Contraposing the need of the robust digital watermark for the copyright protection field, a new digital watermarking algorithm in the non-subsampled contourlet transform (NSCT) domain is proposed. The largest energy...Contraposing the need of the robust digital watermark for the copyright protection field, a new digital watermarking algorithm in the non-subsampled contourlet transform (NSCT) domain is proposed. The largest energy sub-band after NSCT is selected to embed watermark. The watermark is embedded into scaleinvariant feature transform (SIFT) regions. During embedding, the initial region is divided into some cirque sub-regions with the same area, and each watermark bit is embedded into one sub-region. Extensive simulation results and comparisons show that the algorithm gets a good trade-off of invisibility, robustness and capacity, thus obtaining good quality of the image while being able to effectively resist common image processing, and geometric and combo attacks, and normalized similarity is almost all reached.展开更多
Multimodal medical image fusion is a powerful tool for diagnosing diseases in medical field. The main objective is to capture the relevant information from input images into a single output image, which plays an impor...Multimodal medical image fusion is a powerful tool for diagnosing diseases in medical field. The main objective is to capture the relevant information from input images into a single output image, which plays an important role in clinical applications. In this paper, an image fusion technique for the fusion of multimodal medical images is proposed based on Non-Subsampled Contourlet Transform. The proposed technique uses the Non-Subsampled Contourlet Transform (NSCT) to decompose the images into lowpass and highpass subbands. The lowpass and highpass subbands are fused by using mean based and variance based fusion rules. The reconstructed image is obtained by taking Inverse Non-Subsampled Contourlet Transform (INSCT) on fused subbands. The experimental results on six pairs of medical images are compared in terms of entropy, mean, standard deviation, Q<sup>AB/F</sup> as performance parameters. It reveals that the proposed image fusion technique outperforms the existing image fusion techniques in terms of quantitative and qualitative outcomes of the images. The percentage improvement in entropy is 0% - 40%, mean is 3% - 42%, standard deviation is 1% - 42%, Q<sup>AB/F</sup>is 0.4% - 48% in proposed method comparing to conventional methods for six pairs of medical images.展开更多
A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled conto...A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled contourlet transform into multi-scale and multi-directional subbands. Then the edges in the high-frequency and low-frequency sub-bands are respectively extracted by the dualthreshold modulus maxima method and the mathematical morphology operator. Finally, the edges from the high- frequency and low-frequency sub-bands are integrated to the edges of the source image, which are refined, and isolated points are excluded to achieve the edges of the source image. The simulation results show that the proposed algorithm can effectively suppress noise, eliminate pseudo-edges and overcome the adverse effects caused by uneven illumination to a certain extent. Compared with the traditional methods such as LoG, Sobel, and Carmy operators and the modulus maxima algorithm, the proposed method can maintain sufficient positioning accuracy and edge details, and it can also make an improvement in the completeness, smoothness and clearness of the outline.展开更多
A directional filter algorithm for intensity synthetic aperture radar (SAR) image based on nonsubsampled contourlet transform (NSCT) and immune clonal selection (ICS) is presented. The proposed filter mainly foc...A directional filter algorithm for intensity synthetic aperture radar (SAR) image based on nonsubsampled contourlet transform (NSCT) and immune clonal selection (ICS) is presented. The proposed filter mainly focuses on exploiting different features of edges and noises by NSCT. Furthermore, ICS strategy is introduced to optimize threshold parameter and amplify parameter adaptively. Numerical experiments on real SAR images show that there are improvements in both visual effects and objective indexes.展开更多
Medical Image Fusion is the synthesizing technology for fusing multi-modal medical information using mathematical procedures to generate better visual on the image content and high-quality image output.Medical image f...Medical Image Fusion is the synthesizing technology for fusing multi-modal medical information using mathematical procedures to generate better visual on the image content and high-quality image output.Medical image fusion represents an indispensible role infixing major solutions for the complicated medical predicaments,while the recent research results have an enhanced affinity towards the preservation of medical image details,leaving color distortion and halo artifacts to remain unaddressed.This paper proposes a novel method of fusing Computer Tomography(CT)and Magnetic Resonance Imaging(MRI)using a hybrid model of Non Sub-sampled Contourlet Transform(NSCT)and Joint Sparse Representation(JSR).This model gratifies the need for precise integration of medical images of different modalities,which is an essential requirement in the diagnosing process towards clinical activities and treating the patients accordingly.In the proposed model,the medical image is decomposed using NSCT which is an efficient shift variant decomposition transformation method.JSR is exercised to extricate the common features of the medical image for the fusion process.The performance analysis of the proposed system proves that the proposed image fusion technique for medical image fusion is more efficient,provides better results,and a high level of distinctness by integrating the advantages of complementary images.The comparative analysis proves that the proposed technique exhibits better-quality than the existing medical image fusion practices.展开更多
为有效抑制超声仪器成像中固有的斑点噪声,提出了一种基于非降采样Contourlet变换(nonsubsampled Contourlettransform,NSCT)域中边缘信号系数区提取和最小均方误差(minimum mean square error,MMSE)估计的超声图像的降噪算法。根据NSC...为有效抑制超声仪器成像中固有的斑点噪声,提出了一种基于非降采样Contourlet变换(nonsubsampled Contourlettransform,NSCT)域中边缘信号系数区提取和最小均方误差(minimum mean square error,MMSE)估计的超声图像的降噪算法。根据NSCT变换的细节信息刻画能力和平移不变性,对其各高频子带中系数进行分类,提取出边缘信号和平缓信号系数区;对超声图像的乘性斑点噪声进行推导研究,在边缘信号系数区和平缓信号系数区,根据各自噪声项的性质分别得出满足贝叶斯最小均方误差估计的降噪滤波方程;最后,对降噪后的系数进行NSCT反变换重建得到降噪图像。仿真图像和临床超声图像的实验结果证实,该算法与传统方法相比,不但能更有效地对斑点噪声进行抑制,也更好地保留了图像的细节信息。展开更多
基金supported by the National Natural Science Foundation of China(61379010)the Natural Science Basic Research Plan in Shaanxi Province of China(2015JM6293)
文摘Contraposing the need of the robust digital watermark for the copyright protection field, a new digital watermarking algorithm in the non-subsampled contourlet transform (NSCT) domain is proposed. The largest energy sub-band after NSCT is selected to embed watermark. The watermark is embedded into scaleinvariant feature transform (SIFT) regions. During embedding, the initial region is divided into some cirque sub-regions with the same area, and each watermark bit is embedded into one sub-region. Extensive simulation results and comparisons show that the algorithm gets a good trade-off of invisibility, robustness and capacity, thus obtaining good quality of the image while being able to effectively resist common image processing, and geometric and combo attacks, and normalized similarity is almost all reached.
文摘Multimodal medical image fusion is a powerful tool for diagnosing diseases in medical field. The main objective is to capture the relevant information from input images into a single output image, which plays an important role in clinical applications. In this paper, an image fusion technique for the fusion of multimodal medical images is proposed based on Non-Subsampled Contourlet Transform. The proposed technique uses the Non-Subsampled Contourlet Transform (NSCT) to decompose the images into lowpass and highpass subbands. The lowpass and highpass subbands are fused by using mean based and variance based fusion rules. The reconstructed image is obtained by taking Inverse Non-Subsampled Contourlet Transform (INSCT) on fused subbands. The experimental results on six pairs of medical images are compared in terms of entropy, mean, standard deviation, Q<sup>AB/F</sup> as performance parameters. It reveals that the proposed image fusion technique outperforms the existing image fusion techniques in terms of quantitative and qualitative outcomes of the images. The percentage improvement in entropy is 0% - 40%, mean is 3% - 42%, standard deviation is 1% - 42%, Q<sup>AB/F</sup>is 0.4% - 48% in proposed method comparing to conventional methods for six pairs of medical images.
基金The National Key Technologies R&D Program during the 12th Five-Year Period of China(No.2012BAJ23B02)Science and Technology Support Program of Jiangsu Province(No.BE2010606)
文摘A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled contourlet transform into multi-scale and multi-directional subbands. Then the edges in the high-frequency and low-frequency sub-bands are respectively extracted by the dualthreshold modulus maxima method and the mathematical morphology operator. Finally, the edges from the high- frequency and low-frequency sub-bands are integrated to the edges of the source image, which are refined, and isolated points are excluded to achieve the edges of the source image. The simulation results show that the proposed algorithm can effectively suppress noise, eliminate pseudo-edges and overcome the adverse effects caused by uneven illumination to a certain extent. Compared with the traditional methods such as LoG, Sobel, and Carmy operators and the modulus maxima algorithm, the proposed method can maintain sufficient positioning accuracy and edge details, and it can also make an improvement in the completeness, smoothness and clearness of the outline.
基金supported by National Natural Science Foundationof China (No. 60802061)Natural Science Research Item of the Education Department of Henan Province (No. 2008B510001)Innovation Scientists and Technicians Troop Construction Projects of Henan Province (No. 084100510012)
文摘A directional filter algorithm for intensity synthetic aperture radar (SAR) image based on nonsubsampled contourlet transform (NSCT) and immune clonal selection (ICS) is presented. The proposed filter mainly focuses on exploiting different features of edges and noises by NSCT. Furthermore, ICS strategy is introduced to optimize threshold parameter and amplify parameter adaptively. Numerical experiments on real SAR images show that there are improvements in both visual effects and objective indexes.
文摘Medical Image Fusion is the synthesizing technology for fusing multi-modal medical information using mathematical procedures to generate better visual on the image content and high-quality image output.Medical image fusion represents an indispensible role infixing major solutions for the complicated medical predicaments,while the recent research results have an enhanced affinity towards the preservation of medical image details,leaving color distortion and halo artifacts to remain unaddressed.This paper proposes a novel method of fusing Computer Tomography(CT)and Magnetic Resonance Imaging(MRI)using a hybrid model of Non Sub-sampled Contourlet Transform(NSCT)and Joint Sparse Representation(JSR).This model gratifies the need for precise integration of medical images of different modalities,which is an essential requirement in the diagnosing process towards clinical activities and treating the patients accordingly.In the proposed model,the medical image is decomposed using NSCT which is an efficient shift variant decomposition transformation method.JSR is exercised to extricate the common features of the medical image for the fusion process.The performance analysis of the proposed system proves that the proposed image fusion technique for medical image fusion is more efficient,provides better results,and a high level of distinctness by integrating the advantages of complementary images.The comparative analysis proves that the proposed technique exhibits better-quality than the existing medical image fusion practices.
文摘为有效抑制超声仪器成像中固有的斑点噪声,提出了一种基于非降采样Contourlet变换(nonsubsampled Contourlettransform,NSCT)域中边缘信号系数区提取和最小均方误差(minimum mean square error,MMSE)估计的超声图像的降噪算法。根据NSCT变换的细节信息刻画能力和平移不变性,对其各高频子带中系数进行分类,提取出边缘信号和平缓信号系数区;对超声图像的乘性斑点噪声进行推导研究,在边缘信号系数区和平缓信号系数区,根据各自噪声项的性质分别得出满足贝叶斯最小均方误差估计的降噪滤波方程;最后,对降噪后的系数进行NSCT反变换重建得到降噪图像。仿真图像和临床超声图像的实验结果证实,该算法与传统方法相比,不但能更有效地对斑点噪声进行抑制,也更好地保留了图像的细节信息。