Given the complexities of reinforced soil materials’constitutive relationships,this paper compares reinforced soil composite materials to a sliding structure between steel bars and soil and proposes a reinforced soil...Given the complexities of reinforced soil materials’constitutive relationships,this paper compares reinforced soil composite materials to a sliding structure between steel bars and soil and proposes a reinforced soil constitutive model that takes this sliding into account.A finite element dynamic time history calculation software for composite response analysis was created using the Fortran programming language,and time history analysis was performed on reinforced soil retaining walls and gravity retaining walls.The vibration time histories of reinforced soil retaining walls and gravity retaining walls were computed,and the dynamic reactions of the two types of retaining walls to vibration were compared and studied.The dynamic performance of reinforced earth retaining walls was evaluated.展开更多
The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving ...The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving seismic design to mitigate earthquake-induced damages and enhance structural performance. In this study, a specific reinforced concrete (RC) frame structure at Kyungpook National University, designed for educational purposes, is analyzed as a representative case. Utilizing SAP 2000, the research conducts a nonlinear time history analysis to assess the structural performance under seismic conditions. The primary objective is to evaluate the influence of different column section designs, while maintaining identical column section areas, on structural behavior. The study employs two distinct seismic waves from Abeno (ABN) and Takatori (TKT) for the analysis, comparing the structural performance under varying seismic conditions. Key aspects examined include displacement, base shear force, base moment, joint radians, and layer displacement angle. This research is anticipated to serve as a valuable reference for seismic restraint reinforcement work on RC buildings, enriching the methods used for evaluating structures through nonlinear time history analysis based on the synthetic seismic wave approach.展开更多
Quayside container crane is a kind of huge dimension steel structure,which is the major equipment used for handling container at modern ports.With the aim to validate the safety and reliability of the crane under seis...Quayside container crane is a kind of huge dimension steel structure,which is the major equipment used for handling container at modern ports.With the aim to validate the safety and reliability of the crane under seismic loads,besides conventional analysis,elastic-plastic time history analysis under rare seismic intensity is carried out.An ideal finite element(FEM) elastic-plastic mechanical model of the quayside container crane is presented by using ANSYS codes.Furthermore,according to elastic-plastic time history analysis theory,deformation,stress and damage pattern of the structure under rare seismic intensity are investigated.Based on the above analysis,the established reliability model according to the reliability theory,together with seismic reliability analysis based on Monte-Carlo simulation is applied to practical analysis.The results show that the overall structure of the quayside container crane is generally unstable under rare seismic intensity,and the structure needs to be reinforced.展开更多
The seismic design of gravity retaining walls is based mostly on the pseudo static method.The seismic earth pressure is assumed to be a constant without considering the wave traveling effect when the seismic wave prop...The seismic design of gravity retaining walls is based mostly on the pseudo static method.The seismic earth pressure is assumed to be a constant without considering the wave traveling effect when the seismic wave propagates through the slope.However,under continuous ground motion,the actual earth pressure on the retaining wall varies with time.The present seismic earth pressure calculation method yields results that differ significantly from the actual scenario.Considering this,a slip surface curve was assumed in this study.It is more suitable for engineering practice.In addition,a theoretical calculation model based on energy dissipation was established.The time history of seismic earth pressure response under continuous ground motion was calculated using the equilibrium equation between the external power and the internal energy dissipation power of the sliding soil wedge.It can more effectively reflect the stress scenario of a retaining wall under seismic conditions.To verify the applicability of the proposed approach,a large-scale shaking table test was conducted,and the time history of the seismic earth pressure response obtained from the experiment was compared with the calculation results.The results show that the proposed approach is applicable to the calculation of the time history of seismic earth pressure response of gravity retaining walls.This lays the foundation for the seismic design of retaining structures by using dynamic time history.展开更多
