The equipment used in various fields contains an increasing number of parts with curved surfaces of increasing size.Five-axis computer numerical control(CNC)milling is the main parts machining method,while dynamics an...The equipment used in various fields contains an increasing number of parts with curved surfaces of increasing size.Five-axis computer numerical control(CNC)milling is the main parts machining method,while dynamics analysis has always been a research hotspot.The cutting conditions determined by the cutter axis,tool path,and workpiece geometry are complex and changeable,which has made dynamics research a major challenge.For this reason,this paper introduces the innovative idea of applying dimension reduction and mapping to the five-axis machining of curved surfaces,and proposes an efficient dynamics analysis model.To simplify the research object,the cutter position points along the tool path were discretized into inclined plane five-axis machining.The cutter dip angle and feed deflection angle were used to define the spatial position relationship in five-axis machining.These were then taken as the new base variables to construct an abstract two-dimensional space and establish the mapping relationship between the cutter position point and space point sets to further simplify the dimensions of the research object.Based on the in-cut cutting edge solved by the space limitation method,the dynamics of the inclined plane five-axis machining unit were studied,and the results were uniformly stored in the abstract space to produce a database.Finally,the prediction of the milling force and vibration state along the tool path became a data extraction process that significantly improved efficiency.Two experiments were also conducted which proved the accuracy and efficiency of the proposed dynamics analysis model.This study has great potential for the online synchronization of intelligent machining of large surfaces.展开更多
NC machining path of sculptured surfaces in CAD/CAM system plays an important role on manufacture. This paper describes a new algorithm for 5 axis machining of sculptured surfaces and the algorithm is interference fr...NC machining path of sculptured surfaces in CAD/CAM system plays an important role on manufacture. This paper describes a new algorithm for 5 axis machining of sculptured surfaces and the algorithm is interference free. The approach includes: (1) the tesselation of the parametric surfaces into triangles; (2) building topological relations among triangles;(3) 5 axis tool path generation; (4) interference detection and tool position correction.展开更多
Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining...Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining technologies often struggle to achieve ultra-precision with DMMs resulting from poor surface quality and low processing efficiency.In recent years,field-assisted machining (FAM) technology has emerged as a new generation of machining technology based on innovative principles such as laser heating,tool vibration,magnetic magnetization,and plasma modification,providing a new solution for improving the machinability of DMMs.This technology not only addresses these limitations of traditional machining methods,but also has become a hot topic of research in the domain of ultra-precision machining of DMMs.Many new methods and principles have been introduced and investigated one after another,yet few studies have presented a comprehensive analysis and summarization.To fill this gap and understand the development trend of FAM,this study provides an important overview of FAM,covering different assisted machining methods,application effects,mechanism analysis,and equipment design.The current deficiencies and future challenges of FAM are summarized to lay the foundation for the further development of multi-field hybrid assisted and intelligent FAM technologies.展开更多
A non-contact method for millimeter-scale inspection of material surface flatness via Laser-Induced Breakdown Spectroscopy(LIBS)is investigated experimentally.The experiment is performed using a planished surface of a...A non-contact method for millimeter-scale inspection of material surface flatness via Laser-Induced Breakdown Spectroscopy(LIBS)is investigated experimentally.The experiment is performed using a planished surface of an alloy steel sample to simulate its various flatness,ranging from 0 to 4.4 mm,by adjusting the laser focal plane to the surface distance with a step length of 0.2 mm.It is found that LIBS measurements are successful in inspecting the flatness differences among these simulated cases,implying that the method investigated here is feasible.It is also found that,for achieving the inspection of surface flatness within such a wide range,when univariate analysis is applied,a piecewise calibration model must be constructed.This is due to the complex dependence of plasma formation conditions on the surface flatness,which inevitably complicates the inspection procedure.To solve the problem,a multivariate analysis with the help of Back-Propagation Neural Network(BPNN)algorithms is applied to further construct the calibration model.By detailed analysis of the model performance,we demonstrate that a unified calibration model can be well established based on BPNN algorithms for unambiguous millimeter-scale range inspection of surface flatness with a resolution of about 0.2 mm.展开更多
Lattice structures can be designed to achieve unique mechanical properties and have attracted increasing attention for applications in high-end industrial equipment,along with the advances in additive manufacturing(AM...Lattice structures can be designed to achieve unique mechanical properties and have attracted increasing attention for applications in high-end industrial equipment,along with the advances in additive manufacturing(AM)technologies.In this work,a novel design of plate lattice structures described by a parametric model is proposed to enrich the design space of plate lattice structures with high connectivity suitable for AM processes.The parametric model takes the basic unit of the triple periodic minimal surface(TPMS)lattice as a skeleton and adopts a set of generation parameters to determine the plate lattice structure with different topologies,which takes the advantages of both plate lattices for superior specific mechanical properties and TPMS lattices for high connectivity,and therefore is referred to as a TPMS-like plate lattice(TLPL).Furthermore,a data-driven shape optimization method is proposed to optimize the TLPL structure for maximum mechanical properties with or without the isotropic constraints.In this method,the genetic algorithm for the optimization is utilized for global search capability,and an artificial neural network(ANN)model for individual fitness estimation is integrated for high efficiency.A set of optimized TLPLs at different relative densities are experimentally validated by the selective laser melting(SLM)fabricated samples.It is confirmed that the optimized TLPLs could achieve elastic isotropy and have superior stiffness over other isotropic lattice structures.展开更多
