A protocol for quantum dialogue is proposed to exchange directly the communicator's secret messages by using a three-dimensional Bell state and a two-dimensional Bell state as quantum channel with quantum superdence ...A protocol for quantum dialogue is proposed to exchange directly the communicator's secret messages by using a three-dimensional Bell state and a two-dimensional Bell state as quantum channel with quantum superdence coding, local collective unitary operations, and entanglement swapping. In this protocol, during the process of trans- mission of particles, the transmitted particles do not carry any secret messages and are transmitted only one time. The protocol has higher source capacity than protocols using symmetric two-dimensional states. The security is ensured by the unitary operations randomly performed on all checking groups before the particle sequence is transmitted and the application of entanglement swapping.展开更多
Recently Xia and Song [Phys. Lett. A 364 (2007) 117] have proposed a controlled quantum secure direct communication (CQSDC) protocol. They claimed that in their protocol only with the help of the controller Charli...Recently Xia and Song [Phys. Lett. A 364 (2007) 117] have proposed a controlled quantum secure direct communication (CQSDC) protocol. They claimed that in their protocol only with the help of the controller Charlie, the receiver Alice can successfully extract the secret message from the sender Bob. In this letter, first we will show that within their protocol the controller Charlie's role could have been excluded if it were not for their unreasonable design. We then revise the Xia-Song CQSDC protocol such that its original advantages are reta/ned and the CQSDC can be really realized.展开更多
We establish the Stinespring dilation theorem of the link product of quantum channels in two different ways,discuss the discrimination of quantum channels,and show that the distinguishability can be improved by self-l...We establish the Stinespring dilation theorem of the link product of quantum channels in two different ways,discuss the discrimination of quantum channels,and show that the distinguishability can be improved by self-linking each quantum channel n times as n grows.We also find that the maximum value of Uhlmann's theorem can be achieved for diagonal channels.展开更多
In this paper [Commun. Theor. Phys. 53(2010) 648], Zhan et al. proposed a quantum dialogue protocol by using non-symmetric quantum channel. We study the security of the protocol and find that it has the drawback of in...In this paper [Commun. Theor. Phys. 53(2010) 648], Zhan et al. proposed a quantum dialogue protocol by using non-symmetric quantum channel. We study the security of the protocol and find that it has the drawback of information leakage. That is, Zhan et al.'s protocol is proved to be insecure by us.展开更多
Entanglement-assisted quantum error correction codes(EAQECCs)play an important role in quantum communications with noise.Such a scheme can use arbitrary classical linear code to transmit qubits over noisy quantum chan...Entanglement-assisted quantum error correction codes(EAQECCs)play an important role in quantum communications with noise.Such a scheme can use arbitrary classical linear code to transmit qubits over noisy quantum channels by consuming some ebits between the sender(Alice)and the receiver(Bob).It is usually assumed that the preshared ebits of Bob are error free.However,noise on these ebits is unavoidable in many cases.In this work,we evaluate the performance of EAQECCs with noisy ebits over asymmetric quantum channels and quantum channels with memory by computing the exact entanglement fidelity of several EAQECCs.We consider asymmetric errors in both qubits and ebits and show that the performance of EAQECCs in entanglement fidelity gets improved for qubits and ebits over asymmetric channels.In quantum memory channels,we compute the entanglement fidelity of several EAQECCs over Markovian quantum memory channels and show that the performance of EAQECCs is lowered down by the channel memory.Furthermore,we show that the performance of EAQECCs is diverse when the error probabilities of qubits and ebits are different.In both asymmetric and memory quantum channels,we show that the performance of EAQECCs is improved largely when the error probability of ebits is reasonably smaller than that of qubits.展开更多
Underwater quantum communication plays a crucial role in ensuring secure data transmission and extensible quantum networks in underwater environments.However,the implementation of such applications encounters challeng...Underwater quantum communication plays a crucial role in ensuring secure data transmission and extensible quantum networks in underwater environments.However,the implementation of such applications encounters challenges due to the light attenuation caused by the complicated natural seawater.This paper focuses on employing a model based on seawater chlorophyll-a concentration to characterize the absorption and scattering of light through quantum channels.We propose a multi-scattering random channel model,which demonstrates characteristics of the excess noise in different propagation directions of communication links.Furthermore,we consider the fidelity of a continuous-variable quantum teleportation through seawater channel.To enhance transmission performance,non-Gaussian operations have been conducted.Numerical simulations show that incorporating non-Gaussian operations enables the protocol to achieve higher fidelity transmission or lower fidelity fading rates over longer transmission distances.展开更多
