Recently developed ‘super’ rice cultivars with greater yield potentials often suffer from the problem of poor grain filling, especially in inferior spikelets. Here, we studied the activities of enzymes related to st...Recently developed ‘super’ rice cultivars with greater yield potentials often suffer from the problem of poor grain filling, especially in inferior spikelets. Here, we studied the activities of enzymes related to starch metabolism in rice stems and grains, and the microstructures related to carbohydrate accumulation and transportation to investigate the effects of different water regimes on grain filling. Two ‘super’ rice cultivars were grown under two irrigation regimes of well-watered(WW) and alternate wetting and moderate soil drying(AWMD). Compared with the WW treatment,the activities of ADP glucose pyrophosphorylase(AGPase), starch synthase(StSase) and starch branching enzyme(SBE), and the accumulation of non-structural carbohydrates(NSCs) in the stems before heading were significantly improved, and more starch granules were stored in the stems in the AWMD treatment. After heading, the activities of α-amylase, β-amylase, sucrose phosphate synthase(SPS) and sucrose synthase in the synthetic direction(SSs)were increased in the stems to promote the remobilization of NSCs for grain filling under AWMD. During grain filling, the enzymatic activities of sucrose synthase in the cleavage direction(SSc), AGPase, StSase and SBE in the inferior spikelets were increased, which promoted grain filling, especially for the inferior spikelets under AWMD.However, there were no significant differences in vascular microstructures. The grain yield and grain weight could be improved by 13.1 and 7.5%, respectively, by optimizing of the irrigation regime. We concluded that the low activities of key enzymes in carbon metabolism is the key limitation for the poor grain filling, as opposed to the vascular microstructures, and AWMD can increase the amount of NSC accumulation in the stems before heading, improve the utilization rate of NSCs after heading, and increase the grain filling, especially in the inferior spikelets, by altering the activities of key enzymes in carbon metabolism.展开更多
To study non-structural carbohydrate character-istics and nutrient utilization strategies of Pinus yunnanen-sis under continuous drought conditions,2-year-old seed-lings were planted in pots with appropriate water,lig...To study non-structural carbohydrate character-istics and nutrient utilization strategies of Pinus yunnanen-sis under continuous drought conditions,2-year-old seed-lings were planted in pots with appropriate water,light and moderate and severe drought treatments[(80±5),(65±5),(50±5),and(35±5)%of field water-holding capacity].Non-structural carbohydrates,carbon(C),nitrogen(N),and phosphorus(P)concentrations were measured in each plant component.The results show that:(1)With increasing drought,non-structural carbohydrates gradually increased in leaves,stems,and coarse roots,while gradually decreased in fine roots;(2)C concentrations of all were relatively stable under different stress levels.Phosphorous utilization of each component increased under light and moderate drought conditions,while N and P utilization efficiency of each plant component decreased under severe drought.Growth was mainly restricted by N,first decreasing and then increasing with increased drought;(3)There was a correlation between the levels of non-structural carbohydrates and C,N,and P in each component.Changes in N concentration affected the interconversion between soluble sugar and starch,which play a regulatory role in the fluctuation of the concentration of non-structural carbohydrates;and,(4)Plasticity analysis showed that P.yunnanensis seedlings responded to drought mainly by altering starch concentration,the ratio of soluble sugar to starch in leaves and stems,and further by alter-ing N and P utilization efficiencies.Overall,these results suggest that the physiological activities of all organs of P.yunnanensis seedlings are restricted under drought and that trade-offs exist between different physiological indicators and organs.Our findings are helpful in understanding non-structural carbohydrate and nutrient adaptation mechanisms under drought in P.yunnanensis seedlings.展开更多
Leaves are important‘source’organs that synthesize organic matter,providing carbon sources for plant growth.Here,we used Populus talassica×Populus euphratica,the dominant species in ecological and timber forest...Leaves are important‘source’organs that synthesize organic matter,providing carbon sources for plant growth.Here,we used Populus talassica×Populus euphratica,the dominant species in ecological and timber forests,to simulate carbon limitation through artificial 25%,50%,and 75%defoliation treatments and explore the effects on root,stem,and leaf morphology,biomass accumulation,and carbon allocation strategies.At the 60th d after treat-ment,under 25%defoliation treatment,the plant height,specific leaf weight,root surface area and volume,and concentrations of non-structural carbohydrates in stem and root were significantly increased by 9.13%,20.00%,16.60%,31.95%,5.12%,and 9.34%,respectively,relative to the control.There was no significant change in the growth indicators under 50%defoliation treatment,but the concentrations of non-structural carbohydrates in the leaf and stem significantly decreased,showing mostly a negative correlation between them.The opposite was observed in the root.Under 75%defoliation treatment,the plant height,ground diameter,leaf number,single leaf area,root,stem,and total biomass were significantly reduced by 14.15%,10.24%,14.86%,11.31%,11.56%,21.87%,and 16.82%,respectively,relative to the control.The concentrations of non-structural carbohydrates in various organs were significantly reduced,particularly in the consumption of the starch concentrations in the stem and root.These results indicated that carbon allocation strategies can be adjusted to increase the con-centration of non-structural carbohydrates in root and meet plant growth needs under 25%and 50%defoliation.However,75%defoliation significantly limited the distribution of non-structural carbohydrates to roots and stems,reduced carbon storage,and thus inhibited plant growth.Defoliation-induced carbon limitation altered the carbon allocation pattern of P.talassica×P.euphratica,and the relationship between carbon reserves in roots and tree growth recovery after defoliation was greater.This study provides a theoretical basis for the comprehen-sive management of P.talassica×P.euphratica plantations,as well as a reference for the study of plantation car-bon allocation strategies in the desert and semi-desert regions of Xinjiang under carbon-limitation conditions.展开更多