Magnetite nanoparticles show promising applications in drug delivery,catalysis,and spintronics.The surface of magnetite plays an important role in these applications.Therefore,it is critical to understand the surface ...Magnetite nanoparticles show promising applications in drug delivery,catalysis,and spintronics.The surface of magnetite plays an important role in these applications.Therefore,it is critical to understand the surface structure of Fe_(3)O_(4)at atomic scale.Here,using a combination of first-principles calculations,particle swarm optimization(PSO)method and machine learning,we investigate the possible reconstruction and stability of Fe_(3)O_(4)(001)surface.The results show that besides the subsurface cation vacancy(SCV)reconstruction,an A layer with Fe vacancy(A-layer-V_(Fe))reconstruction of the(001)surface also shows very low surface energy especially at oxygen poor condition.Molecular dynamics simulation based on the iron–oxygen interaction potential function fitted by machine learning further confirms the thermodynamic stability of the A-layer-V_(Fe)reconstruction.Our results are also instructive for the study of surface reconstruction of other metal oxides.展开更多
In order to increase the efficiency in the machining of the sculptured surfaces, the contact principle of differential geometry is applied to the 5-axis NC machining; The best contact condition between tool and the su...In order to increase the efficiency in the machining of the sculptured surfaces, the contact principle of differential geometry is applied to the 5-axis NC machining; The best contact condition between tool and the surfaces is researched. Through analysis the contact degree of the intersection line of the cutter and the surfaces is known. In comparison to previous studies, the theory is more restricted and accurate by going beyond the second-order parameters into the third-order, suiting both the primary surfaces of analytical geometry and the computer-generated surfaces of the computation geometry. It has definite procedure of calculation, and the equations are easy to solve. The thought process is very clear: First, suppose that there is a surface of third-order, the coefficients of which are arbitrary; Then find out the best posture of the circle in order that the circle and the surface will most closely contact with each other at the origin position; Finally, develop the surface into a third-order surface at every point of machining and employ the results mentioned above to find the best cutter posture at every point of machining. As a result, the equations are easy to solve, and the concept is clear.展开更多
The current research of the 5-axis tool positioning algorithm mainly focuses on searching the local optimal tool position without gouging and interference at a cutter contact(CC) point,while not considering the smoo...The current research of the 5-axis tool positioning algorithm mainly focuses on searching the local optimal tool position without gouging and interference at a cutter contact(CC) point,while not considering the smoothness and continuity of a whole tool path.When the surface curvature varies significantly,a local abrupt change of tool paths will happen.The abrupt change has a great influence on surface machining quality.In order to keep generated tool paths smooth and continuous,a five-axis tool positioning algorithm based on smooth tool paths is presented.Firstly,the inclination angle,the tilt angle and offset distance of the tool at a CC point are used as design variables,and the machining strip width is used as an objective function,an optimization model of a local tool positioning algorithm is thus established.Then,a vector equation of tool path is derived by using the above optimization model.By analyzing the equation,the main factors affecting the tool path quality are obtained.Finally,a new tool position optimization model is established,and the detailed process of tool position optimization is also given.An experiment is conducted to machine an aircraft turbine blade by using the proposed algorithm on a 5-axis blade grinding machine,and the machined blade surface is measured with a coordinate measuring machine(CMM).Experimental and measured results show that the proposed algorithm can ensure tool paths are smooth and continuous,improve the tool path quality,avoid the local abrupt change of tool paths,and enhance machining quality and machining efficiency of sculptured surfaces.展开更多
A new milling methodology with the equivalent normal curvature milling model machining freeform surfaces is proposed based on the normal curvature theorems on differential geometry. Moreover, a specialized whirlwind m...A new milling methodology with the equivalent normal curvature milling model machining freeform surfaces is proposed based on the normal curvature theorems on differential geometry. Moreover, a specialized whirlwind milling tool and a 5-axis CNC horizontal milling machine are introduced. This new milling model can efficiently enlarge the material removal volume at the tip of the whirlwind milling tool and improve the producing capacity. The machining strategy of this model is to regulate the orientation of the whirlwind milling tool relatively to the principal directions of the workpiece surface at the point of contact, so as to create a full match with collision avoidance between the workpiece surface and the symmetric rotational surface of the milling tool. The practical results show that this new milling model is an effective method in machining complex three- dimensional surfaces. This model has a good improvement on finishing machining time and scallop height in machining the freeform surfaces over other milling processes. Some actual examples for manufacturing the freeform surfaces with this new model are given.展开更多
This paper describes a new method of surface modification by Electrical Discharge Machining (EDM). By using ordinary EDM machine tool and kerosene fluid, a hard ceramic layer can be created on the workpiece surface wi...This paper describes a new method of surface modification by Electrical Discharge Machining (EDM). By using ordinary EDM machine tool and kerosene fluid, a hard ceramic layer can be created on the workpiece surface with Ti or other compressed powder electrode in a certain condition. This new revolutionary method is called Electrical Discharge Coating (EDC). The process of EDC begins with electrode wear during EDM,then a kind of hard carbide is created through the thermal and chemical reaction between the worn electrode material and the carbon particle decomposed from kerosene fluid under high temperature. The carbide is piled up on a workpiece quickly and becomes a hard layer of ceramic about 20 μm in several minutes. This paper studies the principle and process of EDC systemically by using Ti powder green compact electrode. In order to obtain a layer of compact ceramic film, it is very important to select proper electric