between the look-ahead time and vehicle velocity is revealed.Then,in order to overcome the external disturbances,parametric uncertainties and time-varying features of vehicles,a neural-fuzzy-based adaptive sliding mode automatic steering controller is proposed to supervise the lateral dynamic behavior of unmanned electric vehicles,which includes an equivalent control law and an adaptive variable structure control law.In this novel automatic steering control system of vehicles,a neural network system is utilized for approximating the switching control gain of variable structure control law,and a fuzzy inference system is presented to adjust the thickness of boundary layer in real-time.The stability of closed-loop neural-fuzzy-based adaptive sliding mode automatic steering control system is proven using the Lyapunov theory.Finally,the results illustrate that the presented control scheme has the excellent properties in term of error convergence and robustness. 展开更多
关键词 Vision-based unmanned electric vehicles Automatic steering Neural-fuzzy adaptive sliding control Vehicle lateral dynamics
下载PDF
Precise Compound Control of Loading Force for Electric Load Simulator of Electric Power Steering Test Bench 被引量:1
18
作者 Changhua Dai Guoying Chen +1 位作者 Changfu Zong Buyang Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第1期255-265,共11页
Electric load simulator(ELS) systems are employed for electric power steering(EPS) test benches to load rack force by precise control. Precise ELS control is strongly influenced by nonlinear factors. When the steering... Electric load simulator(ELS) systems are employed for electric power steering(EPS) test benches to load rack force by precise control. Precise ELS control is strongly influenced by nonlinear factors. When the steering motor rapidly rotates, extra force is directly superimposed on the original static loading error, which becomes one of the main sources of the final error. It is key to achieve ELS precise loading control for the entire EPS test bench. Therefore, a three-part compound control algorithm is proposed to improve the loading accuracy. First, a fuzzy proportional–integral plus feedforward controller with force feedback is presented. Second, a friction compensation algorithm is established to reduce the influence of friction. Then, the relationships between each quantity and the extra force are analyzed when the steering motor rapidly rotates, and a net torque feedforward compensation algorithm is proposed to eliminate the extra force. The compound control algorithm was verified through simulations and experiments. The results show that the tracking performance of the compound control algorithm satisfies the demands of engineering practice, and the extra force in the ELS system can be suppressed by the net torque corresponding to the actuator’s acceleration. 展开更多
关键词 Electric load simulator Electric power steering Extra force Compound control
下载PDF
Dynamical Correction of Control Laws for Marine Ships’ Accurate Steering 被引量:1
19
作者 Evgeny I. Veremey 《Journal of Marine Science and Application》 2014年第2期127-133,共7页
The objective of this work is the analytical synthesis problem for marine vehicles autopilots design. Despite numerous known methods for a solution, the mentioned problem is very complicated due to the presence of an ... The objective of this work is the analytical synthesis problem for marine vehicles autopilots design. Despite numerous known methods for a solution, the mentioned problem is very complicated due to the presence of an extensive population of certain dynamical conditions, requirements and restrictions, which must be satisfied by the appropriate choice of a steering control law. The aim of this paper is to simplify the procedure of the synthesis, providing accurate steering with desirable dynamics of the control system. The approach proposed here is based on the usage of a special unified multipurpose control law structure that allows decoupling a synthesis into simpler particular optimization problems. In particular, this structure includes a dynamical corrector to support the desirable features for the vehicle's motion under the action of sea wave disturbances. As a result, a specialized new method for the corrector design is proposed to provide an accurate steering or a trade-off between accurate steering and economical steering of the ship. This method guaranties a certain flexibility of the control law with respect to an actual environment of the sailing;its corresponding turning can be realized in real time onboard. 展开更多
关键词 marine ships control law dynamical corrector accurate steering autopilot sea wave
下载PDF
Nonlinear Derivative and Integral Sliding Control for Tracked Vehicle Steering with Hydrostatic Drive 被引量:1
20
作者 Changsong Zheng Yichun Chen Ran Jia 《Journal of Beijing Institute of Technology》 EI CAS 2020年第3期283-293,共11页
In the steering process of tracked vehicle with hydrostatic drive,the motion and resistance states of the vehicle are always of uncertain and nonlinear characteristics,and these states may undergoe large-scale changes... In the steering process of tracked vehicle with hydrostatic drive,the motion and resistance states of the vehicle are always of uncertain and nonlinear characteristics,and these states may undergoe large-scale changes.Therefore,it is significant to enhance the steering stability of tracked vehicle with hydrostatic drive to meet the need of future battlefield.In this paper,a sliding mode control algorithm is proposed and applied to achieve desired yaw rates.The speed controller and the yaw rate controller are designed through the kinematics and dynamics analysis.In addition,the nonlinear derivative and integral sliding mode control algorithm is designed,which is supposed to efficiently reduce the integration saturation and the disturbances from the unsmooth road surfaces through a conditional integrator approach.Moreover,it improves the response speed of the system and reduces the chattering by the derivative controller.The hydrostatic tracked vehicle module is modeled with a multi-body dynamic software RecurDyn and the steering control strategy module is modeled by MATLAB/Simulink.The co-simulation results of the whole model show that the control strategy can improve the vehicle steering response speed and also ensure a smooth control output with small chattering and strong robustness. 展开更多
关键词 tracked vehicle hydrostatic drive steer control nonlinear derivative and integral sliding mode control
下载PDF
上一页 1 2 124 下一页 到第
使用帮助 返回顶部