Rice yield stability is a breeding goal,particularly for short-growth duration rice,but its underlying mechanisms remain unclear.In an attempt to identify the relationship between yield stability and source–sink char...Rice yield stability is a breeding goal,particularly for short-growth duration rice,but its underlying mechanisms remain unclear.In an attempt to identify the relationship between yield stability and source–sink characteristics in short-growth duration rice,a field experiment was conducted at three sites(Yueyang,Liuyang,and Hengyang)in 2021 and 2022.This study compared yield,yield components,source–sink characteristics,and their stability between two stable-yielding short-growth duration rice cultivars,Zhongzao 39(Z-39)and Lingliangyou 268(L-268),and two unstable-yielding short-growth duration rice cultivars,Zhongjiazao 17(Z-17)and Zhuliangyou 819(Z-819).The stability of agronomic parameters was represented by the coefficient of variation(CV).The respective CVs of yield in Z-17,Z-819,Z-39,and L-268 were 10.2%,10.1%,4.5%,and 5.7%in 2021 and 19.7%,15.0%,5.4%,and 6.5%in 2022.The respective CVs of grain weight were 6.3%,5.7%,3.4%,and 4.5%in Z-17,Z-819,Z-39,and L-268 in 2021,and 8.1%,6.3%,1.5%,and 0.8%in 2022.The mean source capacity per spikelet and pre-heading non-structural carbohydrate reserves per spikelet(NSC_(pre))were 7%–43%and7%–72%lower in Z-819 and Z-17than in L-268 and Z-39 in 2021 and 2022.The mean quantum yield of photosystem II photochemistry of leaf,leaf area index,and specific leaf weight of L-268 and Z-39 were higher than those of Z-819 and Z-17 at the heading stage.This study suggests that high NSC_(pre),caused by great leaf traits before heading,increases source capacity per spikelet and its stability,thereby increasing the stability of grain weight and yield.Increasing NSC_(pre)is critical for achieving grain weight and yield stability in short-growth duration rice.展开更多
[Objective] The aim was to compare the content changes between the non-structural carbohydrates(NSC)and the total nitrogen in various growing seasons,and to explore the response relationship between altitude and the...[Objective] The aim was to compare the content changes between the non-structural carbohydrates(NSC)and the total nitrogen in various growing seasons,and to explore the response relationship between altitude and the contents.[Method] Taking Quercus aquifolioides scrub which widely distributed in Zheduoshan in the west of Sichuan as the experimental objects,the changes between NSC and the toal nitrogen in various growing seasons at different altitude were studied.[Result] The results showed that the content of NSC in Quercus aquifolioides underground increased with the lift of elevation in the dormancy,but decreased in the early germination,growing period and growth stage.The content of NSC in the ground tissue changed non-linearly with increasing elevation.In addition,the total nitrogen of Quercus aquifolioides organizations was decreasing with increasing elevation in the dormant period,which did not change significantly in the other periods.This result implied that the content of NSC in Quercus aquifolioides underground was more sensitive to temperature.[Conclusion] The experiment laid basis for the exploration of the physical and ecological mechanism of underground plants adaptability to highland environment,their response to global climate changes and adjustment to high altitude ecological system.展开更多
Grain filling, a crucial stage of grain yield formation in rice, is usually affected by the panicle nitrogen (N) fertilization. Field and pot culture experiments were conducted to explore the underlying mechanisms o...Grain filling, a crucial stage of grain yield formation in rice, is usually affected by the panicle nitrogen (N) fertilization. Field and pot culture experiments were conducted to explore the underlying mechanisms of N effect. Two rice cultivars with high lodging resistance were grown in the field and pot. Four panicle N fertilization treatments were conducted in 2006 and repeated in 2007. The result showed that medium level of panicle N fertilization treatment (NM) enhanced the accumulation and translocation of non-structural carbohydrate (NSC) in the stem and sheath. Compared with non-nitrogen treatment (NO), NM promoted the translocation of labeled ^13C from stem and sheath to grain. But, low level of panicle N fertilization treatment (NL) and high level of panicle N fertilization treatment (NH) showed the negative effect. The endosperm cell, grain length, and grain width of NM increased more quickly than that of NO from 4 to 10 d after anthesis. During the early period of grain filling, sucrose-phosphate synthase (EC 2.4.1.14, SPS) activity were significantly higher for the NM treatment than those of the NL and NH treatments. Sucrose synthase (EC 2.4.1.13, SuSase) activity in the grains was substantially enhanced by NM, with the duration of higher activity being longer than those of the other treatments. At maturing stage, NM significantly increased the filled grain number, the seed-setting rate, and the grain weight compared with NL and NH. The results suggest that NM have a positive effect on the activities of enzymes of physiological importance, thereby increasing the grain size and promoting grain filling.展开更多
We investigated non-structural carbohydrates(NSC) levels and components(starch,glucose,fructose and sucrose) in the leaves of three typical co-occurring forestfloor plants,moss Eurhynchium savatieri(ES),fern Par...We investigated non-structural carbohydrates(NSC) levels and components(starch,glucose,fructose and sucrose) in the leaves of three typical co-occurring forestfloor plants,moss Eurhynchium savatieri(ES),fern Parathelypteris nipponica(PN) and forb Aruncus sylvester(AS) in a 30-year-old Chinese pine(Pinus tabulaeformis)plantation forest on the eastern Tibetan Plateau.We also explored their responses to three gap creation treatments(control and two gap creations of 80 and 110 m2) based on NSC levels.PN had the highest leaf NSC level of the three plants,with AS second and ES lowest.Starch was the predominant component of NSC and the contents of glucose were higher than those of fructose or sucrose for all three species.The NSC level of ES in intermediate gaps was significantly higher than at control sites.PN also had higher NSC levels in both small and intermediate gaps than in control sites.But the differences between treatments were not obvious for AS.Our results suggest that ES and PN benefit from gap formation while the two species have different NSC response sensitivities to gap size,but the leaf NSC level of AS is less sensitive to the disturbance.展开更多
Slash pine(Pinus elliottii Engelm.var.elliottii)is a resin-producing species grown worldwide for significant economic benefits for wood production.Resin tapping cre-ates a carbon sink at the expense of carbon allocati...Slash pine(Pinus elliottii Engelm.var.elliottii)is a resin-producing species grown worldwide for significant economic benefits for wood production.Resin tapping cre-ates a carbon sink at the expense of carbon allocation for growth and consequently,wood production may be reduced.Non-structural carbohydrates comprising starch and sugars stored in plant organs,may serve as intermediate pools between assimilation and utilisation.However,the effect of resin tapping between tree growth and non-structural carbo-hydrates is not well understood.This study investigated(1)the effects of resin tapping on radial growth,(2)the effects of resin tapping on non-structural carbohydrate pools in different compartments,and(3)the feasibility of resin pro-duction without disruption of tree growth.Twenty one-year-old slash pines were subjected to resin tapping over two suc-cessive years.Non-structural carbohydrate concentrations in needles,branches,stem phloem,and roots of tapped and untapped trees in summer and winter were determined after the second year of resin harvest.The results showed that tapping had no significant effects on annual increments.Starch was the dominant non-structural carbohydrate frac-tion,regardless of tissues and season,and constituted up to 99%of the total non-structural carbohydrates in the phloem and roots.Glucose and fructose were the dominant sugars;sucrose was negligible.Compared with the controls,tapped trees showed 26%lower non-structural carbohydrate concen-tration in the phloem above the tapping wound in summer,which was attributable to the decreased abundance of starch,glucose,fructose,and sucrose.In winter,the altered non-structural carbohydrate profiles in the phloem above the tap-ping wounding were minimised as a result of recovery of the sugar concentrations.In contrast to free sugars,which accu-mulated substantially in needles and branches during winter,starch was enriched in the phloem,roots,and current-year needles.The results provide evidence for a localised effect of resin tapping,and highlight the observation that resin extrac-tion does not always cause a sacrifice in wood growth under a moderate resin-tapping intensity in slash pine plantations.展开更多
Understanding the physiological adaptations of non-treeline trees to environmental stress is important to understand future shifts in species composition and distribution of current treeline ecotone.The aim of the pre...Understanding the physiological adaptations of non-treeline trees to environmental stress is important to understand future shifts in species composition and distribution of current treeline ecotone.The aim of the present study was to elucidate the mechanisms of the formation of the upper elevation limit of non-treeline tree species,Picea jezoensis,and the carbon allocation strategies of the species on Changbai Mountain.We employed the^(13)C in situ pulse labeling technique to trace the distribution of photosynthetically assimilated carbon in Picea jezoensis at different elevational positions(tree species at its upper elevation limit(TSAUE,1,700 m a.s.l.)under treeline ecotone;tree species at a lower elevation position(TSALE,1,400 m a.s.l.).We analyzed^(13)C and the non-structural carbohydrate(NSC)concentrations in various tissues following labeling.Our findings revealed a significant shift in carbon allocation in TSAUE compared to TSALE.There was a pronounced increase inδ^(13)C allocation to belowground components(roots,soil,soil respiration)in TSAUE compared to TSALE.Furthermore,the C flow rate within the plant-soil-atmosphere system was faster,and the C residence time in the plant was shorter in TSAUE.The trends indicate enhanced C sink activity in belowground tissues in TSAUE,with newly assimilated C being preferentially directed there,suggesting a more conservative C allocation strategy by P.jezoensis at higher elevations under harsher environments.Such a strategy,prioritizing C storage in roots,likely aids in withstanding winter cold stress at the expense of aboveground growth during the growing season,leading to reduced growth of TSAUE compared to TSALE.The results of the present study shed light on the adaptive mechanisms governing the upper elevation limits of non-treeline trees,and enhances our understanding of how non-treeline species might respond to ongoing climate change.展开更多
Background:To restore secondary forests(major forest resources worldwide),it is essential to accelerate the natural regeneration of dominant trees by altering micro-environments.Forest gaps are products of various dis...Background:To restore secondary forests(major forest resources worldwide),it is essential to accelerate the natural regeneration of dominant trees by altering micro-environments.Forest gaps are products of various disturbances,ranging from natural storms or wildfires to anthropogenic events like logging and slashing-andburning,and sprouts of most tree species with non-structural carbohydrates(NSCs)storage can regenerate from stumps after gap formation.However,how the stump sprouts with diverse NSCs storages and stump sizes(i.e.,diameters)adapt to various micro-environments of within-gap positions remains unclear.Therefore in this study,we monitored the stump sprout regeneration(density,survival,and growth)and NSCs concentrations of three dominant tree species with different shade tolerances and varying stump diameters at five within-gap positions for the first two consecutive years after gap formation.Results:Stump diameter was positively correlated with sprout density,growth,and survival of all three tree species,but insignificantly related with sprout NSCs concentrations at the early stage after gap formation.The effect of within-gap position on sprout NSCs concentrations was different among species.After an environmental adaptation of two growing seasons,the north of gap(higher light availability and lower soil moisture habitat)was the least conducive for shade-intolerant Quercus mongolica to accumulate leaf NSCs,and the east of gap(shadier and drier habitat)was conducive to increasing the leaf NSCs concentrations of shade-tolerant Tilia mandshurica.Conclusions:Within-gap position significantly affected leaf NSCs concentrations of all three tree species,but most of the sprout growth,survival,and stem NSCs concentrations were independent of the various within-gap positions.Besides stump diameter,the NSCs stored in stump and root systems and the interspecific differences in shade tolerance also contributed more in sprout regeneration at the early stage(2 years)of gap formation.A prolonged monitoring(>10 years)is needed to further examine the long-term effects of stump diameter and within-gap position on sprout regeneration.All of these findings could be applied to gap-based silviculture by promoting sprout regeneration of dominant tree species with different shade tolerances,which would help accelerate the restoration of temperate secondary forests.展开更多
The border effect(BE)is widely observed in crop field experiments,and it has been extensively studied in many crops.However,only limited attention has been paid to the BE of ratoon rice.We conducted field experiments ...The border effect(BE)is widely observed in crop field experiments,and it has been extensively studied in many crops.However,only limited attention has been paid to the BE of ratoon rice.We conducted field experiments on ratoon rice in Qichun County,Hubei Province,Central China in 2018 and 2019 to compare the BE in the main and ratoon crops,and to quantify the contribution of BE in the main crop to that in the ratoon crop.The BE of two hybrid varieties was measured for the outermost,second outermost,and third outermost rows in each plot of both crops.To determine the contribution of BE between the two crops,portions of hills in the outermost and second outermost rows were uprooted during the harvest of the main crop so that the second and third outermost rows then became the outermost rows in the ratoon crop.Overall,the BE on grain yield was greater in the main crop than in the ratoon crop.In the main crop,the BE on grain yield was 98.3%in the outermost row,which was explained by the BE on panicles m^(–2),spikelets/panicle,spikelets m^(–2),and total dry weight.In the ratoon crop,the BE on grain yield was reduced to 60.9 and 27.6%with and without the contribution of the BE in the main crop,respectively.Consequently,55.1%of the BE on grain yield in the ratoon crop was contributed from the main crop.High stubble dry weight and non-structural carbohydrate(NSC)accumulation at the harvest of the main crop were responsible for the contribution of BE in the main crop to that in the ratoon crop.Our results suggest that increases in stubble dry weight and NSC accumulation at the harvest of the main crop could be important strategies for developing high-yielding cropping practices in the rice ratooning system.展开更多
Utilizing the heterosis of indica/japonica hybrid rice(IJHR)is an effective way to further increase rice grain yield.Rational application of nitrogen(N)fertilizer plays a very important role in using the heterosis of ...Utilizing the heterosis of indica/japonica hybrid rice(IJHR)is an effective way to further increase rice grain yield.Rational application of nitrogen(N)fertilizer plays a very important role in using the heterosis of IJHR to achieve its great yield potential.However,the responses of the grain yield and N utilization of IJHR to N application rates and the underlying physiological mechanism remain elusive.The purpose of this study was to clarify these issues.Three rice cultivars currently used in rice production,an IJHR cultivar Yongyou 2640(YY2640),a japonica cultivar Lianjing 7(LJ-7)and an indica cultivar Yangdao 6(YD-6),were grown in the field with six N rates(0,100,200,300,400,and 500 kg ha^(-1))in 2018 and 2019.The results showed that with the increase in N application rates,the grain yield of each test cultivar increased at first and then decreased,and the highest grain yield was at the N rate of 400 kg ha^(-1)for YY2640,with a grain yield of 13.4 t ha^(-1),and at 300 kg ha^(-1)for LJ-7 and YD-6,with grain yields of 9.4–10.6 t ha^(-1).The grain yield and N use efficiency(NUE)of YY2640 were higher than those of LJ-7 or YD-6 at the same N rate,especially at the higher N rates.When compared with LJ-7 or YD-6,YY2640 exhibited better physiological traits,including greater root oxidation activity and leaf photosynthetic rate,higher cytokinin content in the roots and leaves,and more remobilization of assimilates from the stem to the grain during grain filling.The results suggest that IJHR could attain both higher grain yield and higher NUE than inbred rice at either low or high N application rates.Improved shoot and root traits of the IJHR contribute to its higher grain yield and NUE,and a higher content of cytokinins in the IJHR plants plays a vital role in their responses to N application rates and also benefits other physiological processes.展开更多
基金This project was finically supported by the R&D Foundation of Jiangsu Province,China(BE2022425)the National Key Research and Development Program of China(2022YFD2300304)the Priority Academic Program Development of Jiangsu Higher-Education Institutions,China(PAPD).