pulse parameters, such as pulse width, pulse interval, peak current. Meantime, the electrode materials and its forming mode will effect the machining surface quality greatly. This paper presents a series of experiment results to study the EDC process by adopt different technology parameters. Experiments and analyses show that a compact TiC ceramic layer can be created on the surface of metal workpiece. The hardness of ceramic layer is more 3 times higher than the base body, and the hardness changes gradiently from surface to base body. The method will have a great future because many materials can be easily added to the electrode and then be coated on the workpiece surface. Gearing the parameters ceramic can be created with different thickness. The switch between deposition and removal process is carried out easily by changing the polarity, thus the gear to the thickness and shape of the composite ceramic layer is carried out easily. This kind of composite ceramic layer will be used to deal with the surface of the cutting tools or molds possibly, in order to lengthen their life. It also can be found wide application in the fields of surface repairing and strengthening of the ship or aircraft.展开更多
A real-time non-uniform rational B-spline (NURBS) surface interpolator is proposed and 5-axis machining method with a flat-end cutter is discussed. With the Taylor expansion and the coordinate transformation, the al...A real-time non-uniform rational B-spline (NURBS) surface interpolator is proposed and 5-axis machining method with a flat-end cutter is discussed. With the Taylor expansion and the coordinate transformation, the algorithms of NURBS interpolation, cutter effective machining radius, cutter offsetting and.inverse kinematics are deduced and implemented, respectively. Different from the conventional free-form surface machining, the proposed interpolator can real-time generate the motion commands of computer numerical control (CNC) machines with CC feedrate, rather than that of CL. An example part surface is demonstrated and the results of simulation show that the proposed method can be applied in actual 5-axis surface machining.展开更多
The quality of surface generated in a peripheral milling of AZ91/SiCp/15%for varying machining conditions and its effect on the fatigue performance are investigated in this study.The machined surface quality was evalu...The quality of surface generated in a peripheral milling of AZ91/SiCp/15%for varying machining conditions and its effect on the fatigue performance are investigated in this study.The machined surface quality was evaluated through roughness measurements and SEM micrographs of ine machined surface.Tensile iesis were pcifumicu io iiieasure the mechanical properties of the composite.Subsequently,fatigue life of milled specimens was measured through axial fatigue tests at four loading conditions.Optical and SEM/EDS micrographs of the fractured surface were studied to identify the crack initiation site and propagation mechanism.Specimens machined at a lower feed rate of 0.1 mm/rev was found to have excellent surface finish and consequently higher fatigue life.At 0.3 mm/rev,the presence of feed marks and other surface defects resulted in a drastic decrease in fatigue life.Five distinct regions were identified on the fractured surface,particle fracture along and perpendicular to the surface,voids in the matrix due to particle debonding and pull out and typical ductile failure of matrix with embedded SiC particles.展开更多
A new method for generating tool paths for rough machining of sculpturedsurface is presented in this paper. The sculptured surface is approximated by a regular mesh ofquadrangular facets. A set of equidistant horizont...A new method for generating tool paths for rough machining of sculpturedsurface is presented in this paper. The sculptured surface is approximated by a regular mesh ofquadrangular facets. A set of equidistant horizontal planes are assigned to intersect the blank ofmachined part and surface model , resulting in a series of contours, which demarcate the feasiblecutting regions of each layer of material removal. The desired cutter path is computed through NCprogramming and any gouging between the cutter and the part being machined is detected and correctedautomatically. The proposed algorithm successfully solves the problem of layered milling forsculptured surface with nested islands.展开更多
axis NC machining freeform surface with a flat end cutter can theoretically improve material removal rate and surface finish, but it is very difficult to generate a gouge free cutter location. A new method of gener...axis NC machining freeform surface with a flat end cutter can theoretically improve material removal rate and surface finish, but it is very difficult to generate a gouge free cutter location. A new method of generating optimal cutter path is proposed to define the effective radius of a flat end cutter and determine the optimal step forward distance and step over distance. Thereby improving the NC machining efficiency and quality of freeform surfaces.展开更多
In current precision and ultraprecision machining practice,the positioning and control of actuation systems,such as slideways and spindles,are heavily dependent on the use of linear or rotary encoders.However,position...In current precision and ultraprecision machining practice,the positioning and control of actuation systems,such as slideways and spindles,are heavily dependent on the use of linear or rotary encoders.However,positioning control is passive because of the lack of direct monitoring and control of the tool and workpiece positions in the dynamic machining process and also because it is assumed that the machining system is rigid and the cutting dynamics are stable.In ultraprecision machining of freeform surfaces using slow tool servo mode in particular,however,account must be taken of the machining dynamics and dynamic synchronization of the cutting tool and workpiece positioning.The important question also arises as to how ultraprecision machining systems can be designed and developed to work better in this application scenario.In this paper,an innovative dynamics-oriented engineering approach is presented for ultraprecision machining of freeform surfaces using slow tool servo mode.The approach is focused on seamless integration of multibody dynamics,cutting forces,and machining dynamics,while targeting the positioning and control of the tool–workpiece loop in the machining system.The positioning and motion control between the cutting tool and workpiece surface are further studied in the presence of interfacial interactions at the tool tip and workpiece surface.The interfacial cutting physics and dynamics are likely to be at the core of in-process monitoring applicable to ultraprecision machining systems.The approach is illustrated using a virtual machining system developed and supported with simulations and experimental trials.Furthermore,the paper provides further explorations and discussion on implementation perspectives of the approach,in combination with case studies,as well as discussing its fundamental and industrial implications.展开更多