Quantum discord, one of the famous quantum correlations, has been recently generalized to multipartite systems by Radhakrishnan et al. Here we give analytical solutions of the quantum discord for a family of N-qubit q...Quantum discord, one of the famous quantum correlations, has been recently generalized to multipartite systems by Radhakrishnan et al. Here we give analytical solutions of the quantum discord for a family of N-qubit quantum states. For the bipartite system, we derive a zero quantum discord which will remain unchanged under the phase damping channel. For multiparitite systems, it is found that the quantum discord can be classified into three categories and the quantum discord for odd-partite systems can exhibit freezing under the phase damping channel, while the freezing does not exist in the even-partite systems.展开更多
We discuss a quantum remote state preparation protocol by which two parties, Alice and Candy, prepare a single-qubit and a two-qubit state, respectively, at the site of the receiver Bob. The single-qubit state is know...We discuss a quantum remote state preparation protocol by which two parties, Alice and Candy, prepare a single-qubit and a two-qubit state, respectively, at the site of the receiver Bob. The single-qubit state is known to Alice while the two-qubit state which is a non-maximally entangled Bell state is known to Candy. The three parties are connected through a single entangled state which acts as a quantum channel. We first describe the protocol in the ideal case when the entangled channel under use is in a pure state. After that, we consider the effect of amplitude damping(AD) noise on the quantum channel and describe the protocol executed through the noisy channel. The decrement of the fidelity is shown to occur with the increment in the noise parameter. This is shown by numerical computation in specific examples of the states to be created. Finally, we show that it is possible to maintain the label of fidelity to some extent and hence to decrease the effect of noise by the application of weak and reversal measurements. We also present a scheme for the generation of the five-qubit entangled resource which we require as a quantum channel. The generation scheme is run on the IBMQ platform.展开更多
As one of the main application directions of quantum technology,underwater quantum communication is of great research significance.In order to study the influence of marine planktonic algal particles on the communicat...As one of the main application directions of quantum technology,underwater quantum communication is of great research significance.In order to study the influence of marine planktonic algal particles on the communication performance of underwater quantum links,based on the extinction characteristics of marine planktonic algal particles,the influence of changes in the chlorophyll concentration and particle number density of planktonic algal particles on the attenuation of underwater links is explored respectively,the influence of marine planktonic algal particles on the fidelity of underwater quantum links,the generation rate of the security key,and the utilization rate of the channel is analyzed,and simulation experiments are carried out.The results show that with the increase in chlorophyll concentration and particle density of aquatic planktonic algal particles,quantum communication channel link attenuation shows a gradually increasing trend.In addition,the security key generation rate,channel fidelity and utilization rate are gradually decreasing.Therefore,the performance of underwater quantum communication channel will be interfered by marine planktonic algal particles,and it is necessary to adjust the relevant parameter values in the quantum communication system according to different marine planktonic algal particle number density and chlorophyll concentration to improve the performance of quantum communication.展开更多
A novel vertical stack heterostructure CMOSFET is investigated, which is structured by strained SiGe/Si with a hole quantum well channel in the compressively strained Sil-xGex layer for p-MOSFET and an electron quantu...A novel vertical stack heterostructure CMOSFET is investigated, which is structured by strained SiGe/Si with a hole quantum well channel in the compressively strained Sil-xGex layer for p-MOSFET and an electron quantum well channel in the tensile strained Si layer for n-MOSFET. The device possesses several advantages including: 1) the integration of electron quantum well channel with hole quantum well channel into the same vertical layer structure; 2) the gate work function modifiability due to the introduction of poly-SiGe as a gate material; 3) better transistor matching; and 4) flexibility of layout design of CMOSFET by adopting exactly the same material lays for both n-channel and p-channel. The MEDICI simulation result shows that p-MOSFET and n-MOSFET have approximately the same matching threshold voltages. Nice performances are displayed in transfer characteristic, transconductance and cut-off frequency. In addition, its operation as an inverter confirms the CMOSFET structured device to be normal and effective in function.展开更多