The time-history responses of the surface were obtained for a linear elastic half-plane including regularly distributed enormous embedded circular cavities subjected to propagating obliquely incident plane SH-waves. A...The time-history responses of the surface were obtained for a linear elastic half-plane including regularly distributed enormous embedded circular cavities subjected to propagating obliquely incident plane SH-waves. An advanced numerical approach named half-plane time-domain boundary element method(BEM), which only located the meshes around the cavities, was used to create the model. By establishing the modified boundary integral equation(BIE)independently for each cavity and forming the matrices, the final coupled equation was solved step-by-step in the timedomain to obtain the boundary values. The responses were developed for a half-plane with 512 cavities. The amplification patterns were also obtained to illustrate the frequencydomain responses for some cases. According to the results,the presence of enormous cavities affects the scattering and diffraction of the waves arrived to the surface. The introduced method can be recommended for geotechnical/mechanical engineers to model structures in the fields of earthquake engineering and composite materials.展开更多
API RP2AWSD is a design code in practice for design of jacket platforms in the Persian Gulf but is based on the Gulf of Mexico environmental condition. So for the sake of using this code for the Persian Gulf, it is be...API RP2AWSD is a design code in practice for design of jacket platforms in the Persian Gulf but is based on the Gulf of Mexico environmental condition. So for the sake of using this code for the Persian Gulf, it is better to perform a calibration based on this specific region. Analysis and design of jacket platforms based on API code are performed in a static manner and dynamic analysis is not recommended for such structures. Regarding the fact that the real behavior of the offshore jacket platforms is a dynamic behavior, so in this research, dynamic analysis for an offshore jacket platform in the Persian Gulf under extreme environmental condition is performed using random time domain method. Therefore, a new constructed offshore jacket platform in the Persian Gulf is selected and analyzed. Fifteen, 1-h storm, simulations for the water surface elevation is produced to capture the statistical properties of extreme sea condition. Time series of base shear and overturning moment are derived from both dynamic and static responses. By calculating the maximum dynamic amplification factor (DAF) from each simulation and fitting the collected data to Weibull distribution, the most probable maximum extreme (MPME) value for the DAF is achieved. Results show that a realistic value for DAF for this specific platform is 1.06, which is a notable value and is recommended to take into practice in design of fixed jacket platform in the Persian Gulf.展开更多
Based on the method developed by M. Hirasawa and M. Watabe (1992), the authors deduced the related mathematical formulas. Taking an artificial ground motion compatible with single-damping as the original time history,...Based on the method developed by M. Hirasawa and M. Watabe (1992), the authors deduced the related mathematical formulas. Taking an artificial ground motion compatible with single-damping as the original time history, a small corrected time history was calculated by solving linear equations using a singular value decomposition method. We performed iteration to obtain the simulated earthquake motion compatible with multi-damping within a certain accuracy. The influences of selective matching frequencies are discussed preliminarily. Although the current criterion still has no explicit demand on different numbers of matching frequencies for various damping factors, it should be taken into account in practice.展开更多
We present a probabilistic approach to characterizing the transit time for a quantum particle to flow between two spatially localized states. The time dependence is investigated by initializing the particle in one spa...We present a probabilistic approach to characterizing the transit time for a quantum particle to flow between two spatially localized states. The time dependence is investigated by initializing the particle in one spatially localized “orbital” and following the time development of the corresponding non-stationary wavefunction of the time-independent Hamiltonian as the particle travels to a second orbital. We show how to calculate the probability that the particle, initially localized in one orbital, has reached a second orbital after a given elapsed time. To do so, discrete evaluations of the time-dependence of orbital occupancy, taken using a fixed time increment, are subjected to conditional probability analysis with the additional restriction of minimum flow rate. This approach yields transit-time probabilities that converge as the time increment used is decreased. The method is demonstrated on cases of two-state oscillations and shown to produce physically realistic results.展开更多
Vibration failure of piping is a serious problem and a matter of concern for safety and reliability of plant operations. Fatigue is the main cause of such failures. Due to the complexity of the phenomenon no closed fo...Vibration failure of piping is a serious problem and a matter of concern for safety and reliability of plant operations. Fatigue is the main cause of such failures. Due to the complexity of the phenomenon no closed form design solutions are available. In our study an analytical technique based on the theory of vibrations in the time domain has been presented. Using the inverse theory, the problem has been reduced to a system of Volterra Integral equations to be solved simultaneously at every time step. The solution of the inverse problem may be used in the conventional method to calculate stresses and end reactions which are important from the perspective of engineering design and condition monitoring. The method is robust, simple and can be easily adopted by practicing engineers.展开更多