Considering machining efficiency, surface quality and wear of cutter and machine, it is necessary to maintain high, stable and constant surface feed rate as far as possible.The feed late control strategy for multi-axi...Considering machining efficiency, surface quality and wear of cutter and machine, it is necessary to maintain high, stable and constant surface feed rate as far as possible.The feed late control strategy for multi-axis CNC machining of free-form surfaces is presented. It comprises: ①the determination of effective feed rate; ②the adoption of suitable approaches to smooth feed rate. This strategy considers path geometry, actuator limitation and machine dynamics. The result shows that machining efficiency is improved effectively.展开更多
Artificial neural network is a powerful technique of computational intelligence and has been applied in a variety of fields such as engineering and computer science. This paper deals with the neural network modeling a...Artificial neural network is a powerful technique of computational intelligence and has been applied in a variety of fields such as engineering and computer science. This paper deals with the neural network modeling and prediction of surface roughness in machining aluminum alloys using data collected from both force and vibration sensors. Two neural network models, including a Multi-Layer Perceptron (MLP) model and a Radial Basis Function (RBF) model, were developed in the present study. Each model includes eight inputs and five outputs. The eight inputs include the cutting speed, the ratio of the feed rate to the tool-edge radius, cutting forces in three directions, and cutting vibrations in three directions. The five outputs are five surface roughness parameters. Described in detail is how training and test data were generated from real-world machining experiments that covered a wide range of cutting conditions. The results show that the MLP model provides significantly higher accuracy of prediction for surface roughness than does the RBF model.展开更多
The surface performance of workpieces processed by electrical discharge machining in gas(dry EDM)was studied in this paper.Firstly,the composition,micro hardness and recast layer of electrical discharge machined(EDMed...The surface performance of workpieces processed by electrical discharge machining in gas(dry EDM)was studied in this paper.Firstly,the composition,micro hardness and recast layer of electrical discharge machined(EDMed)surface of 45 carbon steels in air were investigated through different test analysis methods.The results show that the workpiece surface EDMed in air contains a certain quantity of oxide,and oxidation occurs on the workpiece surface.Compared with the surface of workpieces processed in kerosene,fewer cracks exist on the dry EDMed workpiece surface,and the surface recast layer is thinner than that obtained by conventional EDM.The micro hardness of workpieces machined by dry EDM method is lower than that machined in kerosene,and higher than that of the matrix.In addition,experiments were conducted on the surface wear resistance of workpieces processed in air and kerosene using copper electrode and titanium alloy electrode.The results indicate that the surface wear resistance of workpieces processed in air can be improved,and it is related with tool material and dielectric.展开更多
This paper focuses on the development of a distributed surface machining system. Traditional manufacturing engineering activity analysis has been conducted in developing the proposed system structure. The advantages o...This paper focuses on the development of a distributed surface machining system. Traditional manufacturing engineering activity analysis has been conducted in developing the proposed system structure. The advantages of a distributed system structure such as easy to manage,high expandability and flexibility will enhance the efficiency of an integral system operation,and achieve the goal of networked manufacture. The IDEF0 was used to describe each stage of the traditional surface machining activities,and then UML (Unified Modeling Language) technology was adopted to verify the feasibility and accuracy of the established integrated system. The developed distributed system structure and sub-functional modules (CAD/CAM/CAPP) have been implemented based on the proposed systematic approach; and a freeform surface has been used as an example for verification. The proposed approach has been successfully implemented and could be adopted to assist engineers in integrating machining activities that are located in dispersed places; and various domains experts also can exchange their expertise among themselves. Thus,the development time of a product machining processes can be shortened and so is its enhancement on the competitive advantages. In addition,this distributed system has also integrated multi-functional ontology and service agent to facilitate the selection and reconfiguration in manufacturing customization. The proposed system has presented the feasibility in incorporating the agent-based technology in a distributed freeform surface machining environment. Service agents communicate via pre-defined performatives underlying knowledge query and manipulation language (KQML) for the surface machining capability. The developed system has then successfully demonstrated the feasibility in implementing the agent-based technology into a distributed surface machining system.展开更多
In order to generate the digital gear tooth surfaces(DGTS)with high efficiency and high precision,a method for identification and compensation of machining errors is demonstrated in this paper.Machining errors are ana...In order to generate the digital gear tooth surfaces(DGTS)with high efficiency and high precision,a method for identification and compensation of machining errors is demonstrated in this paper.Machining errors are analyzed directly from the real tooth surfaces.The topography data of the part are off-line measured in the post-process.A comparison is made between two models:CAD model of DGTS and virtual model of the physical measured surface.And a matching rule is given to determine these two surfaces in an appropriate fashion.The developed error estimation model creates a point-to-point map of the real surface to the theoretical surface in the normal direction.A“pre-calibration error compensation”strategy is presented.Through processing the results of the first trail cutting,the total compensation error is predicted and an imaginary digital tooth surface is reconstructed. The machining errors in the final manufactured surfaces are minimized by generating this imaginary surface.An example of ma- chining 2-D DGTS verifies the developed method.The research is of important theoretical and practical value to manufacture the DGTS and other digital conjugate surfaces.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.52005078,U1908231,52075076).