文摘Recently developed ‘super’ rice cultivars with greater yield potentials often suffer from the problem of poor grain filling, especially in inferior spikelets. Here, we studied the activities of enzymes related to starch metabolism in rice stems and grains, and the microstructures related to carbohydrate accumulation and transportation to investigate the effects of different water regimes on grain filling. Two ‘super’ rice cultivars were grown under two irrigation regimes of well-watered(WW) and alternate wetting and moderate soil drying(AWMD). Compared with the WW treatment,the activities of ADP glucose pyrophosphorylase(AGPase), starch synthase(StSase) and starch branching enzyme(SBE), and the accumulation of non-structural carbohydrates(NSCs) in the stems before heading were significantly improved, and more starch granules were stored in the stems in the AWMD treatment. After heading, the activities of α-amylase, β-amylase, sucrose phosphate synthase(SPS) and sucrose synthase in the synthetic direction(SSs)were increased in the stems to promote the remobilization of NSCs for grain filling under AWMD. During grain filling, the enzymatic activities of sucrose synthase in the cleavage direction(SSc), AGPase, StSase and SBE in the inferior spikelets were increased, which promoted grain filling, especially for the inferior spikelets under AWMD.However, there were no significant differences in vascular microstructures. The grain yield and grain weight could be improved by 13.1 and 7.5%, respectively, by optimizing of the irrigation regime. We concluded that the low activities of key enzymes in carbon metabolism is the key limitation for the poor grain filling, as opposed to the vascular microstructures, and AWMD can increase the amount of NSC accumulation in the stems before heading, improve the utilization rate of NSCs after heading, and increase the grain filling, especially in the inferior spikelets, by altering the activities of key enzymes in carbon metabolism.
基金This study was supported by the National Natural Science Foundation of China(31960306).
文摘To study non-structural carbohydrate character-istics and nutrient utilization strategies of Pinus yunnanen-sis under continuous drought conditions,2-year-old seed-lings were planted in pots with appropriate water,light and moderate and severe drought treatments[(80±5),(65±5),(50±5),and(35±5)%of field water-holding capacity].Non-structural carbohydrates,carbon(C),nitrogen(N),and phosphorus(P)concentrations were measured in each plant component.The results show that:(1)With increasing drought,non-structural carbohydrates gradually increased in leaves,stems,and coarse roots,while gradually decreased in fine roots;(2)C concentrations of all were relatively stable under different stress levels.Phosphorous utilization of each component increased under light and moderate drought conditions,while N and P utilization efficiency of each plant component decreased under severe drought.Growth was mainly restricted by N,first decreasing and then increasing with increased drought;(3)There was a correlation between the levels of non-structural carbohydrates and C,N,and P in each component.Changes in N concentration affected the interconversion between soluble sugar and starch,which play a regulatory role in the fluctuation of the concentration of non-structural carbohydrates;and,(4)Plasticity analysis showed that P.yunnanensis seedlings responded to drought mainly by altering starch concentration,the ratio of soluble sugar to starch in leaves and stems,and further by alter-ing N and P utilization efficiencies.Overall,these results suggest that the physiological activities of all organs of P.yunnanensis seedlings are restricted under drought and that trade-offs exist between different physiological indicators and organs.Our findings are helpful in understanding non-structural carbohydrate and nutrient adaptation mechanisms under drought in P.yunnanensis seedlings.
基金funded by the Talents ans its Youth Project of Xinjiang Production and Construction Corps(38000020924,380000358).
文摘Leaves are important‘source’organs that synthesize organic matter,providing carbon sources for plant growth.Here,we used Populus talassica×Populus euphratica,the dominant species in ecological and timber forests,to simulate carbon limitation through artificial 25%,50%,and 75%defoliation treatments and explore the effects on root,stem,and leaf morphology,biomass accumulation,and carbon allocation strategies.At the 60th d after treat-ment,under 25%defoliation treatment,the plant height,specific leaf weight,root surface area and volume,and concentrations of non-structural carbohydrates in stem and root were significantly increased by 9.13%,20.00%,16.60%,31.95%,5.12%,and 9.34%,respectively,relative to the control.There was no significant change in the growth indicators under 50%defoliation treatment,but the concentrations of non-structural carbohydrates in the leaf and stem significantly decreased,showing mostly a negative correlation between them.The opposite was observed in the root.Under 75%defoliation treatment,the plant height,ground diameter,leaf number,single leaf area,root,stem,and total biomass were significantly reduced by 14.15%,10.24%,14.86%,11.31%,11.56%,21.87%,and 16.82%,respectively,relative to the control.The concentrations of non-structural carbohydrates in various organs were significantly reduced,particularly in the consumption of the starch concentrations in the stem and root.These results indicated that carbon allocation strategies can be adjusted to increase the con-centration of non-structural carbohydrates in root and meet plant growth needs under 25%and 50%defoliation.However,75%defoliation significantly limited the distribution of non-structural carbohydrates to roots and stems,reduced carbon storage,and thus inhibited plant growth.Defoliation-induced carbon limitation altered the carbon allocation pattern of P.talassica×P.euphratica,and the relationship between carbon reserves in roots and tree growth recovery after defoliation was greater.This study provides a theoretical basis for the comprehen-sive management of P.talassica×P.euphratica plantations,as well as a reference for the study of plantation car-bon allocation strategies in the desert and semi-desert regions of Xinjiang under carbon-limitation conditions.
基金the National Natural Science Foundation of China(32001470)the Scientific Research Fund of Hunan Provincial Education Department(21B0184)The Science and Technology Innovation Program of Hunan province(2021RC3088).
文摘Rice yield stability is a breeding goal,particularly for short-growth duration rice,but its underlying mechanisms remain unclear.In an attempt to identify the relationship between yield stability and source–sink characteristics in short-growth duration rice,a field experiment was conducted at three sites(Yueyang,Liuyang,and Hengyang)in 2021 and 2022.This study compared yield,yield components,source–sink characteristics,and their stability between two stable-yielding short-growth duration rice cultivars,Zhongzao 39(Z-39)and Lingliangyou 268(L-268),and two unstable-yielding short-growth duration rice cultivars,Zhongjiazao 17(Z-17)and Zhuliangyou 819(Z-819).The stability of agronomic parameters was represented by the coefficient of variation(CV).The respective CVs of yield in Z-17,Z-819,Z-39,and L-268 were 10.2%,10.1%,4.5%,and 5.7%in 2021 and 19.7%,15.0%,5.4%,and 6.5%in 2022.The respective CVs of grain weight were 6.3%,5.7%,3.4%,and 4.5%in Z-17,Z-819,Z-39,and L-268 in 2021,and 8.1%,6.3%,1.5%,and 0.8%in 2022.The mean source capacity per spikelet and pre-heading non-structural carbohydrate reserves per spikelet(NSC_(pre))were 7%–43%and7%–72%lower in Z-819 and Z-17than in L-268 and Z-39 in 2021 and 2022.The mean quantum yield of photosystem II photochemistry of leaf,leaf area index,and specific leaf weight of L-268 and Z-39 were higher than those of Z-819 and Z-17 at the heading stage.This study suggests that high NSC_(pre),caused by great leaf traits before heading,increases source capacity per spikelet and its stability,thereby increasing the stability of grain weight and yield.Increasing NSC_(pre)is critical for achieving grain weight and yield stability in short-growth duration rice.
基金Supported by National Natural Science Fund(30872017)China Science Academy Knowledge Innovation Engineering Project Important Direction Program(KZCX2-YW-331-3,KSCX2-YW-N-066)Central University Basic Science Research Operation Special Fund(XDJK2009C110)~~
文摘[Objective] The aim was to compare the content changes between the non-structural carbohydrates(NSC)and the total nitrogen in various growing seasons,and to explore the response relationship between altitude and the contents.[Method] Taking Quercus aquifolioides scrub which widely distributed in Zheduoshan in the west of Sichuan as the experimental objects,the changes between NSC and the toal nitrogen in various growing seasons at different altitude were studied.[Result] The results showed that the content of NSC in Quercus aquifolioides underground increased with the lift of elevation in the dormancy,but decreased in the early germination,growing period and growth stage.The content of NSC in the ground tissue changed non-linearly with increasing elevation.In addition,the total nitrogen of Quercus aquifolioides organizations was decreasing with increasing elevation in the dormant period,which did not change significantly in the other periods.This result implied that the content of NSC in Quercus aquifolioides underground was more sensitive to temperature.[Conclusion] The experiment laid basis for the exploration of the physical and ecological mechanism of underground plants adaptability to highland environment,their response to global climate changes and adjustment to high altitude ecological system.
基金supported by the National Natural Science Foundation of China (30871482)the Scientific Research Innovation Project for Graduate Student of Jiangsu Province, China (CXO7B_184Z)
文摘Grain filling, a crucial stage of grain yield formation in rice, is usually affected by the panicle nitrogen (N) fertilization. Field and pot culture experiments were conducted to explore the underlying mechanisms of N effect. Two rice cultivars with high lodging resistance were grown in the field and pot. Four panicle N fertilization treatments were conducted in 2006 and repeated in 2007. The result showed that medium level of panicle N fertilization treatment (NM) enhanced the accumulation and translocation of non-structural carbohydrate (NSC) in the stem and sheath. Compared with non-nitrogen treatment (NO), NM promoted the translocation of labeled ^13C from stem and sheath to grain. But, low level of panicle N fertilization treatment (NL) and high level of panicle N fertilization treatment (NH) showed the negative effect. The endosperm cell, grain length, and grain width of NM increased more quickly than that of NO from 4 to 10 d after anthesis. During the early period of grain filling, sucrose-phosphate synthase (EC 2.4.1.14, SPS) activity were significantly higher for the NM treatment than those of the NL and NH treatments. Sucrose synthase (EC 2.4.1.13, SuSase) activity in the grains was substantially enhanced by NM, with the duration of higher activity being longer than those of the other treatments. At maturing stage, NM significantly increased the filled grain number, the seed-setting rate, and the grain weight compared with NL and NH. The results suggest that NM have a positive effect on the activities of enzymes of physiological importance, thereby increasing the grain size and promoting grain filling.
基金supported by the Strategic Priority Research Program of the CAS(No.XDA05070306)the National Science&Technology Pillar Program in 12th 5-year Plan of China(No.2011BAC09B0402)
文摘We investigated non-structural carbohydrates(NSC) levels and components(starch,glucose,fructose and sucrose) in the leaves of three typical co-occurring forestfloor plants,moss Eurhynchium savatieri(ES),fern Parathelypteris nipponica(PN) and forb Aruncus sylvester(AS) in a 30-year-old Chinese pine(Pinus tabulaeformis)plantation forest on the eastern Tibetan Plateau.We also explored their responses to three gap creation treatments(control and two gap creations of 80 and 110 m2) based on NSC levels.PN had the highest leaf NSC level of the three plants,with AS second and ES lowest.Starch was the predominant component of NSC and the contents of glucose were higher than those of fructose or sucrose for all three species.The NSC level of ES in intermediate gaps was significantly higher than at control sites.PN also had higher NSC levels in both small and intermediate gaps than in control sites.But the differences between treatments were not obvious for AS.Our results suggest that ES and PN benefit from gap formation while the two species have different NSC response sensitivities to gap size,but the leaf NSC level of AS is less sensitive to the disturbance.
基金The work was supported by the General Program of the National Natural Science Foundation of China(31,470,635)the Fundamental Research Funds of the Chinese Academy of Forestry(No.CAFYBB2017ZX001-3).
文摘Slash pine(Pinus elliottii Engelm.var.elliottii)is a resin-producing species grown worldwide for significant economic benefits for wood production.Resin tapping cre-ates a carbon sink at the expense of carbon allocation for growth and consequently,wood production may be reduced.Non-structural carbohydrates comprising starch and sugars stored in plant organs,may serve as intermediate pools between assimilation and utilisation.However,the effect of resin tapping between tree growth and non-structural carbo-hydrates is not well understood.This study investigated(1)the effects of resin tapping on radial growth,(2)the effects of resin tapping on non-structural carbohydrate pools in different compartments,and(3)the feasibility of resin pro-duction without disruption of tree growth.Twenty one-year-old slash pines were subjected to resin tapping over two suc-cessive years.Non-structural carbohydrate concentrations in needles,branches,stem phloem,and roots of tapped and untapped trees in summer and winter were determined after the second year of resin harvest.The results showed that tapping had no significant effects on annual increments.Starch was the dominant non-structural carbohydrate frac-tion,regardless of tissues and season,and constituted up to 99%of the total non-structural carbohydrates in the phloem and roots.Glucose and fructose were the dominant sugars;sucrose was negligible.Compared with the controls,tapped trees showed 26%lower non-structural carbohydrate concen-tration in the phloem above the tapping wound in summer,which was attributable to the decreased abundance of starch,glucose,fructose,and sucrose.In winter,the altered non-structural carbohydrate profiles in the phloem above the tap-ping wounding were minimised as a result of recovery of the sugar concentrations.In contrast to free sugars,which accu-mulated substantially in needles and branches during winter,starch was enriched in the phloem,roots,and current-year needles.The results provide evidence for a localised effect of resin tapping,and highlight the observation that resin extrac-tion does not always cause a sacrifice in wood growth under a moderate resin-tapping intensity in slash pine plantations.
基金supported by the National Natural Science Foundation of China(Grant numbers 4237105242271100+3 种基金4197112442371095)the Natural Science Foundation of Jilin Province,China(Nos.YDZJ202201ZYTS483YDZJ202201ZYTS470)。
文摘Understanding the physiological adaptations of non-treeline trees to environmental stress is important to understand future shifts in species composition and distribution of current treeline ecotone.The aim of the present study was to elucidate the mechanisms of the formation of the upper elevation limit of non-treeline tree species,Picea jezoensis,and the carbon allocation strategies of the species on Changbai Mountain.We employed the^(13)C in situ pulse labeling technique to trace the distribution of photosynthetically assimilated carbon in Picea jezoensis at different elevational positions(tree species at its upper elevation limit(TSAUE,1,700 m a.s.l.)under treeline ecotone;tree species at a lower elevation position(TSALE,1,400 m a.s.l.).We analyzed^(13)C and the non-structural carbohydrate(NSC)concentrations in various tissues following labeling.Our findings revealed a significant shift in carbon allocation in TSAUE compared to TSALE.There was a pronounced increase inδ^(13)C allocation to belowground components(roots,soil,soil respiration)in TSAUE compared to TSALE.Furthermore,the C flow rate within the plant-soil-atmosphere system was faster,and the C residence time in the plant was shorter in TSAUE.The trends indicate enhanced C sink activity in belowground tissues in TSAUE,with newly assimilated C being preferentially directed there,suggesting a more conservative C allocation strategy by P.jezoensis at higher elevations under harsher environments.Such a strategy,prioritizing C storage in roots,likely aids in withstanding winter cold stress at the expense of aboveground growth during the growing season,leading to reduced growth of TSAUE compared to TSALE.The results of the present study shed light on the adaptive mechanisms governing the upper elevation limits of non-treeline trees,and enhances our understanding of how non-treeline species might respond to ongoing climate change.
基金supported by grants from the Strategic Leading Science&Technology Programme,CAS(XDA23070100)National Natural Science Foundation of China(U1808201,31330016)Liaoning Revitalization Talents Program(XLYC1807102).
