期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于非下采样Shearlet和方向权值邻域窗的非局部均值SAR图像相干斑抑制 被引量:8
1
作者 张小华 陈佳伟 +2 位作者 孟红云 焦李成 孙翔 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2012年第2期159-165,共7页
非局部均值算法将传统的图像去噪算法由局部计算模型推广到非局部计算模型,取得了良好的效果.但对于合成孔径雷达图像,使用观测值和各向同性邻域窗来度量相似性,缺乏鲁棒性和方向性,不利于捕获图像边缘结构信息.提出了基于非下采样Shear... 非局部均值算法将传统的图像去噪算法由局部计算模型推广到非局部计算模型,取得了良好的效果.但对于合成孔径雷达图像,使用观测值和各向同性邻域窗来度量相似性,缺乏鲁棒性和方向性,不利于捕获图像边缘结构信息.提出了基于非下采样Shearlet特征描述子和方向权值邻域窗的非局部均值算法.实验表明,该算法不但有效地去除了相干斑,而且很好地保持了图像的几何结构信息,为后期SAR图像的理解与解译奠定了良好的基础. 展开更多
关键词 非局部均值 非下采样shearlet特征描述子 方向邻域窗 SAR图像降斑
下载PDF
Skin Lesion Classification System Using Shearlets
2
作者 S.Mohan Kumar T.Kumanan 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期833-844,共12页
The main cause of skin cancer is the ultraviolet radiation of the sun.It spreads quickly to other body parts.Thus,early diagnosis is required to decrease the mortality rate due to skin cancer.In this study,an automati... The main cause of skin cancer is the ultraviolet radiation of the sun.It spreads quickly to other body parts.Thus,early diagnosis is required to decrease the mortality rate due to skin cancer.In this study,an automatic system for Skin Lesion Classification(SLC)using Non-Subsampled Shearlet Transform(NSST)based energy features and Support Vector Machine(SVM)classifier is proposed.Atfirst,the NSST is used for the decomposition of input skin lesion images with different directions like 2,4,8 and 16.From the NSST’s sub-bands,energy fea-tures are extracted and stored in the feature database for training.SVM classifier is used for the classification of skin lesion images.The dermoscopic skin images are obtained from PH^(2) database which comprises of 200 dermoscopic color images with melanocytic lesions.The performances of the SLC system are evaluated using the confusion matrix and Receiver Operating Characteristic(ROC)curves.The SLC system achieves 96%classification accuracy using NSST’s energy fea-tures obtained from 3^(rd) level with 8-directions. 展开更多
关键词 Skin lesion classification non-subsampled shearlet transform sub-band coefficients energy feature support vector machine
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部