文摘The equipment used in various fields contains an increasing number of parts with curved surfaces of increasing size.Five-axis computer numerical control(CNC)milling is the main parts machining method,while dynamics analysis has always been a research hotspot.The cutting conditions determined by the cutter axis,tool path,and workpiece geometry are complex and changeable,which has made dynamics research a major challenge.For this reason,this paper introduces the innovative idea of applying dimension reduction and mapping to the five-axis machining of curved surfaces,and proposes an efficient dynamics analysis model.To simplify the research object,the cutter position points along the tool path were discretized into inclined plane five-axis machining.The cutter dip angle and feed deflection angle were used to define the spatial position relationship in five-axis machining.These were then taken as the new base variables to construct an abstract two-dimensional space and establish the mapping relationship between the cutter position point and space point sets to further simplify the dimensions of the research object.Based on the in-cut cutting edge solved by the space limitation method,the dynamics of the inclined plane five-axis machining unit were studied,and the results were uniformly stored in the abstract space to produce a database.Finally,the prediction of the milling force and vibration state along the tool path became a data extraction process that significantly improved efficiency.Two experiments were also conducted which proved the accuracy and efficiency of the proposed dynamics analysis model.This study has great potential for the online synchronization of intelligent machining of large surfaces.
文摘NC machining path of sculptured surfaces in CAD/CAM system plays an important role on manufacture. This paper describes a new algorithm for 5 axis machining of sculptured surfaces and the algorithm is interference free. The approach includes: (1) the tesselation of the parametric surfaces into triangles; (2) building topological relations among triangles;(3) 5 axis tool path generation; (4) interference detection and tool position correction.
基金supported by the National Key Research and Development Project of China (Grant No.2023YFB3407200)the National Natural Science Foundation of China (Grant Nos.52225506,52375430,and 52188102)the Program for HUST Academic Frontier Youth Team (Grant No.2019QYTD12)。
文摘Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining technologies often struggle to achieve ultra-precision with DMMs resulting from poor surface quality and low processing efficiency.In recent years,field-assisted machining (FAM) technology has emerged as a new generation of machining technology based on innovative principles such as laser heating,tool vibration,magnetic magnetization,and plasma modification,providing a new solution for improving the machinability of DMMs.This technology not only addresses these limitations of traditional machining methods,but also has become a hot topic of research in the domain of ultra-precision machining of DMMs.Many new methods and principles have been introduced and investigated one after another,yet few studies have presented a comprehensive analysis and summarization.To fill this gap and understand the development trend of FAM,this study provides an important overview of FAM,covering different assisted machining methods,application effects,mechanism analysis,and equipment design.The current deficiencies and future challenges of FAM are summarized to lay the foundation for the further development of multi-field hybrid assisted and intelligent FAM technologies.
基金supported in part by the National Key Research and Development Program of China(No.2022YFA1602500)National Natural Science Foundation of China program(No.U2241288).
文摘A non-contact method for millimeter-scale inspection of material surface flatness via Laser-Induced Breakdown Spectroscopy(LIBS)is investigated experimentally.The experiment is performed using a planished surface of an alloy steel sample to simulate its various flatness,ranging from 0 to 4.4 mm,by adjusting the laser focal plane to the surface distance with a step length of 0.2 mm.It is found that LIBS measurements are successful in inspecting the flatness differences among these simulated cases,implying that the method investigated here is feasible.It is also found that,for achieving the inspection of surface flatness within such a wide range,when univariate analysis is applied,a piecewise calibration model must be constructed.This is due to the complex dependence of plasma formation conditions on the surface flatness,which inevitably complicates the inspection procedure.To solve the problem,a multivariate analysis with the help of Back-Propagation Neural Network(BPNN)algorithms is applied to further construct the calibration model.By detailed analysis of the model performance,we demonstrate that a unified calibration model can be well established based on BPNN algorithms for unambiguous millimeter-scale range inspection of surface flatness with a resolution of about 0.2 mm.