We present a robust (n, n)-threshold scheme for multiparty quantum secret sharing of key over two collectivenoise channels (i.e., the collective dephasing channel and the collective rotating channel) via three-pho...We present a robust (n, n)-threshold scheme for multiparty quantum secret sharing of key over two collectivenoise channels (i.e., the collective dephasing channel and the collective rotating channel) via three-photon mixed states, In our scheme, only if all the sharers collaborate together can they establish a joint key with the message sender and extract the secret message from the sender's encrypted message. This scheme can be implemented using only a Bell singlet, a one-qubit state and polarization identification of single photon, so it is completely feasible according to the present-day technique.展开更多
Based on the quantum technique of the weak measurement and quantum measurement reversal(WMR),we propose a scheme to protect entanglement for an entangled two-qubit pure state from four typical quantum noise channels w...Based on the quantum technique of the weak measurement and quantum measurement reversal(WMR),we propose a scheme to protect entanglement for an entangled two-qubit pure state from four typical quantum noise channels with memory,i.e.,the amplitude damping channel,the phase damping channel,the bit flip channel,and the depolarizing channel.For a given initial state |Ψ>=a |00>+d|11>,it is found that the WMR operation indeed helps to protect entanglement from the above four quantum channels with memory,and the protection effect of WMR scheme is better when the coefficient a is small.For the other initial state |φ>=b|01>+c|10>,the effect of the protection scheme is the same regardless of the coefficient b and the WMR operation can protect entanglement in the amplitude damping channel with memory.Moreover,the protection of entanglement in quantum noise channels without memory in contrast to the results of the channels with memory is more effective.For |Ψ> or |φ>,we also find that the memory parameters play a significant role in the suppression of entanglement sudden death and the initial entanglement can be drastically amplified.Another more important result is that the relationship between the concurrence,the memory parameter,the weak measurement strength,and quantum measurement reversal strength is found through calculation and discussion.It provides a strong basis for the system to maintain maximum entanglement in the nosie channel.展开更多
In this paper, we discuss quantum uncertainty relations of quantum coherence through a different method from Ref. [52]. Some lower bounds with parameters and their minimal bounds are obtained. Moreover, we find that f...In this paper, we discuss quantum uncertainty relations of quantum coherence through a different method from Ref. [52]. Some lower bounds with parameters and their minimal bounds are obtained. Moreover, we find that for two pairs of measurement bases with the same maximum overlap, quantum uncertainty relations and lower bounds with parameters are different, but the minimal bounds are the same. In addition, we discuss the dynamics of quantum uncertainty relations of quantum coherence and their lower bounds under the amplitude damping channel(ADC). We find that the ADC will change the uncertainty relations and their lower bounds, and their tendencies depend on the initial state.展开更多
The effects of amplitude damping in quantum noise channels on average fidelity of quantum teleportation are analyzed in Bloeh sphere representation for every stage of teleportation. When the quantum channels are varie...The effects of amplitude damping in quantum noise channels on average fidelity of quantum teleportation are analyzed in Bloeh sphere representation for every stage of teleportation. When the quantum channels are varied from maximally entangled states to non-maximally entangled states, it is found that the effects of noise channels on the fidelity are nearly equivalent to each other for strong quantum noise. The degree of damage on the fidelity of non-maximally entangled channels is smaller than that of maximally entangled channels. The average fidelity of values larger than 2/3 may be one representation indirectly showing how much the unavoidable quantum noise is.展开更多
