Towed cable systems are frequently used in marine measurements where the length of the towed cable varies during launch and recovery. In this paper a novel method for modeling variable length cable systems is introduc...Towed cable systems are frequently used in marine measurements where the length of the towed cable varies during launch and recovery. In this paper a novel method for modeling variable length cable systems is introduced based on the finite segment formulation. The variable length of the towed cable is described by changing the length of the segment near the towing point and by increasing or decreasing the number of the discrete segments of the cable. In this way, the elastic effects of the cable can be easily handled since geometry and material properties of each segment are kept constant. Experimental results show that the dynamic behavior of the towed cable is consistent between the model and the physical cable. Results show that the model provides numerical efficiency and simulation accuracy for the variable length towed system.展开更多
The line-shape of catwalk of long-span suspension bridge is obtained by using the segmental catenary method to carry out the iterative calculation, where all the bearing cables are considered as one cable, and transve...The line-shape of catwalk of long-span suspension bridge is obtained by using the segmental catenary method to carry out the iterative calculation, where all the bearing cables are considered as one cable, and transversal passages and gantry are treated as nodes which divide the catwalk into several segments. The difference of line-shape and force between catwalk bearing cable and gantry bearing cable is not usually considered, but the line-shape of two kinds of cables is actually inconsistent because of the constraints from gantries. Based on the segmental catenary method, considering the different states of bearing cables ( DSB calculation method), fine calculation is carried out. This method is applied to the design of a suspension bridge' s catwalk, and is compared with the traditional calculation method. It is obtained that the result is more reasonable and accurate by the coordination calculation method considering different states for two kinds of load-bearing cables, which is worth considering in the nrocess of design and optimization for catwalk.展开更多
Electrical trees are an aging mechanismmost associated with partial discharge(PD)activities in crosslinked polyethylene(XLPE)insulation of high-voltage(HV)cables.Characterization of electrical tree structures gained c...Electrical trees are an aging mechanismmost associated with partial discharge(PD)activities in crosslinked polyethylene(XLPE)insulation of high-voltage(HV)cables.Characterization of electrical tree structures gained considerable attention from researchers since a deep understanding of the tree morphology is required to develop new insulation material.Two-dimensional(2D)optical microscopy is primarily used to examine tree structures and propagation shapes with image segmentation methods.However,since electrical trees can emerge in different shapes such as bush-type or branch-type,treeing images are complicated to segment due to manifestation of convoluted tree branches,leading to a high misclassification rate during segmentation.Therefore,this study proposed a new method for segmenting 2D electrical tree images based on the multi-scale line tracking algorithm(MSLTA)by integrating batch processing method.The proposed method,h-MSLTA aims to provide accurate segmentation of electrical tree images obtained over a period of tree propagation observation under optical microscopy.The initial phase involves XLPE sample preparation and treeing image acquisition under real-time microscopy observation.The treeing images are then sampled and binarized in pre-processing.In the next phase,segmentation of tree structures is performed using the h-MSLTA by utilizing batch processing in multiple instances of treeing duration.Finally,the comparative investigation has been conducted using standard performance assessment metrics,including accuracy,sensitivity,specificity,Dice coefficient and Matthew’s correlation coefficient(MCC).Based on segmentation performance evaluation against several established segmentation methods,h-MSLTA achieved better results of 95.43%accuracy,97.28%specificity,69.43%sensitivity rate with 23.38%and 24.16%average improvement in Dice coefficient and MCC score respectively over the original algorithm.In addition,h-MSLTA produced accurate measurement results of global tree parameters of length and width in comparison with the ground truth image.These results indicated that the proposed method had a solid performance in terms of segmenting electrical tree branches in 2D treeing images compared to other established techniques.展开更多
基金This work was financially supported by National Hi-Tech R&D Program of China (863 Program)( Grant No2006AA04Z127)New Century Excellent Talents (NCET) of Tianjin University,2005
文摘Towed cable systems are frequently used in marine measurements where the length of the towed cable varies during launch and recovery. In this paper a novel method for modeling variable length cable systems is introduced based on the finite segment formulation. The variable length of the towed cable is described by changing the length of the segment near the towing point and by increasing or decreasing the number of the discrete segments of the cable. In this way, the elastic effects of the cable can be easily handled since geometry and material properties of each segment are kept constant. Experimental results show that the dynamic behavior of the towed cable is consistent between the model and the physical cable. Results show that the model provides numerical efficiency and simulation accuracy for the variable length towed system.
文摘The line-shape of catwalk of long-span suspension bridge is obtained by using the segmental catenary method to carry out the iterative calculation, where all the bearing cables are considered as one cable, and transversal passages and gantry are treated as nodes which divide the catwalk into several segments. The difference of line-shape and force between catwalk bearing cable and gantry bearing cable is not usually considered, but the line-shape of two kinds of cables is actually inconsistent because of the constraints from gantries. Based on the segmental catenary method, considering the different states of bearing cables ( DSB calculation method), fine calculation is carried out. This method is applied to the design of a suspension bridge' s catwalk, and is compared with the traditional calculation method. It is obtained that the result is more reasonable and accurate by the coordination calculation method considering different states for two kinds of load-bearing cables, which is worth considering in the nrocess of design and optimization for catwalk.
基金the Ministry of Higher Education Malaysia for financially supported under the FundamentalResearch Grant Scheme (FRGS/1/2020/TK0/UNIMAP/02/17).
文摘Electrical trees are an aging mechanismmost associated with partial discharge(PD)activities in crosslinked polyethylene(XLPE)insulation of high-voltage(HV)cables.Characterization of electrical tree structures gained considerable attention from researchers since a deep understanding of the tree morphology is required to develop new insulation material.Two-dimensional(2D)optical microscopy is primarily used to examine tree structures and propagation shapes with image segmentation methods.However,since electrical trees can emerge in different shapes such as bush-type or branch-type,treeing images are complicated to segment due to manifestation of convoluted tree branches,leading to a high misclassification rate during segmentation.Therefore,this study proposed a new method for segmenting 2D electrical tree images based on the multi-scale line tracking algorithm(MSLTA)by integrating batch processing method.The proposed method,h-MSLTA aims to provide accurate segmentation of electrical tree images obtained over a period of tree propagation observation under optical microscopy.The initial phase involves XLPE sample preparation and treeing image acquisition under real-time microscopy observation.The treeing images are then sampled and binarized in pre-processing.In the next phase,segmentation of tree structures is performed using the h-MSLTA by utilizing batch processing in multiple instances of treeing duration.Finally,the comparative investigation has been conducted using standard performance assessment metrics,including accuracy,sensitivity,specificity,Dice coefficient and Matthew’s correlation coefficient(MCC).Based on segmentation performance evaluation against several established segmentation methods,h-MSLTA achieved better results of 95.43%accuracy,97.28%specificity,69.43%sensitivity rate with 23.38%and 24.16%average improvement in Dice coefficient and MCC score respectively over the original algorithm.In addition,h-MSLTA produced accurate measurement results of global tree parameters of length and width in comparison with the ground truth image.These results indicated that the proposed method had a solid performance in terms of segmenting electrical tree branches in 2D treeing images compared to other established techniques.