基金Project supported by the National Natural Science Foundation of China (No.11972086)。
文摘Lattice structures can be designed to achieve unique mechanical properties and have attracted increasing attention for applications in high-end industrial equipment,along with the advances in additive manufacturing(AM)technologies.In this work,a novel design of plate lattice structures described by a parametric model is proposed to enrich the design space of plate lattice structures with high connectivity suitable for AM processes.The parametric model takes the basic unit of the triple periodic minimal surface(TPMS)lattice as a skeleton and adopts a set of generation parameters to determine the plate lattice structure with different topologies,which takes the advantages of both plate lattices for superior specific mechanical properties and TPMS lattices for high connectivity,and therefore is referred to as a TPMS-like plate lattice(TLPL).Furthermore,a data-driven shape optimization method is proposed to optimize the TLPL structure for maximum mechanical properties with or without the isotropic constraints.In this method,the genetic algorithm for the optimization is utilized for global search capability,and an artificial neural network(ANN)model for individual fitness estimation is integrated for high efficiency.A set of optimized TLPLs at different relative densities are experimentally validated by the selective laser melting(SLM)fabricated samples.It is confirmed that the optimized TLPLs could achieve elastic isotropy and have superior stiffness over other isotropic lattice structures.
基金the National Natural Science Foundation of China(Grant Nos.12004064,12074053,and 91961204)the Fundamental Research Funds for the Central Universities(Grant No.DUT22LK11)XingLiaoYingCai Project of Liaoning Province,China(Grant No.XLYC1907163)。
文摘Magnetite nanoparticles show promising applications in drug delivery,catalysis,and spintronics.The surface of magnetite plays an important role in these applications.Therefore,it is critical to understand the surface structure of Fe_(3)O_(4)at atomic scale.Here,using a combination of first-principles calculations,particle swarm optimization(PSO)method and machine learning,we investigate the possible reconstruction and stability of Fe_(3)O_(4)(001)surface.The results show that besides the subsurface cation vacancy(SCV)reconstruction,an A layer with Fe vacancy(A-layer-V_(Fe))reconstruction of the(001)surface also shows very low surface energy especially at oxygen poor condition.Molecular dynamics simulation based on the iron–oxygen interaction potential function fitted by machine learning further confirms the thermodynamic stability of the A-layer-V_(Fe)reconstruction.Our results are also instructive for the study of surface reconstruction of other metal oxides.
基金This project is supported by Provincial Basic Science Research Foundation of Hunan, China(No.02-jxz3011)Research Foundation of Railway Department, China(No.J98Z102).
文摘In order to increase the efficiency in the machining of the sculptured surfaces, the contact principle of differential geometry is applied to the 5-axis NC machining; The best contact condition between tool and the surfaces is researched. Through analysis the contact degree of the intersection line of the cutter and the surfaces is known. In comparison to previous studies, the theory is more restricted and accurate by going beyond the second-order parameters into the third-order, suiting both the primary surfaces of analytical geometry and the computer-generated surfaces of the computation geometry. It has definite procedure of calculation, and the equations are easy to solve. The thought process is very clear: First, suppose that there is a surface of third-order, the coefficients of which are arbitrary; Then find out the best posture of the circle in order that the circle and the surface will most closely contact with each other at the origin position; Finally, develop the surface into a third-order surface at every point of machining and employ the results mentioned above to find the best cutter posture at every point of machining. As a result, the equations are easy to solve, and the concept is clear.
基金supported by National Natural Science Foundation of China (Grant No. 50875012)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2008AA04Z124)+1 种基金National Science and Technology Major Project of China (Grant No. 2009ZX04001-141)Joint Construction Project of Beijing Municipal Commission of Education of China
文摘The current research of the 5-axis tool positioning algorithm mainly focuses on searching the local optimal tool position without gouging and interference at a cutter contact(CC) point,while not considering the smoothness and continuity of a whole tool path.When the surface curvature varies significantly,a local abrupt change of tool paths will happen.The abrupt change has a great influence on surface machining quality.In order to keep generated tool paths smooth and continuous,a five-axis tool positioning algorithm based on smooth tool paths is presented.Firstly,the inclination angle,the tilt angle and offset distance of the tool at a CC point are used as design variables,and the machining strip width is used as an objective function,an optimization model of a local tool positioning algorithm is thus established.Then,a vector equation of tool path is derived by using the above optimization model.By analyzing the equation,the main factors affecting the tool path quality are obtained.Finally,a new tool position optimization model is established,and the detailed process of tool position optimization is also given.An experiment is conducted to machine an aircraft turbine blade by using the proposed algorithm on a 5-axis blade grinding machine,and the machined blade surface is measured with a coordinate measuring machine(CMM).Experimental and measured results show that the proposed algorithm can ensure tool paths are smooth and continuous,improve the tool path quality,avoid the local abrupt change of tool paths,and enhance machining quality and machining efficiency of sculptured surfaces.
基金China Postdoctoral Science Foundation(No.2005037348)Science and Technology Research Program of Hubei Province,Ministry of Education,China(No.D200612003)
文摘A new milling methodology with the equivalent normal curvature milling model machining freeform surfaces is proposed based on the normal curvature theorems on differential geometry. Moreover, a specialized whirlwind milling tool and a 5-axis CNC horizontal milling machine are introduced. This new milling model can efficiently enlarge the material removal volume at the tip of the whirlwind milling tool and improve the producing capacity. The machining strategy of this model is to regulate the orientation of the whirlwind milling tool relatively to the principal directions of the workpiece surface at the point of contact, so as to create a full match with collision avoidance between the workpiece surface and the symmetric rotational surface of the milling tool. The practical results show that this new milling model is an effective method in machining complex three- dimensional surfaces. This model has a good improvement on finishing machining time and scallop height in machining the freeform surfaces over other milling processes. Some actual examples for manufacturing the freeform surfaces with this new model are given.