This paper proposes a three-dimensional(3 D) controlled quantum teleportation scheme for an unknown single-qutrit state. The scheme is first introduced in an ideal environment, and its detailed implementation is descr...This paper proposes a three-dimensional(3 D) controlled quantum teleportation scheme for an unknown single-qutrit state. The scheme is first introduced in an ideal environment, and its detailed implementation is described via the transformation of the quantum system. Four types of 3 D-Pauli-like noise corresponding to Weyl operators are created by Kraus operators: trit-flip, t-phase-flip, trit-phase-flip, and t-depolarizing. Then, this scheme is analyzed in terms of four types of noisy channel with memory. For each type of noise, the average fidelity is calculated as a function of memory and noise parameters, which is afterwards compared with classical fidelity. The results demonstrate that for trit-flip and t-depolarizing noises, memory will increase the average fidelity regardless of the noise parameter. However, for t-phase-flip and trit-phaseflip noises, memory may become ineffective in increasing the average fidelity above a certain noise threshold.展开更多
We study the performances of quantum channel adaptive [4,1] code transmitting in a joint amplitude damping and dephasing channel, the [6,2] code transmitting in an amplitude damping channel by combining the encoding, ...We study the performances of quantum channel adaptive [4,1] code transmitting in a joint amplitude damping and dephasing channel, the [6,2] code transmitting in an amplitude damping channel by combining the encoding, noise process, and decoding as one effective channel. We explicitly obtain the entanglement fidelities. The recovery operators of the [6,2] code are given. The performance is nearly optimal compared with that of the optimal method of semidefinite programming.展开更多
We propose two schemes for quantum secure direct communication (QSDC) and deterministic securequantum communication (DSQC) over collective dephasing noisy channel.In our schemes,four special two-qubit statesare used a...We propose two schemes for quantum secure direct communication (QSDC) and deterministic securequantum communication (DSQC) over collective dephasing noisy channel.In our schemes,four special two-qubit statesare used as the quantum channel.Since these states are unchanged through the collective dephasing noisy channel,the effect of the channel noise can be perfectly overcome.Simultaneously,the security against some usual attacks canbe ensured by utilizing the various checking procedures.Furthermore,these two schemes are feasible with present-daytechnique.展开更多
We investigate nonlocal advantage of quantum coherence(NAQC)in a correlated dephasing channel modeled by themultimode bosonic reservoir.We obtain analytically the dephasing and memory factors of this channel for the r...We investigate nonlocal advantage of quantum coherence(NAQC)in a correlated dephasing channel modeled by themultimode bosonic reservoir.We obtain analytically the dephasing and memory factors of this channel for the reservoirhaving a Lorentzian spectral density,and analyze how they affect the NAQC defined by the l1 norm and relative entropy.It is shown that the memory effects of this channel on NAQC are state-dependent,and they suppress noticeably the rapiddecay of NAQC for the family of input Bell-like states with one excitation.For the given transmission time of each qubit,we also obtain the regions of the dephasing and memory factors during which there is NAQC in the output states.展开更多
We investigate the decoy state quantum key distribution via the atmosphere channels. We consider the efficient decoy state method with one-signal state and two-decoy states. Our results show that the decoy state metho...We investigate the decoy state quantum key distribution via the atmosphere channels. We consider the efficient decoy state method with one-signal state and two-decoy states. Our results show that the decoy state method works even in the channels with fluctuating transmittance. Nevertheless, the key generation rate will be dra-matically decreased by atmosphere turbulence, which sheds more light on the characterization of atmosphere turbulence in realistic free-space based quantum key distributions.展开更多
To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, a...To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Qo(M : (Q0, 1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ~ is, the larger the error rate Q is. When the noise level ~ is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q 〈 0.153. Similarly, if error rate Q〉 0.153 = Q0, eavesdropping information I 〉 1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore.展开更多
文摘A protocol for quantum dialogue is proposed to exchange directly the communicator's secret messages by using a three-dimensional Bell state and a two-dimensional Bell state as quantum channel with quantum superdence coding, local collective unitary operations, and entanglement swapping. In this protocol, during the process of trans- mission of particles, the transmitted particles do not carry any secret messages and are transmitted only one time. The protocol has higher source capacity than protocols using symmetric two-dimensional states. The security is ensured by the unitary operations randomly performed on all checking groups before the particle sequence is transmitted and the application of entanglement swapping.