文摘Background:To restore secondary forests(major forest resources worldwide),it is essential to accelerate the natural regeneration of dominant trees by altering micro-environments.Forest gaps are products of various disturbances,ranging from natural storms or wildfires to anthropogenic events like logging and slashing-andburning,and sprouts of most tree species with non-structural carbohydrates(NSCs)storage can regenerate from stumps after gap formation.However,how the stump sprouts with diverse NSCs storages and stump sizes(i.e.,diameters)adapt to various micro-environments of within-gap positions remains unclear.Therefore in this study,we monitored the stump sprout regeneration(density,survival,and growth)and NSCs concentrations of three dominant tree species with different shade tolerances and varying stump diameters at five within-gap positions for the first two consecutive years after gap formation.Results:Stump diameter was positively correlated with sprout density,growth,and survival of all three tree species,but insignificantly related with sprout NSCs concentrations at the early stage after gap formation.The effect of within-gap position on sprout NSCs concentrations was different among species.After an environmental adaptation of two growing seasons,the north of gap(higher light availability and lower soil moisture habitat)was the least conducive for shade-intolerant Quercus mongolica to accumulate leaf NSCs,and the east of gap(shadier and drier habitat)was conducive to increasing the leaf NSCs concentrations of shade-tolerant Tilia mandshurica.Conclusions:Within-gap position significantly affected leaf NSCs concentrations of all three tree species,but most of the sprout growth,survival,and stem NSCs concentrations were independent of the various within-gap positions.Besides stump diameter,the NSCs stored in stump and root systems and the interspecific differences in shade tolerance also contributed more in sprout regeneration at the early stage(2 years)of gap formation.A prolonged monitoring(>10 years)is needed to further examine the long-term effects of stump diameter and within-gap position on sprout regeneration.All of these findings could be applied to gap-based silviculture by promoting sprout regeneration of dominant tree species with different shade tolerances,which would help accelerate the restoration of temperate secondary forests.
基金supported by the Major International(Regional)Joint Research Project of National Natural Science Foundation of China(32061143038)the earmarked fund for China Agriculture Research System(CARS-01-20)+1 种基金the National High Technology Research and Development Program of China(the 863 Project,2014AA10A605)the Fundamental Research Funds for the Central Universities,China(2662020ZKPY015).
文摘The border effect(BE)is widely observed in crop field experiments,and it has been extensively studied in many crops.However,only limited attention has been paid to the BE of ratoon rice.We conducted field experiments on ratoon rice in Qichun County,Hubei Province,Central China in 2018 and 2019 to compare the BE in the main and ratoon crops,and to quantify the contribution of BE in the main crop to that in the ratoon crop.The BE of two hybrid varieties was measured for the outermost,second outermost,and third outermost rows in each plot of both crops.To determine the contribution of BE between the two crops,portions of hills in the outermost and second outermost rows were uprooted during the harvest of the main crop so that the second and third outermost rows then became the outermost rows in the ratoon crop.Overall,the BE on grain yield was greater in the main crop than in the ratoon crop.In the main crop,the BE on grain yield was 98.3%in the outermost row,which was explained by the BE on panicles m^(–2),spikelets/panicle,spikelets m^(–2),and total dry weight.In the ratoon crop,the BE on grain yield was reduced to 60.9 and 27.6%with and without the contribution of the BE in the main crop,respectively.Consequently,55.1%of the BE on grain yield in the ratoon crop was contributed from the main crop.High stubble dry weight and non-structural carbohydrate(NSC)accumulation at the harvest of the main crop were responsible for the contribution of BE in the main crop to that in the ratoon crop.Our results suggest that increases in stubble dry weight and NSC accumulation at the harvest of the main crop could be important strategies for developing high-yielding cropping practices in the rice ratooning system.
基金grateful for grants from the National Natural Science Foundation of China(32071943)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(PAPD-2020-01)+1 种基金the Postgraduate Research and Innovation Program of Jiangsu Province,China(XKYCX17_052)the Top Talent Supporting Program of Yangzhou University,China(2015-01).
文摘Utilizing the heterosis of indica/japonica hybrid rice(IJHR)is an effective way to further increase rice grain yield.Rational application of nitrogen(N)fertilizer plays a very important role in using the heterosis of IJHR to achieve its great yield potential.However,the responses of the grain yield and N utilization of IJHR to N application rates and the underlying physiological mechanism remain elusive.The purpose of this study was to clarify these issues.Three rice cultivars currently used in rice production,an IJHR cultivar Yongyou 2640(YY2640),a japonica cultivar Lianjing 7(LJ-7)and an indica cultivar Yangdao 6(YD-6),were grown in the field with six N rates(0,100,200,300,400,and 500 kg ha^(-1))in 2018 and 2019.The results showed that with the increase in N application rates,the grain yield of each test cultivar increased at first and then decreased,and the highest grain yield was at the N rate of 400 kg ha^(-1)for YY2640,with a grain yield of 13.4 t ha^(-1),and at 300 kg ha^(-1)for LJ-7 and YD-6,with grain yields of 9.4–10.6 t ha^(-1).The grain yield and N use efficiency(NUE)of YY2640 were higher than those of LJ-7 or YD-6 at the same N rate,especially at the higher N rates.When compared with LJ-7 or YD-6,YY2640 exhibited better physiological traits,including greater root oxidation activity and leaf photosynthetic rate,higher cytokinin content in the roots and leaves,and more remobilization of assimilates from the stem to the grain during grain filling.The results suggest that IJHR could attain both higher grain yield and higher NUE than inbred rice at either low or high N application rates.Improved shoot and root traits of the IJHR contribute to its higher grain yield and NUE,and a higher content of cytokinins in the IJHR plants plays a vital role in their responses to N application rates and also benefits other physiological processes.