It has been a period of time since the concept of scenario earthquake was proposed, but this concept has rarely been used in seismic safety evaluation in China since then. Meanwhile, because of the uncertainties of ma...It has been a period of time since the concept of scenario earthquake was proposed, but this concept has rarely been used in seismic safety evaluation in China since then. Meanwhile, because of the uncertainties of magnitudes-distances pairs, there is large arbitrariness while determining the envelope function of time histories in seismic hazard analysis. In this paper, we describe a method to control the envelope functions of the time histories by introducing the most-likely combinations of magnitude and distance of the scenario earthquakes based on a probabilistic method, revise the software of the ellipse model for seismic hazard analysis, and give a computation example.展开更多
Dam structure built to store water has failed with resulting loss of life, social, economic and environmental losses due to seismic vibrations. These vibrations are dynamic in nature. These vibrations must be reduced ...Dam structure built to store water has failed with resulting loss of life, social, economic and environmental losses due to seismic vibrations. These vibrations are dynamic in nature. These vibrations must be reduced with proper application of engineering principles and for estimating the behavior of concrete gravity dam dynamic analysis plays an extraordinary role. This paper presents the dynamic time history analysis and response spectrum method of a concrete gravity dam by using STAAD-PRO. Here Finite Element Approach is used to analyze the dam. A concrete gravity dam model is prepared in STAAD-PRO to perform the time history analysis and response spectrum analysis and a comparison is done between both these methods. Concrete gravity dam is a large structure which retains a very large amount of water on its upstream side and it is very crucial for a dam to survive against vibrations of earthquake. So it is a matter of study to check the behaviour of a dam during and after the application of the loading.展开更多
Marine structures are mostly made of metals and always experience complex random loading during their service periods. The fatigue crack growth behaviors of metal materials have been proved from laboratory tests to be...Marine structures are mostly made of metals and always experience complex random loading during their service periods. The fatigue crack growth behaviors of metal materials have been proved from laboratory tests to be sensitive to the loading sequence encountered. In order to take account of the loading sequence effect, fatigue life prediction should be based on fatigue crack propagation(FCP) theory rather than the currently used cumulative fatigue damage(CFD) theory. A unified fatigue life prediction(UFLP) method for marine structures has been proposed by the authors' group. In order to apply the UFLP method for newly designed structures, authorities such as the classification societies should provide a standardized load-time history(SLH) such as the TWIST and FALSTAFF sequences for transport and fighter aircraft. This paper mainly aims at proposing a procedure to generate the SLHs for marine structures based on a short-term loading sample and to provide an illustration on how to use the presented SLH to a typical tubular T-joint in an offshore platform based on the UFLP method.展开更多
Concentration time-histories of H20 were measured behind reflected shock waves during hydrogen combustion. Experiments were conducted at temperatures of 1117-1282 K, the equivalence ratios of 0.5 and 0.25, and a press...Concentration time-histories of H20 were measured behind reflected shock waves during hydrogen combustion. Experiments were conducted at temperatures of 1117-1282 K, the equivalence ratios of 0.5 and 0.25, and a pressure at 2 atm using a mixture of H2/O2 highly diluted with argon. H2O was monitored using tunable mid-infrared diode laser absorption at 2.55 μm (3920.09 cm-1). These time-histories provide kinetic targets to test and refine reaction mechanisms for hydrogen. Comparisons were made with the predictions of four detailed kinetic mechanisms published in the last four years. Such comparisons of H2O concentration profiles indicate that the AramcoMech 2.0 mechanism yields the best agreement with the experimental data, while CRECK, San Diego, and HP-Mech mechanisms show significantly poor predictions. Reaction pathway analysis for hydrogen oxidation indicates that the reaction H + OH + M = H20 + M is the key reaction for controlling the H2O formation by hydrogen oxidation. It is inferred that the discrepancy of the conversion percentage from H to H20 among these four mechanisms induces the difference of performance on H2O time-history predictions. This work demonstrates the potential of time-history measurement for validation of large reaction mechanisms.展开更多
A novel structural damage detection method with a new damage index,i.e.,the statistical moment-based damage detection(SMBDD) method in the frequency domain,has been recently proposed.The aim of this study is to exte...A novel structural damage detection method with a new damage index,i.e.,the statistical moment-based damage detection(SMBDD) method in the frequency domain,has been recently proposed.The aim of this study is to extend the SMBDD method in the frequency domain to the time domain for building structures subjected to non-Gaussian and non-stationary excitations.The applicability and effectiveness of the SMBDD method in the time domainis verified both numerically and experimentally.Shear buildings with various damage scenarios are first numerically investigated in the time domain taking into account the effect of measurement noise.The applicability of the proposed method in the time domain to building structures subjected to non-Gaussian and non-stationary excitations is then experimentally investigated through a series of shaking table tests,in which two three-story shear building models with four damage scenarios aretested.The identified damage locations and severities are then compared with the preset values.The comparative results are found to be satisfactory,and the SMBDD method is shown to be feasible and effective for building structures subjected to non-Gaussian and non-stationary excitations.展开更多