基金The project supported by the Program of New Century Excellent Talents at the University of China under Grant No.NCET-06-0554National Natural Science Foundation of China under Grant Nos.60677001 and 10747146+3 种基金the Science-Technology Fund of Anhui Province for Outstanding Youth under Grant No.06042087the Key Fund of the Ministry of Education of China under Grant No.206063the Natural Science Foundation of Guangdong Province under Grant Nos.06300345 and 7007806the Natural Science Foundation of Hubei Province under Grant No.2006ABA354
文摘Recently Xia and Song [Phys. Lett. A 364 (2007) 117] have proposed a controlled quantum secure direct communication (CQSDC) protocol. They claimed that in their protocol only with the help of the controller Charlie, the receiver Alice can successfully extract the secret message from the sender Bob. In this letter, first we will show that within their protocol the controller Charlie's role could have been excluded if it were not for their unreasonable design. We then revise the Xia-Song CQSDC protocol such that its original advantages are reta/ned and the CQSDC can be really realized.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61877054,12031004,and 12271474).
文摘We establish the Stinespring dilation theorem of the link product of quantum channels in two different ways,discuss the discrimination of quantum channels,and show that the distinguishability can be improved by self-linking each quantum channel n times as n grows.We also find that the maximum value of Uhlmann's theorem can be achieved for diagonal channels.
基金Supported by the 2014-Year Program for Excellent Youth Talents in University of Anhui Provincethe Talent Scientific Research Fundation of Tongling University under Grant No.2015tlxyrc01the Program for Academic Leader Reserve Candidates in Tongling University under Grant No.2014tlxyxs30
文摘In this paper [Commun. Theor. Phys. 53(2010) 648], Zhan et al. proposed a quantum dialogue protocol by using non-symmetric quantum channel. We study the security of the protocol and find that it has the drawback of information leakage. That is, Zhan et al.'s protocol is proved to be insecure by us.
基金Project supported by the National Key R&D Program of China (Grant No.2022YFB3103802)the National Natural Science Foundation of China (Grant Nos.62371240 and 61802175)the Fundamental Research Funds for the Central Universities (Grant No.30923011014)。
文摘Entanglement-assisted quantum error correction codes(EAQECCs)play an important role in quantum communications with noise.Such a scheme can use arbitrary classical linear code to transmit qubits over noisy quantum channels by consuming some ebits between the sender(Alice)and the receiver(Bob).It is usually assumed that the preshared ebits of Bob are error free.However,noise on these ebits is unavoidable in many cases.In this work,we evaluate the performance of EAQECCs with noisy ebits over asymmetric quantum channels and quantum channels with memory by computing the exact entanglement fidelity of several EAQECCs.We consider asymmetric errors in both qubits and ebits and show that the performance of EAQECCs in entanglement fidelity gets improved for qubits and ebits over asymmetric channels.In quantum memory channels,we compute the entanglement fidelity of several EAQECCs over Markovian quantum memory channels and show that the performance of EAQECCs is lowered down by the channel memory.Furthermore,we show that the performance of EAQECCs is diverse when the error probabilities of qubits and ebits are different.In both asymmetric and memory quantum channels,we show that the performance of EAQECCs is improved largely when the error probability of ebits is reasonably smaller than that of qubits.