文摘This paper describes a new method of surface modification by Electrical Discharge Machining (EDM). By using ordinary EDM machine tool and kerosene fluid, a hard ceramic layer can be created on the workpiece surface with Ti or other compressed powder electrode in a certain condition. This new revolutionary method is called Electrical Discharge Coating (EDC). The process of EDC begins with electrode wear during EDM,then a kind of hard carbide is created through the thermal and chemical reaction between the worn electrode material and the carbon particle decomposed from kerosene fluid under high temperature. The carbide is piled up on a workpiece quickly and becomes a hard layer of ceramic about 20 μm in several minutes. This paper studies the principle and process of EDC systemically by using Ti powder green compact electrode. In order to obtain a layer of compact ceramic film, it is very important to select proper electric pulse parameters, such as pulse width, pulse interval, peak current. Meantime, the electrode materials and its forming mode will effect the machining surface quality greatly. This paper presents a series of experiment results to study the EDC process by adopt different technology parameters. Experiments and analyses show that a compact TiC ceramic layer can be created on the surface of metal workpiece. The hardness of ceramic layer is more 3 times higher than the base body, and the hardness changes gradiently from surface to base body. The method will have a great future because many materials can be easily added to the electrode and then be coated on the workpiece surface. Gearing the parameters ceramic can be created with different thickness. The switch between deposition and removal process is carried out easily by changing the polarity, thus the gear to the thickness and shape of the composite ceramic layer is carried out easily. This kind of composite ceramic layer will be used to deal with the surface of the cutting tools or molds possibly, in order to lengthen their life. It also can be found wide application in the fields of surface repairing and strengthening of the ship or aircraft.
文摘A real-time non-uniform rational B-spline (NURBS) surface interpolator is proposed and 5-axis machining method with a flat-end cutter is discussed. With the Taylor expansion and the coordinate transformation, the algorithms of NURBS interpolation, cutter effective machining radius, cutter offsetting and.inverse kinematics are deduced and implemented, respectively. Different from the conventional free-form surface machining, the proposed interpolator can real-time generate the motion commands of computer numerical control (CNC) machines with CC feedrate, rather than that of CL. An example part surface is demonstrated and the results of simulation show that the proposed method can be applied in actual 5-axis surface machining.
基金This research work was financially supported through Boeing Pennell Professorship funds.
文摘The quality of surface generated in a peripheral milling of AZ91/SiCp/15%for varying machining conditions and its effect on the fatigue performance are investigated in this study.The machined surface quality was evaluated through roughness measurements and SEM micrographs of ine machined surface.Tensile iesis were pcifumicu io iiieasure the mechanical properties of the composite.Subsequently,fatigue life of milled specimens was measured through axial fatigue tests at four loading conditions.Optical and SEM/EDS micrographs of the fractured surface were studied to identify the crack initiation site and propagation mechanism.Specimens machined at a lower feed rate of 0.1 mm/rev was found to have excellent surface finish and consequently higher fatigue life.At 0.3 mm/rev,the presence of feed marks and other surface defects resulted in a drastic decrease in fatigue life.Five distinct regions were identified on the fractured surface,particle fracture along and perpendicular to the surface,voids in the matrix due to particle debonding and pull out and typical ductile failure of matrix with embedded SiC particles.
文摘A new method for generating tool paths for rough machining of sculpturedsurface is presented in this paper. The sculptured surface is approximated by a regular mesh ofquadrangular facets. A set of equidistant horizontal planes are assigned to intersect the blank ofmachined part and surface model , resulting in a series of contours, which demarcate the feasiblecutting regions of each layer of material removal. The desired cutter path is computed through NCprogramming and any gouging between the cutter and the part being machined is detected and correctedautomatically. The proposed algorithm successfully solves the problem of layered milling forsculptured surface with nested islands.
文摘axis NC machining freeform surface with a flat end cutter can theoretically improve material removal rate and surface finish, but it is very difficult to generate a gouge free cutter location. A new method of generating optimal cutter path is proposed to define the effective radius of a flat end cutter and determine the optimal step forward distance and step over distance. Thereby improving the NC machining efficiency and quality of freeform surfaces.
基金The authors are grateful for Ph.D.Scholarship funding support from Brunel University London and the UKEPSRC.
文摘In current precision and ultraprecision machining practice,the positioning and control of actuation systems,such as slideways and spindles,are heavily dependent on the use of linear or rotary encoders.However,positioning control is passive because of the lack of direct monitoring and control of the tool and workpiece positions in the dynamic machining process and also because it is assumed that the machining system is rigid and the cutting dynamics are stable.In ultraprecision machining of freeform surfaces using slow tool servo mode in particular,however,account must be taken of the machining dynamics and dynamic synchronization of the cutting tool and workpiece positioning.The important question also arises as to how ultraprecision machining systems can be designed and developed to work better in this application scenario.In this paper,an innovative dynamics-oriented engineering approach is presented for ultraprecision machining of freeform surfaces using slow tool servo mode.The approach is focused on seamless integration of multibody dynamics,cutting forces,and machining dynamics,while targeting the positioning and control of the tool–workpiece loop in the machining system.The positioning and motion control between the cutting tool and workpiece surface are further studied in the presence of interfacial interactions at the tool tip and workpiece surface.The interfacial cutting physics and dynamics are likely to be at the core of in-process monitoring applicable to ultraprecision machining systems.The approach is illustrated using a virtual machining system developed and supported with simulations and experimental trials.Furthermore,the paper provides further explorations and discussion on implementation perspectives of the approach,in combination with case studies,as well as discussing its fundamental and industrial implications.