The machinery fault signal is a typical non-Gaussian and non-stationary process. The fault signal can be described by SaS distribution model because of the presence of impulses.Time-frequency distribution is a useful ...The machinery fault signal is a typical non-Gaussian and non-stationary process. The fault signal can be described by SaS distribution model because of the presence of impulses.Time-frequency distribution is a useful tool to extract helpful information of the machinery fault signal. Various fractional lower order(FLO) time-frequency distribution methods have been proposed based on fractional lower order statistics, which include fractional lower order short time Fourier transform(FLO-STFT), fractional lower order Wigner-Ville distributions(FLO-WVDs), fractional lower order Cohen class time-frequency distributions(FLO-CDs), fractional lower order adaptive kernel time-frequency distributions(FLO-AKDs) and adaptive fractional lower order time-frequency auto-regressive moving average(FLO-TFARMA) model time-frequency representation method.The methods and the exiting methods based on second order statistics in SaS distribution environments are compared, simulation results show that the new methods have better performances than the existing methods. The advantages and disadvantages of the improved time-frequency methods have been summarized.Last, the new methods are applied to analyze the outer race fault signals, the results illustrate their good performances.展开更多
Previously, fault diagnosis of fixed or steady state mechanical failures (e.g., pumps in nuclear power plant turbines, engines or other key equipment) applied spectrum analysis (e.g., fast Fourier transform, FFT) to e...Previously, fault diagnosis of fixed or steady state mechanical failures (e.g., pumps in nuclear power plant turbines, engines or other key equipment) applied spectrum analysis (e.g., fast Fourier transform, FFT) to extract the frequency features as the basis for identifying the causes of failure types. However, mechanical equipment for increasingly instant speed variations (e.g., wind turbine transmissions or the mechanical arms used in 3C assemblies, etc.) mostly generate non-stationary signals, and the signal features must be averaged with analysis time which makes it difficult to identify the causes of failures. This study proposes a time frequency order spectrum method combining the short-time Fourier transform (STFT) and speed frequency order method to capture the order features of non-stationary signals. Such signal features do not change with speed, and are thus effective in identifying faults in mechanical components under non-stationary conditions. In this study, back propagation neural networks (BPNN) and time frequency order spectrum methods were used to verify faults diagnosis and obtained superior diagnosis results in non-stationary signals of gear-rotor systems.展开更多
A structure-dependent explicit method with enhanced stability properties is proposed in this study. In general, the method offers unconditional stability for structural systems except those with a particular instantan...A structure-dependent explicit method with enhanced stability properties is proposed in this study. In general, the method offers unconditional stability for structural systems except those with a particular instantaneous stiffness hardening behavior. In addition, it is second-order accurate and displays no overshooting in high frequency responses. Numerical experiments reveal that the proposed method saves a substantial amount of computational effort in solving inertial problems where only the low frequency responses are of interest, when compared to a general second-order accurate integration method.展开更多
In this article, I read different poems of London through the perspectives of time and the self. The city of London, as a physical space, a world in the Alfred Tennyson's Cleopatra's Nee history to Tennyson's Victo...In this article, I read different poems of London through the perspectives of time and the self. The city of London, as a physical space, a world in the Alfred Tennyson's Cleopatra's Nee history to Tennyson's Victorian Lo globe, is changing dle, the flow of tid ndon. The Needle through both inner time and outer time. Firstly, in Lord e symbolises the passing time, through the long Egyptian has been through different seas and places. The sense of history, a fusion of inner time and outer time, is claimed by the Needle's subjective self, seeing London as a "monster town". Secondly, Ahren Wamer's Greek titled poem is trying to locate the one in London, which cannot be localized, in the trend of globalization, as the gazer observed on the bus. Struggling between the self and the other, inner and outer existences, happiness and being unhappy, W. B. Yeats' from Vacillation comes to show the reader that through reflection and memory, the sense of one's own self can be reinforced and affirmed, while creating one's own personal history. Last but not the least, I read a part from T. S. Eliot's Four Quartets As the dialectic of light and shadow plays a sense of Beauty, the soul is aware of all fancy things, but only without any meanings. The question of the self and tradition, the poet and the world, somehow, is a timeless one展开更多
基金supported in part by the Chongqing Social Science Planning Project(2021BS064)Chongqing Construction Science and Technology Plan Project(Grant 2023-0187)+1 种基金Special Foundation of Chongqing Postdoctoral Research(2021XM2052)Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant KJQN202304703).
文摘Given the complexities of reinforced soil materials’constitutive relationships,this paper compares reinforced soil composite materials to a sliding structure between steel bars and soil and proposes a reinforced soil constitutive model that takes this sliding into account.A finite element dynamic time history calculation software for composite response analysis was created using the Fortran programming language,and time history analysis was performed on reinforced soil retaining walls and gravity retaining walls.The vibration time histories of reinforced soil retaining walls and gravity retaining walls were computed,and the dynamic reactions of the two types of retaining walls to vibration were compared and studied.The dynamic performance of reinforced earth retaining walls was evaluated.
文摘The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving seismic design to mitigate earthquake-induced damages and enhance structural performance. In this study, a specific reinforced concrete (RC) frame structure at Kyungpook National University, designed for educational purposes, is analyzed as a representative case. Utilizing SAP 2000, the research conducts a nonlinear time history analysis to assess the structural performance under seismic conditions. The primary objective is to evaluate the influence of different column section designs, while maintaining identical column section areas, on structural behavior. The study employs two distinct seismic waves from Abeno (ABN) and Takatori (TKT) for the analysis, comparing the structural performance under varying seismic conditions. Key aspects examined include displacement, base shear force, base moment, joint radians, and layer displacement angle. This research is anticipated to serve as a valuable reference for seismic restraint reinforcement work on RC buildings, enriching the methods used for evaluating structures through nonlinear time history analysis based on the synthetic seismic wave approach.
基金supported by National High Technology Research and Development Program 863 Plan (No. 2009AA043000)
文摘Quayside container crane is a kind of huge dimension steel structure,which is the major equipment used for handling container at modern ports.With the aim to validate the safety and reliability of the crane under seismic loads,besides conventional analysis,elastic-plastic time history analysis under rare seismic intensity is carried out.An ideal finite element(FEM) elastic-plastic mechanical model of the quayside container crane is presented by using ANSYS codes.Furthermore,according to elastic-plastic time history analysis theory,deformation,stress and damage pattern of the structure under rare seismic intensity are investigated.Based on the above analysis,the established reliability model according to the reliability theory,together with seismic reliability analysis based on Monte-Carlo simulation is applied to practical analysis.The results show that the overall structure of the quayside container crane is generally unstable under rare seismic intensity,and the structure needs to be reinforced.
基金supported by the Strategic International Science and Technology Innovation Cooperation Project‘Research on On-line Monitoring and Evaluation Technology of Safety Status of Highspeed Railway Track-subgrade System’from the National Key R&D Program of China(Grant No.2018YFE0207100)the State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining&Technology/China University of Mining&Technology,Beijing(Grant No.SKLGDUEK1910)+1 种基金the Foundation of Engineering Research Center of Eco-environment in the Three Gorges Reservoir Region of China(Grant No.KF2018-01)the Youth Scientific and Technological Innovation Team of Southwest Petroleum University(Grant No.2018CXTD02)。
文摘The seismic design of gravity retaining walls is based mostly on the pseudo static method.The seismic earth pressure is assumed to be a constant without considering the wave traveling effect when the seismic wave propagates through the slope.However,under continuous ground motion,the actual earth pressure on the retaining wall varies with time.The present seismic earth pressure calculation method yields results that differ significantly from the actual scenario.Considering this,a slip surface curve was assumed in this study.It is more suitable for engineering practice.In addition,a theoretical calculation model based on energy dissipation was established.The time history of seismic earth pressure response under continuous ground motion was calculated using the equilibrium equation between the external power and the internal energy dissipation power of the sliding soil wedge.It can more effectively reflect the stress scenario of a retaining wall under seismic conditions.To verify the applicability of the proposed approach,a large-scale shaking table test was conducted,and the time history of the seismic earth pressure response obtained from the experiment was compared with the calculation results.The results show that the proposed approach is applicable to the calculation of the time history of seismic earth pressure response of gravity retaining walls.This lays the foundation for the seismic design of retaining structures by using dynamic time history.
文摘The time-history responses of the surface were obtained for a linear elastic half-plane including regularly distributed enormous embedded circular cavities subjected to propagating obliquely incident plane SH-waves. An advanced numerical approach named half-plane time-domain boundary element method(BEM), which only located the meshes around the cavities, was used to create the model. By establishing the modified boundary integral equation(BIE)independently for each cavity and forming the matrices, the final coupled equation was solved step-by-step in the timedomain to obtain the boundary values. The responses were developed for a half-plane with 512 cavities. The amplification patterns were also obtained to illustrate the frequencydomain responses for some cases. According to the results,the presence of enormous cavities affects the scattering and diffraction of the waves arrived to the surface. The introduced method can be recommended for geotechnical/mechanical engineers to model structures in the fields of earthquake engineering and composite materials.
文摘API RP2AWSD is a design code in practice for design of jacket platforms in the Persian Gulf but is based on the Gulf of Mexico environmental condition. So for the sake of using this code for the Persian Gulf, it is better to perform a calibration based on this specific region. Analysis and design of jacket platforms based on API code are performed in a static manner and dynamic analysis is not recommended for such structures. Regarding the fact that the real behavior of the offshore jacket platforms is a dynamic behavior, so in this research, dynamic analysis for an offshore jacket platform in the Persian Gulf under extreme environmental condition is performed using random time domain method. Therefore, a new constructed offshore jacket platform in the Persian Gulf is selected and analyzed. Fifteen, 1-h storm, simulations for the water surface elevation is produced to capture the statistical properties of extreme sea condition. Time series of base shear and overturning moment are derived from both dynamic and static responses. By calculating the maximum dynamic amplification factor (DAF) from each simulation and fitting the collected data to Weibull distribution, the most probable maximum extreme (MPME) value for the DAF is achieved. Results show that a realistic value for DAF for this specific platform is 1.06, which is a notable value and is recommended to take into practice in design of fixed jacket platform in the Persian Gulf.
基金Contribution No. 99FC2009, Institute of Geophysics, CSB, Beijing, China.
文摘Based on the method developed by M. Hirasawa and M. Watabe (1992), the authors deduced the related mathematical formulas. Taking an artificial ground motion compatible with single-damping as the original time history, a small corrected time history was calculated by solving linear equations using a singular value decomposition method. We performed iteration to obtain the simulated earthquake motion compatible with multi-damping within a certain accuracy. The influences of selective matching frequencies are discussed preliminarily. Although the current criterion still has no explicit demand on different numbers of matching frequencies for various damping factors, it should be taken into account in practice.
文摘We present a probabilistic approach to characterizing the transit time for a quantum particle to flow between two spatially localized states. The time dependence is investigated by initializing the particle in one spatially localized “orbital” and following the time development of the corresponding non-stationary wavefunction of the time-independent Hamiltonian as the particle travels to a second orbital. We show how to calculate the probability that the particle, initially localized in one orbital, has reached a second orbital after a given elapsed time. To do so, discrete evaluations of the time-dependence of orbital occupancy, taken using a fixed time increment, are subjected to conditional probability analysis with the additional restriction of minimum flow rate. This approach yields transit-time probabilities that converge as the time increment used is decreased. The method is demonstrated on cases of two-state oscillations and shown to produce physically realistic results.
文摘Vibration failure of piping is a serious problem and a matter of concern for safety and reliability of plant operations. Fatigue is the main cause of such failures. Due to the complexity of the phenomenon no closed form design solutions are available. In our study an analytical technique based on the theory of vibrations in the time domain has been presented. Using the inverse theory, the problem has been reduced to a system of Volterra Integral equations to be solved simultaneously at every time step. The solution of the inverse problem may be used in the conventional method to calculate stresses and end reactions which are important from the perspective of engineering design and condition monitoring. The method is robust, simple and can be easily adopted by practicing engineers.
基金sponsored under the keyresearch project of social development of Zhejiang Province(2005C23075)
文摘It has been a period of time since the concept of scenario earthquake was proposed, but this concept has rarely been used in seismic safety evaluation in China since then. Meanwhile, because of the uncertainties of magnitudes-distances pairs, there is large arbitrariness while determining the envelope function of time histories in seismic hazard analysis. In this paper, we describe a method to control the envelope functions of the time histories by introducing the most-likely combinations of magnitude and distance of the scenario earthquakes based on a probabilistic method, revise the software of the ellipse model for seismic hazard analysis, and give a computation example.
文摘Dam structure built to store water has failed with resulting loss of life, social, economic and environmental losses due to seismic vibrations. These vibrations are dynamic in nature. These vibrations must be reduced with proper application of engineering principles and for estimating the behavior of concrete gravity dam dynamic analysis plays an extraordinary role. This paper presents the dynamic time history analysis and response spectrum method of a concrete gravity dam by using STAAD-PRO. Here Finite Element Approach is used to analyze the dam. A concrete gravity dam model is prepared in STAAD-PRO to perform the time history analysis and response spectrum analysis and a comparison is done between both these methods. Concrete gravity dam is a large structure which retains a very large amount of water on its upstream side and it is very crucial for a dam to survive against vibrations of earthquake. So it is a matter of study to check the behaviour of a dam during and after the application of the loading.
基金financially supported by the Fourth Term of"333 Engineering"Program of Jiangsu Province(Grant No.BRA2011116)Youth Foundation of Jiangsu Province(Grant No.BK2012095)Special Program for Hadal Science and Technology of Shanghai Ocean University(Grant No.HAST-T-2013-01)
文摘Marine structures are mostly made of metals and always experience complex random loading during their service periods. The fatigue crack growth behaviors of metal materials have been proved from laboratory tests to be sensitive to the loading sequence encountered. In order to take account of the loading sequence effect, fatigue life prediction should be based on fatigue crack propagation(FCP) theory rather than the currently used cumulative fatigue damage(CFD) theory. A unified fatigue life prediction(UFLP) method for marine structures has been proposed by the authors' group. In order to apply the UFLP method for newly designed structures, authorities such as the classification societies should provide a standardized load-time history(SLH) such as the TWIST and FALSTAFF sequences for transport and fighter aircraft. This paper mainly aims at proposing a procedure to generate the SLHs for marine structures based on a short-term loading sample and to provide an illustration on how to use the presented SLH to a typical tubular T-joint in an offshore platform based on the UFLP method.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFB0202400 and 2017YFB0202401)
文摘Concentration time-histories of H20 were measured behind reflected shock waves during hydrogen combustion. Experiments were conducted at temperatures of 1117-1282 K, the equivalence ratios of 0.5 and 0.25, and a pressure at 2 atm using a mixture of H2/O2 highly diluted with argon. H2O was monitored using tunable mid-infrared diode laser absorption at 2.55 μm (3920.09 cm-1). These time-histories provide kinetic targets to test and refine reaction mechanisms for hydrogen. Comparisons were made with the predictions of four detailed kinetic mechanisms published in the last four years. Such comparisons of H2O concentration profiles indicate that the AramcoMech 2.0 mechanism yields the best agreement with the experimental data, while CRECK, San Diego, and HP-Mech mechanisms show significantly poor predictions. Reaction pathway analysis for hydrogen oxidation indicates that the reaction H + OH + M = H20 + M is the key reaction for controlling the H2O formation by hydrogen oxidation. It is inferred that the discrepancy of the conversion percentage from H to H20 among these four mechanisms induces the difference of performance on H2O time-history predictions. This work demonstrates the potential of time-history measurement for validation of large reaction mechanisms.
基金The Hong Kong Polytechnic University through a PhD studentship for the first authorthe Research Grants Council of Hong Kong (PolyU 5319/10E) for the second author
文摘A novel structural damage detection method with a new damage index,i.e.,the statistical moment-based damage detection(SMBDD) method in the frequency domain,has been recently proposed.The aim of this study is to extend the SMBDD method in the frequency domain to the time domain for building structures subjected to non-Gaussian and non-stationary excitations.The applicability and effectiveness of the SMBDD method in the time domainis verified both numerically and experimentally.Shear buildings with various damage scenarios are first numerically investigated in the time domain taking into account the effect of measurement noise.The applicability of the proposed method in the time domain to building structures subjected to non-Gaussian and non-stationary excitations is then experimentally investigated through a series of shaking table tests,in which two three-story shear building models with four damage scenarios aretested.The identified damage locations and severities are then compared with the preset values.The comparative results are found to be satisfactory,and the SMBDD method is shown to be feasible and effective for building structures subjected to non-Gaussian and non-stationary excitations.
基金supported by the National Natural Science Foundation of China(61261046,61362038)the Natural Science Foundation of Jiangxi Province(20142BAB207006,20151BAB207013)+2 种基金the Science and Technology Project of Provincial Education Department of Jiangxi Province(GJJ14738,GJJ14739)the Research Foundation of Health Department of Jiangxi Province(20175561)the Science and Technology Project of Jiujiang University(2016KJ001,2016KJ002)
文摘The machinery fault signal is a typical non-Gaussian and non-stationary process. The fault signal can be described by SaS distribution model because of the presence of impulses.Time-frequency distribution is a useful tool to extract helpful information of the machinery fault signal. Various fractional lower order(FLO) time-frequency distribution methods have been proposed based on fractional lower order statistics, which include fractional lower order short time Fourier transform(FLO-STFT), fractional lower order Wigner-Ville distributions(FLO-WVDs), fractional lower order Cohen class time-frequency distributions(FLO-CDs), fractional lower order adaptive kernel time-frequency distributions(FLO-AKDs) and adaptive fractional lower order time-frequency auto-regressive moving average(FLO-TFARMA) model time-frequency representation method.The methods and the exiting methods based on second order statistics in SaS distribution environments are compared, simulation results show that the new methods have better performances than the existing methods. The advantages and disadvantages of the improved time-frequency methods have been summarized.Last, the new methods are applied to analyze the outer race fault signals, the results illustrate their good performances.
文摘Previously, fault diagnosis of fixed or steady state mechanical failures (e.g., pumps in nuclear power plant turbines, engines or other key equipment) applied spectrum analysis (e.g., fast Fourier transform, FFT) to extract the frequency features as the basis for identifying the causes of failure types. However, mechanical equipment for increasingly instant speed variations (e.g., wind turbine transmissions or the mechanical arms used in 3C assemblies, etc.) mostly generate non-stationary signals, and the signal features must be averaged with analysis time which makes it difficult to identify the causes of failures. This study proposes a time frequency order spectrum method combining the short-time Fourier transform (STFT) and speed frequency order method to capture the order features of non-stationary signals. Such signal features do not change with speed, and are thus effective in identifying faults in mechanical components under non-stationary conditions. In this study, back propagation neural networks (BPNN) and time frequency order spectrum methods were used to verify faults diagnosis and obtained superior diagnosis results in non-stationary signals of gear-rotor systems.
基金The Science Council,Chinese Taipei Under Grant No.NSC-99-2221-E-027-029
文摘A structure-dependent explicit method with enhanced stability properties is proposed in this study. In general, the method offers unconditional stability for structural systems except those with a particular instantaneous stiffness hardening behavior. In addition, it is second-order accurate and displays no overshooting in high frequency responses. Numerical experiments reveal that the proposed method saves a substantial amount of computational effort in solving inertial problems where only the low frequency responses are of interest, when compared to a general second-order accurate integration method.
文摘In this article, I read different poems of London through the perspectives of time and the self. The city of London, as a physical space, a world in the Alfred Tennyson's Cleopatra's Nee history to Tennyson's Victorian Lo globe, is changing dle, the flow of tid ndon. The Needle through both inner time and outer time. Firstly, in Lord e symbolises the passing time, through the long Egyptian has been through different seas and places. The sense of history, a fusion of inner time and outer time, is claimed by the Needle's subjective self, seeing London as a "monster town". Secondly, Ahren Wamer's Greek titled poem is trying to locate the one in London, which cannot be localized, in the trend of globalization, as the gazer observed on the bus. Struggling between the self and the other, inner and outer existences, happiness and being unhappy, W. B. Yeats' from Vacillation comes to show the reader that through reflection and memory, the sense of one's own self can be reinforced and affirmed, while creating one's own personal history. Last but not the least, I read a part from T. S. Eliot's Four Quartets As the dialectic of light and shadow plays a sense of Beauty, the soul is aware of all fancy things, but only without any meanings. The question of the self and tradition, the poet and the world, somehow, is a timeless one