基金Project supported by the National Natural Science Foundation of China(Grant No.61871407)the Natural Science Foundation of Hunan Province,China(Grant No.2021JJ30878)the Key Research and Development Program of Hunan Province,China(Grant Nos.2020GK4063 and 2022GK2016)。
文摘Underwater quantum communication plays a crucial role in ensuring secure data transmission and extensible quantum networks in underwater environments.However,the implementation of such applications encounters challenges due to the light attenuation caused by the complicated natural seawater.This paper focuses on employing a model based on seawater chlorophyll-a concentration to characterize the absorption and scattering of light through quantum channels.We propose a multi-scattering random channel model,which demonstrates characteristics of the excess noise in different propagation directions of communication links.Furthermore,we consider the fidelity of a continuous-variable quantum teleportation through seawater channel.To enhance transmission performance,non-Gaussian operations have been conducted.Numerical simulations show that incorporating non-Gaussian operations enables the protocol to achieve higher fidelity transmission or lower fidelity fading rates over longer transmission distances.
基金partially supported by the National Natural Science Foundation of China (Grant No. 11601338)。
文摘Quantum discord, one of the famous quantum correlations, has been recently generalized to multipartite systems by Radhakrishnan et al. Here we give analytical solutions of the quantum discord for a family of N-qubit quantum states. For the bipartite system, we derive a zero quantum discord which will remain unchanged under the phase damping channel. For multiparitite systems, it is found that the quantum discord can be classified into three categories and the quantum discord for odd-partite systems can exhibit freezing under the phase damping channel, while the freezing does not exist in the even-partite systems.
基金Project supported by Indian Institute of Engineering Science and Technology, Shibpur, India
文摘We discuss a quantum remote state preparation protocol by which two parties, Alice and Candy, prepare a single-qubit and a two-qubit state, respectively, at the site of the receiver Bob. The single-qubit state is known to Alice while the two-qubit state which is a non-maximally entangled Bell state is known to Candy. The three parties are connected through a single entangled state which acts as a quantum channel. We first describe the protocol in the ideal case when the entangled channel under use is in a pure state. After that, we consider the effect of amplitude damping(AD) noise on the quantum channel and describe the protocol executed through the noisy channel. The decrement of the fidelity is shown to occur with the increment in the noise parameter. This is shown by numerical computation in specific examples of the states to be created. Finally, we show that it is possible to maintain the label of fidelity to some extent and hence to decrease the effect of noise by the application of weak and reversal measurements. We also present a scheme for the generation of the five-qubit entangled resource which we require as a quantum channel. The generation scheme is run on the IBMQ platform.
基金funded by Youth Fund of the National Natural Science Foundation of China,grant number 11504176,61601230.
文摘As one of the main application directions of quantum technology,underwater quantum communication is of great research significance.In order to study the influence of marine planktonic algal particles on the communication performance of underwater quantum links,based on the extinction characteristics of marine planktonic algal particles,the influence of changes in the chlorophyll concentration and particle number density of planktonic algal particles on the attenuation of underwater links is explored respectively,the influence of marine planktonic algal particles on the fidelity of underwater quantum links,the generation rate of the security key,and the utilization rate of the channel is analyzed,and simulation experiments are carried out.The results show that with the increase in chlorophyll concentration and particle density of aquatic planktonic algal particles,quantum communication channel link attenuation shows a gradually increasing trend.In addition,the security key generation rate,channel fidelity and utilization rate are gradually decreasing.Therefore,the performance of underwater quantum communication channel will be interfered by marine planktonic algal particles,and it is necessary to adjust the relevant parameter values in the quantum communication system according to different marine planktonic algal particle number density and chlorophyll concentration to improve the performance of quantum communication.
文摘A novel vertical stack heterostructure CMOSFET is investigated, which is structured by strained SiGe/Si with a hole quantum well channel in the compressively strained Sil-xGex layer for p-MOSFET and an electron quantum well channel in the tensile strained Si layer for n-MOSFET. The device possesses several advantages including: 1) the integration of electron quantum well channel with hole quantum well channel into the same vertical layer structure; 2) the gate work function modifiability due to the introduction of poly-SiGe as a gate material; 3) better transistor matching; and 4) flexibility of layout design of CMOSFET by adopting exactly the same material lays for both n-channel and p-channel. The MEDICI simulation result shows that p-MOSFET and n-MOSFET have approximately the same matching threshold voltages. Nice performances are displayed in transfer characteristic, transconductance and cut-off frequency. In addition, its operation as an inverter confirms the CMOSFET structured device to be normal and effective in function.