基金This project is supported by National Natural Science Foundation of China and the Eight-Five Year Plan National Key Projects. Ma
文摘Considering machining efficiency, surface quality and wear of cutter and machine, it is necessary to maintain high, stable and constant surface feed rate as far as possible.The feed late control strategy for multi-axis CNC machining of free-form surfaces is presented. It comprises: ①the determination of effective feed rate; ②the adoption of suitable approaches to smooth feed rate. This strategy considers path geometry, actuator limitation and machine dynamics. The result shows that machining efficiency is improved effectively.
文摘Artificial neural network is a powerful technique of computational intelligence and has been applied in a variety of fields such as engineering and computer science. This paper deals with the neural network modeling and prediction of surface roughness in machining aluminum alloys using data collected from both force and vibration sensors. Two neural network models, including a Multi-Layer Perceptron (MLP) model and a Radial Basis Function (RBF) model, were developed in the present study. Each model includes eight inputs and five outputs. The eight inputs include the cutting speed, the ratio of the feed rate to the tool-edge radius, cutting forces in three directions, and cutting vibrations in three directions. The five outputs are five surface roughness parameters. Described in detail is how training and test data were generated from real-world machining experiments that covered a wide range of cutting conditions. The results show that the MLP model provides significantly higher accuracy of prediction for surface roughness than does the RBF model.
基金Sponsored by the Fund for the Doctoral Program of Higher Education (RFDP) (Grant No. CBQQ24403007)the Innovation Fund of HIT(Grant No.CBQQ18400018)
文摘The surface performance of workpieces processed by electrical discharge machining in gas(dry EDM)was studied in this paper.Firstly,the composition,micro hardness and recast layer of electrical discharge machined(EDMed)surface of 45 carbon steels in air were investigated through different test analysis methods.The results show that the workpiece surface EDMed in air contains a certain quantity of oxide,and oxidation occurs on the workpiece surface.Compared with the surface of workpieces processed in kerosene,fewer cracks exist on the dry EDMed workpiece surface,and the surface recast layer is thinner than that obtained by conventional EDM.The micro hardness of workpieces machined by dry EDM method is lower than that machined in kerosene,and higher than that of the matrix.In addition,experiments were conducted on the surface wear resistance of workpieces processed in air and kerosene using copper electrode and titanium alloy electrode.The results indicate that the surface wear resistance of workpieces processed in air can be improved,and it is related with tool material and dielectric.
文摘This paper focuses on the development of a distributed surface machining system. Traditional manufacturing engineering activity analysis has been conducted in developing the proposed system structure. The advantages of a distributed system structure such as easy to manage,high expandability and flexibility will enhance the efficiency of an integral system operation,and achieve the goal of networked manufacture. The IDEF0 was used to describe each stage of the traditional surface machining activities,and then UML (Unified Modeling Language) technology was adopted to verify the feasibility and accuracy of the established integrated system. The developed distributed system structure and sub-functional modules (CAD/CAM/CAPP) have been implemented based on the proposed systematic approach; and a freeform surface has been used as an example for verification. The proposed approach has been successfully implemented and could be adopted to assist engineers in integrating machining activities that are located in dispersed places; and various domains experts also can exchange their expertise among themselves. Thus,the development time of a product machining processes can be shortened and so is its enhancement on the competitive advantages. In addition,this distributed system has also integrated multi-functional ontology and service agent to facilitate the selection and reconfiguration in manufacturing customization. The proposed system has presented the feasibility in incorporating the agent-based technology in a distributed freeform surface machining environment. Service agents communicate via pre-defined performatives underlying knowledge query and manipulation language (KQML) for the surface machining capability. The developed system has then successfully demonstrated the feasibility in implementing the agent-based technology into a distributed surface machining system.
文摘In order to generate the digital gear tooth surfaces(DGTS)with high efficiency and high precision,a method for identification and compensation of machining errors is demonstrated in this paper.Machining errors are analyzed directly from the real tooth surfaces.The topography data of the part are off-line measured in the post-process.A comparison is made between two models:CAD model of DGTS and virtual model of the physical measured surface.And a matching rule is given to determine these two surfaces in an appropriate fashion.The developed error estimation model creates a point-to-point map of the real surface to the theoretical surface in the normal direction.A“pre-calibration error compensation”strategy is presented.Through processing the results of the first trail cutting,the total compensation error is predicted and an imaginary digital tooth surface is reconstructed. The machining errors in the final manufactured surfaces are minimized by generating this imaginary surface.An example of ma- chining 2-D DGTS verifies the developed method.The research is of important theoretical and practical value to manufacture the DGTS and other digital conjugate surfaces.