基金The project supported by National Natural Science Foundation of China under Grant No. 10304022, the Science-Technology Fund of Anhui Province for 0utstanding Youth under Grant No. 06042087, the General Fund of the Educational Committee of Anhui Province under Grant No. 2006KJ260B, and the Key Fund of the Ministry of Education of China under Grant No. 206063. We are very grateful to Prof. ZHANG Zhan-Jun for his detailed instructions and help.
文摘We present a robust (n, n)-threshold scheme for multiparty quantum secret sharing of key over two collectivenoise channels (i.e., the collective dephasing channel and the collective rotating channel) via three-photon mixed states, In our scheme, only if all the sharers collaborate together can they establish a joint key with the message sender and extract the secret message from the sender's encrypted message. This scheme can be implemented using only a Bell singlet, a one-qubit state and polarization identification of single photon, so it is completely feasible according to the present-day technique.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2017MF040).
文摘Based on the quantum technique of the weak measurement and quantum measurement reversal(WMR),we propose a scheme to protect entanglement for an entangled two-qubit pure state from four typical quantum noise channels with memory,i.e.,the amplitude damping channel,the phase damping channel,the bit flip channel,and the depolarizing channel.For a given initial state |Ψ>=a |00>+d|11>,it is found that the WMR operation indeed helps to protect entanglement from the above four quantum channels with memory,and the protection effect of WMR scheme is better when the coefficient a is small.For the other initial state |φ>=b|01>+c|10>,the effect of the protection scheme is the same regardless of the coefficient b and the WMR operation can protect entanglement in the amplitude damping channel with memory.Moreover,the protection of entanglement in quantum noise channels without memory in contrast to the results of the channels with memory is more effective.For |Ψ> or |φ>,we also find that the memory parameters play a significant role in the suppression of entanglement sudden death and the initial entanglement can be drastically amplified.Another more important result is that the relationship between the concurrence,the memory parameter,the weak measurement strength,and quantum measurement reversal strength is found through calculation and discussion.It provides a strong basis for the system to maintain maximum entanglement in the nosie channel.
基金Project supported by the National Natural Science Foundation of China(Grant No.11671244)the Higher School Doctoral Subject Foundation of Ministry of Education of China(Grant No.20130202110001)Fundamental Research Funds for the Central Universities,China(Grant No.2016CBY003)
文摘In this paper, we discuss quantum uncertainty relations of quantum coherence through a different method from Ref. [52]. Some lower bounds with parameters and their minimal bounds are obtained. Moreover, we find that for two pairs of measurement bases with the same maximum overlap, quantum uncertainty relations and lower bounds with parameters are different, but the minimal bounds are the same. In addition, we discuss the dynamics of quantum uncertainty relations of quantum coherence and their lower bounds under the amplitude damping channel(ADC). We find that the ADC will change the uncertainty relations and their lower bounds, and their tendencies depend on the initial state.
基金The project supported by Special Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20050285002It is a pleasure to thank Profs. Yin-Sheng Ling and Jian-Xing Fang for their enlightening discussions on this topic.
文摘The effects of amplitude damping in quantum noise channels on average fidelity of quantum teleportation are analyzed in Bloeh sphere representation for every stage of teleportation. When the quantum channels are varied from maximally entangled states to non-maximally entangled states, it is found that the effects of noise channels on the fidelity are nearly equivalent to each other for strong quantum noise. The degree of damage on the fidelity of non-maximally entangled channels is smaller than that of maximally entangled channels. The average fidelity of values larger than 2/3 may be one representation indirectly showing how much the unavoidable quantum noise is.
基金supported by the Natural Science Research Project of Colleges and Universities in Anhui Province,China (Grant No. KJ2020A0301)the Science and Technology Project of Wuhu City in 2020 (Grant No. 2020yf48)。
文摘This paper proposes a three-dimensional(3 D) controlled quantum teleportation scheme for an unknown single-qutrit state. The scheme is first introduced in an ideal environment, and its detailed implementation is described via the transformation of the quantum system. Four types of 3 D-Pauli-like noise corresponding to Weyl operators are created by Kraus operators: trit-flip, t-phase-flip, trit-phase-flip, and t-depolarizing. Then, this scheme is analyzed in terms of four types of noisy channel with memory. For each type of noise, the average fidelity is calculated as a function of memory and noise parameters, which is afterwards compared with classical fidelity. The results demonstrate that for trit-flip and t-depolarizing noises, memory will increase the average fidelity regardless of the noise parameter. However, for t-phase-flip and trit-phaseflip noises, memory may become ineffective in increasing the average fidelity above a certain noise threshold.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60972071)the Natural Science Foundation of Zhejiang Province, China(Grant Nos. Y6100421 and LQ12F02012)the Zhejiang Province Science and Technology Project, China (Grant No. 2009C31060)
文摘We study the performances of quantum channel adaptive [4,1] code transmitting in a joint amplitude damping and dephasing channel, the [6,2] code transmitting in an amplitude damping channel by combining the encoding, noise process, and decoding as one effective channel. We explicitly obtain the entanglement fidelities. The recovery operators of the [6,2] code are given. The performance is nearly optimal compared with that of the optimal method of semidefinite programming.
文摘We propose two schemes for quantum secure direct communication (QSDC) and deterministic securequantum communication (DSQC) over collective dephasing noisy channel.In our schemes,four special two-qubit statesare used as the quantum channel.Since these states are unchanged through the collective dephasing noisy channel,the effect of the channel noise can be perfectly overcome.Simultaneously,the security against some usual attacks canbe ensured by utilizing the various checking procedures.Furthermore,these two schemes are feasible with present-daytechnique.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11675129,11774406,and 11934018)the National Key R&D Program of China(Grant Nos.2016YFA0302104 and 2016YFA0300600)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)the Research Program of Beijing Academy of Quantum Information Sciences(Grant No.Y18G07).
文摘We investigate nonlocal advantage of quantum coherence(NAQC)in a correlated dephasing channel modeled by themultimode bosonic reservoir.We obtain analytically the dephasing and memory factors of this channel for the reservoirhaving a Lorentzian spectral density,and analyze how they affect the NAQC defined by the l1 norm and relative entropy.It is shown that the memory effects of this channel on NAQC are state-dependent,and they suppress noticeably the rapiddecay of NAQC for the family of input Bell-like states with one excitation.For the given transmission time of each qubit,we also obtain the regions of the dephasing and memory factors during which there is NAQC in the output states.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11574400,U1304613,11204197,11204379 and 11074244the National Basic Research Program of China under Grant No 2011CBA00200the Doctor Foundation of the Ministry of Education of China under Grant No 20113402110059
文摘We investigate the decoy state quantum key distribution via the atmosphere channels. We consider the efficient decoy state method with one-signal state and two-decoy states. Our results show that the decoy state method works even in the channels with fluctuating transmittance. Nevertheless, the key generation rate will be dra-matically decreased by atmosphere turbulence, which sheds more light on the characterization of atmosphere turbulence in realistic free-space based quantum key distributions.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61472048,61402058,61272511,61472046,61202082 and 61370194the Beijing Natural Science Foundation under Grant No 4152038the China Postdoctoral Science Foundation Funded Project under Grant No 2014M561826
文摘To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Qo(M : (Q0, 1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ~ is, the larger the error rate Q is. When the noise level ~ is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q 〈 0.153. Similarly, if error rate Q〉 0.153 = Q0, eavesdropping information I 〉 1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore.