Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s...Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s organs.Therefore,increasing the Bt protein concentration at the boll stage,especially in bolls,has become the main goal for increasing insect resistance in cotton.In this study,two protein degradation inhibitors(ethylene diamine tetra acetic acid(EDTA)and leupeptin)were sprayed on the bolls,subtending leaves,and whole cotton plants at the peak flowering stage of two Bt cultivars(medium maturation Sikang 1(SK1))and early maturation Zhongmian 425(ZM425)in 2019 and 2020.The Bt protein content and protein degradation metabolism were assessed.The results showed that the Bt protein concentrations were enhanced by 21.3 to 38.8%and 25.0 to 38.6%in the treated bolls of SK1 and ZM425 respectively,while they were decreased in the subtending leaves of these treated bolls.In the treated leaves,the Bt protein concentrations increased by 7.6 to 23.5%and 11.2 to 14.9%in SK1 and ZM425,respectively.The combined application of EDTA and leupeptin to the whole cotton plant increased the Bt protein concentrations in both bolls and subtending leaves.The Bt protein concentrations in bolls were higher,increasing by 22.5 to 31.0%and 19.6 to 32.5%for SK1 and ZM425,respectively.The organs treated with EDTA or/and leupeptin showed reduced free amino acid contents,protease and peptidase activities and significant enhancements in soluble protein contents.These results indicated that inhibiting protein degradation could improve the protein content,thus increasing the Bt protein concentrations in the bolls or/and leaves of cotton plants.Therefore,the increase in the Bt protein concentration without yield reduction suggested that these two protein degradation inhibitors may be applicable for improving insect resistance in cotton production.展开更多
During the boll formation stage,cotton bolls exhibit the lowest expression of Bacillus thuringiensis(Bt)insecticidal proteins.Resistance to insects varies notably among different organs,which poses challenges for cont...During the boll formation stage,cotton bolls exhibit the lowest expression of Bacillus thuringiensis(Bt)insecticidal proteins.Resistance to insects varies notably among different organs,which poses challenges for controlling cotton bollworms.Consequently,an experimental strategy was designed in the 2020-2021 cotton growing season to coordinate the enhancement of protein synthesis and the attenuation of degradation.Two Bt cultivars of Gossypium hirsutum,namely the hybrid Sikang 3 and the conventional Sikang 1,were used as test materials.Three treatments were applied at the peak flowering period:CK(the control),T1(amino acids),and T2(amino acids and EDTA).The results show that,in comparison to the CK group,the Bt protein contents were significantly increased in both cotton bolls and their subtending leaves under the T1 and T2 treatments.The maximum levels of increase observed were 67.5%in cotton bolls and 21.7%in leaves.Moreover,the disparity in Bt protein content between cotton bolls and their subtending leaves notably decreased by 31.2%.Correlation analysis suggested that the primary physiological mechanisms for augmenting Bt protein content involve increased protein synthesis and reduced protein catabolism,which are independent of Bt gene expression levels.Stepwise regression and path analysis revealed that elevating the soluble protein content and transaminase activity,while reducing the catabolic enzyme activities,are instrumental in enhancing the Bt protein content.Consequently,the coordinated application of amino acids and EDTA emerges as a strategy that can improve the overall resistance of Bt cotton and mitigate the spatiotemporal variations in Bt toxin concentrations in both cotton bolls and leaves.展开更多
Bacillus thuringiensis Berliner(Bt)cotton was widely grown in China from 1997.Since then,it has resulted in many misunderstandings and concerns about Bt cotton.However,extensive research and practical experience over ...Bacillus thuringiensis Berliner(Bt)cotton was widely grown in China from 1997.Since then,it has resulted in many misunderstandings and concerns about Bt cotton.However,extensive research and practical experience over the past 28 years in China have led to the resolution of many of these concerns.This short review explores how the concerns has been resolved,and provides valuable insights for the future utilization of genetically modified products.展开更多
Cotton plays a crucial role in shaping Indian economy and rural livelihoods.The cotton crop is prone to numerous insect pests,necessitating insecticidal application,which increases production costs.The advent of the e...Cotton plays a crucial role in shaping Indian economy and rural livelihoods.The cotton crop is prone to numerous insect pests,necessitating insecticidal application,which increases production costs.The advent of the expression of Bacillus thuringiensis(Bt)insecticidal protein in cotton has significantly reduced the burden of pest without compromising environmental or human health.After the introduction of transgenic cotton,the cultivated area expanded to 22 million hectares,with a 64% increase in adoption by farmers worldwide.Currently,Bt cotton accounts for 93% of the cultivated cotton area in India.However,extensive use of Bt cotton has accelerated resistance development in pests like the pink bollworm.Furthermore,the overreliance on Bt cotton has reduced the use of broad-spectrum pesticides,favouring the emergence of secondary pests with significant challenges.This emphasizes the urgent necessity for developing novel pest management strategies.The high-dose and refuge strategy was initially effective for managing pest resistance in Bt cotton,but its implementation in India faced challenges due to misunderstandings about the use of non-Bt refuge crops.Although gene pyramiding was introduced as a solution,combining mono toxin also led to instances of cross-resistance.Therefore,there is a need for further exploration of biotechnological approaches to manage insect resistance in Bt cotton.Advanced biotechnological strategies,such as sterile insect release,RNA interference(RNAi)-mediated gene silencing,stacking Bt with RNAi,and genome editing using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein(CRISPR-Cas),offer promising tools for identifying and managing resistance genes in insects.Additionally,CRISPR-mediated gene drives and the development of novel biopesticides present potential avenues for effective pest management in cotton cultivation.These innovative approaches could significantly enhance the sustainability and efficacy of pest resistance management in Bt cotton.展开更多
In Bacillus thuringenesis(Bt) transgenic cotton, the cotton boll has the lowest insecticidal protein content when compared to the other organs. The present study investigated the effects of amino acid spray applicatio...In Bacillus thuringenesis(Bt) transgenic cotton, the cotton boll has the lowest insecticidal protein content when compared to the other organs. The present study investigated the effects of amino acid spray application at the peak flowering stage on the cotton boll Bt toxin concentration and yield formation. Boll protein synthesis and carbohydrate conversion were also studied to reveal the fundamental mechanism. Three treatments(i.e., CK, the untreated control;LA1, five amino acids;LA2, 21 amino acids) were applied to two Bt cultivars of G. hirsutum(i.e., the hybrid Sikang 3 and the conventional Sikang 1) in the cotton-growing seasons during 2017 and 2018. Amino acid spray application at the peak flowering stage resulted in an increase of 5.2–16.4% in the boll Bt protein concentration and an increase of 5.5–11.3%in the seed cotton yield, but there was no difference between the two amino acid treatments. In addition, amino acid applications led to increases in the amino acid content, soluble protein content, glutamate pyruvate transaminase(GPT)activity, glutamate oxaloacetate transaminase(GOT) activity, glucose content, fructose content and soluble acid invertase(SAI) activity. This study also found that Bt protein content, enhanced boll number and the weight of opened bolls were closely related to carbon and nitrogen metabolism. The Bt protein content had significant linear positive correlations with amino acid and soluble protein contents. Enhanced boll number had significant linear positive correlations with the GPT and GOT activities from 15–25 days after flowering(DAF). The weight of opened bolls from 55–65 DAF had a significant linear positive correlation with the SAI activity. These results indicate that the enhancement of boll protein synthesis and carbohydrate conversion by amino acid application resulted in a simultaneous increase in the boll Bt protein concentration and cotton lint yield.展开更多
[Objective] The research aimed to assess the effect of transgenic Bt plus CpTI cotton variety SGK321 on carboxylesterase and acetylcholinesterase of cotton aphid Aphis gossypii and provide theoretical basis for studyi...[Objective] The research aimed to assess the effect of transgenic Bt plus CpTI cotton variety SGK321 on carboxylesterase and acetylcholinesterase of cotton aphid Aphis gossypii and provide theoretical basis for studying the biosafety of transgenic cotton.[Method] Cotton aphids were fed with SGK321 and Shiyuan321(normal parental varieties) for over 40 generations.Enzyme activities were compared between cotton aphids feeding on SGK321 for 1,2,3,41,42 and 43 generations with those on Shiyuan321.[Result] The carboxylesterase activity of cotton aphids feeding on SGK321 for 1 generation was significantly higher than those feeding on Shiyuan321.Acetylcholinesterase activity of cotton aphids feeding on SGK321 for 1,2 and 3 generations were significantly higher than those feeding on Shiyuan321 in the same generation.But there was no significant difference of enzyme activity between cotton aphids feeding on SGK321 for a long term and those feeding on parental cotton.[Conclusion] The cotton aphid that feeding on transgenic Bt plus CpTI cotton SGK321 for a long time has adaptivity to SGK321 by regulating the detoxifying enzyme.展开更多
[Objective] This study aimed to investigate the spatial-temporal dynamics of Bt toxic protein expression in insect-resistant transgenic cotton and its degradation in soil. [Method] Btcry1Ac toxic protein expression in...[Objective] This study aimed to investigate the spatial-temporal dynamics of Bt toxic protein expression in insect-resistant transgenic cotton and its degradation in soil. [Method] Btcry1Ac toxic protein expression in roots, stems and leaves of transgenic cotton Guoshen GK45 at different developmental stages and the annual average content of BtCry1Ac toxin protein in the topsoil, rhizosphere soil and following cotton-growing area were explored and analyzed by using enzyme linked immuno sorbed assay (ELISA). [Result] The content of exogenous BtCry1Ac toxin protein decreased during the growth process of insect-resistant transgenic cotton; to be specific, the content of BtCry1Ac toxin protein in cotton stems and leaves decreased more slowly and always maintained a high level, while that in roots decreased rapidly and reached a minimum level to the following plant growth and development stage. BtCry1Ac toxin protein was detected in topsoil of both non-transgenic and transgenic cotton-growing areas, and the content of BtCry1Ac toxin protein increased in topsoil of following cotton-growing area, which was very low in rhizosphere soil. [Conclusion] Determination of Btcry1Ac toxic protein provides scientific basis for the risk assessment of the cultivation of genetically modified crops and the safety evaluation of soil ecosystem.展开更多
Due to its strong and effective insecticidal properties, transgenic Bt+CpTI cotton has witnessed an expanding planting area in recent years, and the impact of its cultivation on soil ecosystem becomes an important pa...Due to its strong and effective insecticidal properties, transgenic Bt+CpTI cotton has witnessed an expanding planting area in recent years, and the impact of its cultivation on soil ecosystem becomes an important part of environmental risk assessment. Using transgenic Bt+CpTI cotton sGK321 and its parental homologous conventional cotton Shiyuan 321 as the study objects, a comparative analysis was conducted on the changes in enzyme activities (urease, alkaline phosphatase, and catalase) of the rhizosphere soil and changes in the number of culturable microor-ganisms (bacteria, fungi, and actinomycetes) at different growth stages (seedling stage, budding stage, flower and bol stage, and bol opening stage) of sGK321 and Shiyuan 321 under the condition of 13 years field plantings. The results showed that, the populations of bacteria, fungi, and actinomycete and the soil enzyme activi-ties of urease, alkaline phosphatase and catalase had a similar variation trend along with the cotton growing process for transgenic cotton and conventional cotton. Some occasional and inconsistent effects on soil enzyme activities and soil fungi composi-tion in the rhizosphere soil of transgenic Bt+CpTI cotton were found at the seedling stage, budding stage, flower and bol stage as compared with that of conventional cotton. The amount of bacteria and actinomycetes were not significantly different during a certain stage; however, the activities of urease, catalase, alkaline phos-phatase, also with the number of fungi were significantly different, e.g. the urease activities at seedling stage, the alkaline phosphatase at seedling and budding stages, and the soil culturable fungi at flower and bol stage were less than that of conven-tional cotton, while the soil alkaline phosphatase activities at flower and bol stage were higher. Cluster analysis showed that soil enzyme activities and microbial popu-lation changed mainly along the growth processes, suffering little from the planting of transgenic Bt+CpTI cotton.展开更多
The area sown to Bt cotton has expanded rapidly in China since 1997. It has effectively controlled the bollworm. However, in recent years, concern has surfaced about the emergence of secondary insect pests, particular...The area sown to Bt cotton has expanded rapidly in China since 1997. It has effectively controlled the bollworm. However, in recent years, concern has surfaced about the emergence of secondary insect pests, particular mirids, in Bt cotton fields. This study measures the patterns of insecticide use based on farm-level from 1999 to 2006, the analysis demonstrates a rise in insecticide use to control mirids between 2001 and 2004, secondary insect infestations is largely related to the rise of mirids, but this rising did not continue in more than half of sample villages studied in 2004-2006. Moreover, the increase in insecticide use for the control of secondary insects is far smaller than the reduction in total insecticide use due to Bt cotton adoption. Further econometric analyses show that rise and fall of mirids is largely related to local temperature and rainfall.展开更多
The higher survival rates of Helicoverpa amigera larvae were usually observed after adverse climate which was related to extreme temperature (T) and relative humidity (RH) stresses in transgenic Bacillus thuringie...The higher survival rates of Helicoverpa amigera larvae were usually observed after adverse climate which was related to extreme temperature (T) and relative humidity (RH) stresses in transgenic Bacillus thuringiensis (Bt) cotton. The unstable resistance of Bt cotton to bollworms has been correlated with the reduced expression of CrylAc δ-endotoxin. The objective of this study was to investigate the effects of combined temperature and relative humidity stresses on the leaf CrylAc insecticidal protein expression during critical developmental stages. The study was undertaken on two transgenic cotton cultivars that share same parental background, Sikang 1 (a conventional cultivar) and Sikang 3 (a hybrid cultivar), during the 2007 and 2008 growing seasons at the Yangzhou University Farm, Yangzhou, China. The study was arranged with two factors that consisted of temperature (two levels) and relative humidity (three levels). The six T/RH treatments were 37℃/95%, 37℃/70%, 37℃/50%, 18℃/95%, 18℃/70%, and 18℃/50%. In 2007, the six treatments were imposed to the plants at peak flowering stage for 24 h; in 2008, the six treatments were applied to the plants at peak square, peak flowering, and peak boll stages for 48 h. The results of the study indicated that the leaf insecticidal protein expression in CrylAc was significantly affected by extreme temperature only at peak flowering stage, and by both extreme temperature and relative humidity during boll filling stage. The greatest reductions were observed when the stresses were applied at peak boll stage. In 2008, after 48 h stress treatment, the leaf Bt endotoxin expression reduced by 25.9-36.7 and 23.6-40.5% at peak boll stage, but only by 14.9-26.5 and 12.8-24.0% at peak flowering stage for Sikang 1 and Sikang 3, respectively. The greatest reduction was found under the low temperature combined with low relative humidity condition for both years. It is believed that the temperature and relative humidity stresses may be attributed to the reduced efficacy of Bt cotton in growing conditions in China, where extreme temperatures often increase up to 35-40℃ and/or decrease down to 15-20℃, and relative humidity may reach to 85-95% and/or reduce to 40-55% during the cotton growing season.展开更多
Expression of insecticidal protein for transgenic Bacillus thuringiensis (Bt) cotton is unstable and related to nitrogen metabolism. The objective of this study was to investigate the relationship between leaf carbo...Expression of insecticidal protein for transgenic Bacillus thuringiensis (Bt) cotton is unstable and related to nitrogen metabolism. The objective of this study was to investigate the relationship between leaf carbon nitrogen ratio (C/N) and insecticidal efficacy of two Bt cotton cultivars. C/N ratio and Bt protein content were both measured at peak square period and peak boll period respectively under 5-7 d high temperature and different nitrogen fertilizer rates on the Yangzhou University Farm and the Ludong Cotton Farm, China. All plants were grown in field. The results showed that the C/N ratio enhanced slightly and the Bt protein content remained stable at peak square period, but significant increases for the C/N ratio and decreases markedly for the leaf Bt protein concentration were detected at the peak boll period. The similar patterns at the two growth periods were found for the leaf C/N ratio and Bt protein content by different N fertilizer treatments. When nitrogen rate was from 0 to 600 kg ha-l, the C/N ratio was reduced by 0.017 and 0.006 for Sikang 1 and Sikang 3 at peak square period, compared to the 1.350 to 1.143 reduction for Sikang 1 and Sikang 3 at peak boll period, respectively. Correspondingly, the leaf Bt protein contents were bolstered by 2.6-11.8 and 26.9-36.9% at the two different growth periods, respectively. The results suggested that enhanced C/N ratio by high temperature and nitrogen application may result in the reduction of inseetiocidal efficacy in Bt cotton, especially in peak boll period.展开更多
Transgenic insect-resistant cotton is being increasingly planted in Xinjiang cotton-planting regions, where geographical climate conditions and species composition of pests and natural enemies are greatly unique in Ch...Transgenic insect-resistant cotton is being increasingly planted in Xinjiang cotton-planting regions, where geographical climate conditions and species composition of pests and natural enemies are greatly unique in China. Limited studies have been conducted on the ecological impacts of transgenic insect-resistant cotton, especially for transgenic double genes (Bt+CpTI) cotton, in this region. In this study, the potential effects of transgenic Bt+CpTI cotton on the seasonal abundance of non-target pests and predators were assessed from 2009 to 2011 in Korla, Xinjiang. The results showed that species composition and seasonal abundance of 5 groups of pests and 5 groups of predators were not significantly different between transgenic Bt+CpTI cotton and non-transgenic cotton every year. It suggests that transgenic Bt+CpTI cotton per se does not affect the population dynamics of non-target pests and predators on this crop in Xinjiang.展开更多
With increased cultivation of transgenic Bacillus thuringiensis (Bt) cotton in the saline alkaline soil of China, assessments of transgenic crop biosafety have focused on the effects of soil salinity on rhizosphere ...With increased cultivation of transgenic Bacillus thuringiensis (Bt) cotton in the saline alkaline soil of China, assessments of transgenic crop biosafety have focused on the effects of soil salinity on rhizosphere microbes and Bt protein residues. In 2013 and 2014, investigations were conducted on the rhizosphere microbial biomass, soil enzyme activities and Bt protein contents of the soil under transgenic Bt cotton (variety GK19) and its parental non-transgenic cotton (Simian 3) cultivated at various salinity levels (1.15, 6.00 and 11.46 dS m-1). Under soil salinity stress, trace amounts of Bt proteins were ob- served in the Bt cotton GK19 rhizosphere soil, although the protein content increased with cotton growth and increased soil salinity levels. The populations of slight halophilic bacteria, phosphate solubilizing bacteria, ammonifying bacteria, nitrifying bacteria and denitrifying bacteria decreased with increased soil salinity in the Bt and non-Bt cotton rhizosphere soil, and the microbial biomass carbon, microbial respiration and soil catalase, urease and alkaline phosphatase activity also decreased. Correlation analyses showed that the increased Bt protein content in the Bt cotton rhizosphere soil may have been caused by the slower decomposition of soil microorganisms, which suggests that salinity was the main factor influencing the relevant activities of the soil microorganisms and indicates that Bt proteins had no clear adverse effects on the soil microorganisms. The results of this study may provide a theoretical basis for risk assessments of genetically modified cotton in saline alkaline soil.展开更多
To optimize the spatial distribution of cotton bolls and to increase the yield,the relationship between yield components and boll spatial distribution was investigated among different Bt(Bacillus thuringensis)cotton v...To optimize the spatial distribution of cotton bolls and to increase the yield,the relationship between yield components and boll spatial distribution was investigated among different Bt(Bacillus thuringensis)cotton varieties.A five-year field experiment was conducted to reveal the reasons for the differences in lint yield and fiber quality across three Bt cotton varieties with different yield formations from 2013 to 2017.The lint yield of Jiman 169(the average yield from 2013-2017 was 42.2 g/plant)was the highest,i.e.,16.3 and 36.9%higher than Lumianyan 21(L21)and Daizimian 99B(99B),respectively.And the differences in boll weight among the three cultivars were similar to the lint yield,while the others yield components were not.So the increase in lint yield was mainly attributed to the enlargement in boll weight.However,the change in fiber quality was inconsistent with the lint yield,and the quality of L21 was significantly better than that of Jimian 169(J169)and 99B,which was caused by the diversity of boll spatial distribution.Compared with 99B,the loose-type J169 had the highest number of large bolls in inner positions;the tight-type L21 had a few large bolls and the highest number of lower and middle bolls.And approximately 80.72%of the lint yield was concentrated on the inner nodes in Jiman 169,compared with 77.44%of L21 and 66.73%of 99B during the five-year experiment.Although lint yield was significantly affected by the interannual changes,the lint yield of J169 was the highest and the most stable,as well as its yield components.These observations demonstrated the increase in lint yield was due to the increase in boll weight,and the large bolls and high fiber quality were attributed to the optimal distribution of bolls within the canopies.展开更多
Higher boll worm survival rates were detected after high temperature presented during square period in Bt cotton. The objective of this study was to investigate the effects of high temperature level on the Bt efficacy...Higher boll worm survival rates were detected after high temperature presented during square period in Bt cotton. The objective of this study was to investigate the effects of high temperature level on the Bt efficacy of two different types of Bt cotton cultivars at squaring stage. During the 2011 to 2013 cotton growth seasons, high temperature treatments ranged from 34 to 44°C in climate chambers, and field experiments under high temperature weather with various temperature levels were conducted to investigate the effects of the high temperature level on square Bt protein concentration and nitrogen metabolism. The climate chamber experiments showed that the square insecticidal protein contents reduced after 24 h elevated temperature treatments for both cultivars, whereas significant declines of the square insecticidal protein contents were detected at temperature 〉38°C, and only slightly numerical reductions were observed when temperature below 38°C. Similar high temperature responses were also observed at the two field experimental sites in 2013. Correspondingly, high temperature below 38°C seems have little effect on the square amino acid concentrations, soluble protein contents, glutamic-pyruvic transaminase(GPT) and glutamic-oxalacetic transaminase(GOT) activities as well as protease and peptidase activities; however, when the temperature was above 38°C, reduced soluble protein contents, enhanced amino acid concentrations, decreased GPT and GOT activities, bolstered protease and peptidase activities in square were detected. In general, the higher the temperature is(〉38°C), the larger the changes for the above compound contents and key enzymes activities of the square protein cycle. The findings indicated that the unstable insect resistance of the square was related to high temperature level during square stage.展开更多
Bacillus thuringiensis (Bt) cotton is grown worldwide, including in saline soils, but the effect of salinity on ion fluxes of Bt cotton remains unknown. Responses of two transgenic Bt cotton genotypes (SGK321 and 2...Bacillus thuringiensis (Bt) cotton is grown worldwide, including in saline soils, but the effect of salinity on ion fluxes of Bt cotton remains unknown. Responses of two transgenic Bt cotton genotypes (SGK321 and 29317) and their corresponding receptors, Shiyuan 321 (SY321) and Jihe 321 (J321), to 150 mmol L-1 NaCl stress were studied in a growth chamber. The root dry weight of SGK321 and 29317 under NaCl treatment was decreased by 30 and 31%, respectively. However, their corresponding receptor cultivars SY321 and J321 were less affected (19 and 24%, respectively). The root length and surface area of the Bt cultivars were significantly decreased relative to their receptors under salt stress. NaCl treatment significantly increased CrylAc mRNA transcript levels in SGK321 and 29317 but did not affect Bt protein content in leaves or roots of either cultivar at 1 and 7 d after NaCl treatment. Fluxes of Na^+, K^+, and H^+ in roots were investigated using the scanning ion-selective electrode technique. Both mean K^+ efflux rate and transient K^+ efflux of the Bt cultivars increased four-fold compared to their corresponding receptors when exposed to salinity stress. There were no significant differences in Na^+ efflux between Bt and non-Bt cottons. Furthermore, the Na^+ contents in roots and leaves of all genotypes dramatically increased under salt stress, whereas K^+ contents decreased. Our results suggested that Bt cotton cultivars are more sensitive to salt stress than their receptor genotypes.展开更多
This study was conducted to investigate the effects of alternating high temperature on CrylAc protein content on Bt cotton cultivars Sikang 1 (SK-1, a conventional cultivar) and Sikang 3 (SK-3, a hybrid cultivar)....This study was conducted to investigate the effects of alternating high temperature on CrylAc protein content on Bt cotton cultivars Sikang 1 (SK-1, a conventional cultivar) and Sikang 3 (SK-3, a hybrid cultivar). In 2011 and 2012, cotton plants were subjected to high temperature treatments ranging from 32 to 40℃ in climate chambers to investigate the effects of high temperature on boll shell insecticidal protein expression. The experiments showed that significant decline of the boll shell insecticidal protein was detected at temperatures higher than 38℃ after 24 h. Based on the results, the cotton plants were treated with the threshold temperature of 38℃ from 6:00 a.m. to 6:00 p.m. followed by a normal temperature of 27℃ during the remaining night hours (DH/NN) in 2012 and 2013. These treatments were conducted at peak boll growth stage for both cultivars in study periods of 0, 4, 7, and 10 d. Temperature treatment of 32℃ from 6:00 a.m. to 6:00 p.m. and 27℃ in the remaining hours was set as control. The results showed that, compared with the control, after the DH/NN stress treatment applied for 7 d, the boll shell CrylAc protein content level was significantly decreased by 19.1 and 17.5% for SK-1 and by 15.3 and 13.7% for SK-3 in 2012 and 2013, respectively. Further analysis of nitrogen metabolic physiology under DH/NN showed that the soluble protein content and the glutamic pyruvic transaminase (GPT) activities decreased slightly after 4 d, and then decreased sharply after 7 d. The free amino acid content and the protease content increased sharply after 7 d. The changes in SK-1 were greater than those in SK-3. These results suggest that under DH/NN stress, boll shell CrylAc protein content decline was delayed. Reduced protein synthesis and increased protein degradation in the boll shell decreased protein content, including Bt protein, which may reduce resistance to the cotton bollworm.展开更多
基金supported by the National Natural Science Foundation of China (31901462 and 31671613).
文摘Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s organs.Therefore,increasing the Bt protein concentration at the boll stage,especially in bolls,has become the main goal for increasing insect resistance in cotton.In this study,two protein degradation inhibitors(ethylene diamine tetra acetic acid(EDTA)and leupeptin)were sprayed on the bolls,subtending leaves,and whole cotton plants at the peak flowering stage of two Bt cultivars(medium maturation Sikang 1(SK1))and early maturation Zhongmian 425(ZM425)in 2019 and 2020.The Bt protein content and protein degradation metabolism were assessed.The results showed that the Bt protein concentrations were enhanced by 21.3 to 38.8%and 25.0 to 38.6%in the treated bolls of SK1 and ZM425 respectively,while they were decreased in the subtending leaves of these treated bolls.In the treated leaves,the Bt protein concentrations increased by 7.6 to 23.5%and 11.2 to 14.9%in SK1 and ZM425,respectively.The combined application of EDTA and leupeptin to the whole cotton plant increased the Bt protein concentrations in both bolls and subtending leaves.The Bt protein concentrations in bolls were higher,increasing by 22.5 to 31.0%and 19.6 to 32.5%for SK1 and ZM425,respectively.The organs treated with EDTA or/and leupeptin showed reduced free amino acid contents,protease and peptidase activities and significant enhancements in soluble protein contents.These results indicated that inhibiting protein degradation could improve the protein content,thus increasing the Bt protein concentrations in the bolls or/and leaves of cotton plants.Therefore,the increase in the Bt protein concentration without yield reduction suggested that these two protein degradation inhibitors may be applicable for improving insect resistance in cotton production.
基金supported by the National Natural Science Foundation of China(31901462 and 31671613)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJA210005)+1 种基金the China Scholarship Council(202308320440)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(KYCX22_3508)。
文摘During the boll formation stage,cotton bolls exhibit the lowest expression of Bacillus thuringiensis(Bt)insecticidal proteins.Resistance to insects varies notably among different organs,which poses challenges for controlling cotton bollworms.Consequently,an experimental strategy was designed in the 2020-2021 cotton growing season to coordinate the enhancement of protein synthesis and the attenuation of degradation.Two Bt cultivars of Gossypium hirsutum,namely the hybrid Sikang 3 and the conventional Sikang 1,were used as test materials.Three treatments were applied at the peak flowering period:CK(the control),T1(amino acids),and T2(amino acids and EDTA).The results show that,in comparison to the CK group,the Bt protein contents were significantly increased in both cotton bolls and their subtending leaves under the T1 and T2 treatments.The maximum levels of increase observed were 67.5%in cotton bolls and 21.7%in leaves.Moreover,the disparity in Bt protein content between cotton bolls and their subtending leaves notably decreased by 31.2%.Correlation analysis suggested that the primary physiological mechanisms for augmenting Bt protein content involve increased protein synthesis and reduced protein catabolism,which are independent of Bt gene expression levels.Stepwise regression and path analysis revealed that elevating the soluble protein content and transaminase activity,while reducing the catabolic enzyme activities,are instrumental in enhancing the Bt protein content.Consequently,the coordinated application of amino acids and EDTA emerges as a strategy that can improve the overall resistance of Bt cotton and mitigate the spatiotemporal variations in Bt toxin concentrations in both cotton bolls and leaves.
基金National Natural Science Foundation of China(32372229)。
文摘Bacillus thuringiensis Berliner(Bt)cotton was widely grown in China from 1997.Since then,it has resulted in many misunderstandings and concerns about Bt cotton.However,extensive research and practical experience over the past 28 years in China have led to the resolution of many of these concerns.This short review explores how the concerns has been resolved,and provides valuable insights for the future utilization of genetically modified products.
文摘Cotton plays a crucial role in shaping Indian economy and rural livelihoods.The cotton crop is prone to numerous insect pests,necessitating insecticidal application,which increases production costs.The advent of the expression of Bacillus thuringiensis(Bt)insecticidal protein in cotton has significantly reduced the burden of pest without compromising environmental or human health.After the introduction of transgenic cotton,the cultivated area expanded to 22 million hectares,with a 64% increase in adoption by farmers worldwide.Currently,Bt cotton accounts for 93% of the cultivated cotton area in India.However,extensive use of Bt cotton has accelerated resistance development in pests like the pink bollworm.Furthermore,the overreliance on Bt cotton has reduced the use of broad-spectrum pesticides,favouring the emergence of secondary pests with significant challenges.This emphasizes the urgent necessity for developing novel pest management strategies.The high-dose and refuge strategy was initially effective for managing pest resistance in Bt cotton,but its implementation in India faced challenges due to misunderstandings about the use of non-Bt refuge crops.Although gene pyramiding was introduced as a solution,combining mono toxin also led to instances of cross-resistance.Therefore,there is a need for further exploration of biotechnological approaches to manage insect resistance in Bt cotton.Advanced biotechnological strategies,such as sterile insect release,RNA interference(RNAi)-mediated gene silencing,stacking Bt with RNAi,and genome editing using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein(CRISPR-Cas),offer promising tools for identifying and managing resistance genes in insects.Additionally,CRISPR-mediated gene drives and the development of novel biopesticides present potential avenues for effective pest management in cotton cultivation.These innovative approaches could significantly enhance the sustainability and efficacy of pest resistance management in Bt cotton.
基金supported by the National Natural Science Foundation of China (31901462 and 31671613)the Natural Science Foundation of Jiangsu Province,China (BK20191439)+1 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(KYCX22_3508)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China (PAPD)。
文摘In Bacillus thuringenesis(Bt) transgenic cotton, the cotton boll has the lowest insecticidal protein content when compared to the other organs. The present study investigated the effects of amino acid spray application at the peak flowering stage on the cotton boll Bt toxin concentration and yield formation. Boll protein synthesis and carbohydrate conversion were also studied to reveal the fundamental mechanism. Three treatments(i.e., CK, the untreated control;LA1, five amino acids;LA2, 21 amino acids) were applied to two Bt cultivars of G. hirsutum(i.e., the hybrid Sikang 3 and the conventional Sikang 1) in the cotton-growing seasons during 2017 and 2018. Amino acid spray application at the peak flowering stage resulted in an increase of 5.2–16.4% in the boll Bt protein concentration and an increase of 5.5–11.3%in the seed cotton yield, but there was no difference between the two amino acid treatments. In addition, amino acid applications led to increases in the amino acid content, soluble protein content, glutamate pyruvate transaminase(GPT)activity, glutamate oxaloacetate transaminase(GOT) activity, glucose content, fructose content and soluble acid invertase(SAI) activity. This study also found that Bt protein content, enhanced boll number and the weight of opened bolls were closely related to carbon and nitrogen metabolism. The Bt protein content had significant linear positive correlations with amino acid and soluble protein contents. Enhanced boll number had significant linear positive correlations with the GPT and GOT activities from 15–25 days after flowering(DAF). The weight of opened bolls from 55–65 DAF had a significant linear positive correlation with the SAI activity. These results indicate that the enhancement of boll protein synthesis and carbohydrate conversion by amino acid application resulted in a simultaneous increase in the boll Bt protein concentration and cotton lint yield.
基金Supported by Major Program for New Transgenic Plant VarietiesBreeding (2008ZX08012-04)~~
文摘[Objective] The research aimed to assess the effect of transgenic Bt plus CpTI cotton variety SGK321 on carboxylesterase and acetylcholinesterase of cotton aphid Aphis gossypii and provide theoretical basis for studying the biosafety of transgenic cotton.[Method] Cotton aphids were fed with SGK321 and Shiyuan321(normal parental varieties) for over 40 generations.Enzyme activities were compared between cotton aphids feeding on SGK321 for 1,2,3,41,42 and 43 generations with those on Shiyuan321.[Result] The carboxylesterase activity of cotton aphids feeding on SGK321 for 1 generation was significantly higher than those feeding on Shiyuan321.Acetylcholinesterase activity of cotton aphids feeding on SGK321 for 1,2 and 3 generations were significantly higher than those feeding on Shiyuan321 in the same generation.But there was no significant difference of enzyme activity between cotton aphids feeding on SGK321 for a long term and those feeding on parental cotton.[Conclusion] The cotton aphid that feeding on transgenic Bt plus CpTI cotton SGK321 for a long time has adaptivity to SGK321 by regulating the detoxifying enzyme.
文摘[Objective] This study aimed to investigate the spatial-temporal dynamics of Bt toxic protein expression in insect-resistant transgenic cotton and its degradation in soil. [Method] Btcry1Ac toxic protein expression in roots, stems and leaves of transgenic cotton Guoshen GK45 at different developmental stages and the annual average content of BtCry1Ac toxin protein in the topsoil, rhizosphere soil and following cotton-growing area were explored and analyzed by using enzyme linked immuno sorbed assay (ELISA). [Result] The content of exogenous BtCry1Ac toxin protein decreased during the growth process of insect-resistant transgenic cotton; to be specific, the content of BtCry1Ac toxin protein in cotton stems and leaves decreased more slowly and always maintained a high level, while that in roots decreased rapidly and reached a minimum level to the following plant growth and development stage. BtCry1Ac toxin protein was detected in topsoil of both non-transgenic and transgenic cotton-growing areas, and the content of BtCry1Ac toxin protein increased in topsoil of following cotton-growing area, which was very low in rhizosphere soil. [Conclusion] Determination of Btcry1Ac toxic protein provides scientific basis for the risk assessment of the cultivation of genetically modified crops and the safety evaluation of soil ecosystem.
文摘Due to its strong and effective insecticidal properties, transgenic Bt+CpTI cotton has witnessed an expanding planting area in recent years, and the impact of its cultivation on soil ecosystem becomes an important part of environmental risk assessment. Using transgenic Bt+CpTI cotton sGK321 and its parental homologous conventional cotton Shiyuan 321 as the study objects, a comparative analysis was conducted on the changes in enzyme activities (urease, alkaline phosphatase, and catalase) of the rhizosphere soil and changes in the number of culturable microor-ganisms (bacteria, fungi, and actinomycetes) at different growth stages (seedling stage, budding stage, flower and bol stage, and bol opening stage) of sGK321 and Shiyuan 321 under the condition of 13 years field plantings. The results showed that, the populations of bacteria, fungi, and actinomycete and the soil enzyme activi-ties of urease, alkaline phosphatase and catalase had a similar variation trend along with the cotton growing process for transgenic cotton and conventional cotton. Some occasional and inconsistent effects on soil enzyme activities and soil fungi composi-tion in the rhizosphere soil of transgenic Bt+CpTI cotton were found at the seedling stage, budding stage, flower and bol stage as compared with that of conventional cotton. The amount of bacteria and actinomycetes were not significantly different during a certain stage; however, the activities of urease, catalase, alkaline phos-phatase, also with the number of fungi were significantly different, e.g. the urease activities at seedling stage, the alkaline phosphatase at seedling and budding stages, and the soil culturable fungi at flower and bol stage were less than that of conven-tional cotton, while the soil alkaline phosphatase activities at flower and bol stage were higher. Cluster analysis showed that soil enzyme activities and microbial popu-lation changed mainly along the growth processes, suffering little from the planting of transgenic Bt+CpTI cotton.
基金support by the Chinese Academy of Sciences(KSCX2-YW-N-039) and International Development Research Center,China
文摘The area sown to Bt cotton has expanded rapidly in China since 1997. It has effectively controlled the bollworm. However, in recent years, concern has surfaced about the emergence of secondary insect pests, particular mirids, in Bt cotton fields. This study measures the patterns of insecticide use based on farm-level from 1999 to 2006, the analysis demonstrates a rise in insecticide use to control mirids between 2001 and 2004, secondary insect infestations is largely related to the rise of mirids, but this rising did not continue in more than half of sample villages studied in 2004-2006. Moreover, the increase in insecticide use for the control of secondary insects is far smaller than the reduction in total insecticide use due to Bt cotton adoption. Further econometric analyses show that rise and fall of mirids is largely related to local temperature and rainfall.
基金supported by the National Natural Science Foundation of China (30971727,31171479)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China+4 种基金the Key Laboratory Foundation of Jiangsu Province,China (10KJA210057)the Doctoral Advisor Foundation of Education Department of China(20113250110001)the Natural Science Foundation of Jiangsu Province,China (BK2009324)the New Century Academic Leader Project,Yangzhou University of Chinathe Qing-Lan Project,Jiangsu Provincial Educational Department,China
文摘The higher survival rates of Helicoverpa amigera larvae were usually observed after adverse climate which was related to extreme temperature (T) and relative humidity (RH) stresses in transgenic Bacillus thuringiensis (Bt) cotton. The unstable resistance of Bt cotton to bollworms has been correlated with the reduced expression of CrylAc δ-endotoxin. The objective of this study was to investigate the effects of combined temperature and relative humidity stresses on the leaf CrylAc insecticidal protein expression during critical developmental stages. The study was undertaken on two transgenic cotton cultivars that share same parental background, Sikang 1 (a conventional cultivar) and Sikang 3 (a hybrid cultivar), during the 2007 and 2008 growing seasons at the Yangzhou University Farm, Yangzhou, China. The study was arranged with two factors that consisted of temperature (two levels) and relative humidity (three levels). The six T/RH treatments were 37℃/95%, 37℃/70%, 37℃/50%, 18℃/95%, 18℃/70%, and 18℃/50%. In 2007, the six treatments were imposed to the plants at peak flowering stage for 24 h; in 2008, the six treatments were applied to the plants at peak square, peak flowering, and peak boll stages for 48 h. The results of the study indicated that the leaf insecticidal protein expression in CrylAc was significantly affected by extreme temperature only at peak flowering stage, and by both extreme temperature and relative humidity during boll filling stage. The greatest reductions were observed when the stresses were applied at peak boll stage. In 2008, after 48 h stress treatment, the leaf Bt endotoxin expression reduced by 25.9-36.7 and 23.6-40.5% at peak boll stage, but only by 14.9-26.5 and 12.8-24.0% at peak flowering stage for Sikang 1 and Sikang 3, respectively. The greatest reduction was found under the low temperature combined with low relative humidity condition for both years. It is believed that the temperature and relative humidity stresses may be attributed to the reduced efficacy of Bt cotton in growing conditions in China, where extreme temperatures often increase up to 35-40℃ and/or decrease down to 15-20℃, and relative humidity may reach to 85-95% and/or reduce to 40-55% during the cotton growing season.
基金supported by the National Natural Science Foundation of China(31171479)the Key Laboratory Foundation of Jiangsu Province,China(10KJA210057)+2 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,China,the Doctoral Advisor Foundation of Education Department of China(20113250110001)the Project of National Agricultural Modern Industrial Technology System Post Experts,China(CARS-18-20)the Graduate Student Scientific Research Innovation Projects of Jiangsu Province,China(CXLX11_1019)
文摘Expression of insecticidal protein for transgenic Bacillus thuringiensis (Bt) cotton is unstable and related to nitrogen metabolism. The objective of this study was to investigate the relationship between leaf carbon nitrogen ratio (C/N) and insecticidal efficacy of two Bt cotton cultivars. C/N ratio and Bt protein content were both measured at peak square period and peak boll period respectively under 5-7 d high temperature and different nitrogen fertilizer rates on the Yangzhou University Farm and the Ludong Cotton Farm, China. All plants were grown in field. The results showed that the C/N ratio enhanced slightly and the Bt protein content remained stable at peak square period, but significant increases for the C/N ratio and decreases markedly for the leaf Bt protein concentration were detected at the peak boll period. The similar patterns at the two growth periods were found for the leaf C/N ratio and Bt protein content by different N fertilizer treatments. When nitrogen rate was from 0 to 600 kg ha-l, the C/N ratio was reduced by 0.017 and 0.006 for Sikang 1 and Sikang 3 at peak square period, compared to the 1.350 to 1.143 reduction for Sikang 1 and Sikang 3 at peak boll period, respectively. Correspondingly, the leaf Bt protein contents were bolstered by 2.6-11.8 and 26.9-36.9% at the two different growth periods, respectively. The results suggested that enhanced C/N ratio by high temperature and nitrogen application may result in the reduction of inseetiocidal efficacy in Bt cotton, especially in peak boll period.
基金the 973 Program (2001CB109004and 2007CB109202)the Key Projects for Breeding Genetically Modified Organisms of China (2011ZX0811-002 and 2009ZX08011-008B)
文摘Transgenic insect-resistant cotton is being increasingly planted in Xinjiang cotton-planting regions, where geographical climate conditions and species composition of pests and natural enemies are greatly unique in China. Limited studies have been conducted on the ecological impacts of transgenic insect-resistant cotton, especially for transgenic double genes (Bt+CpTI) cotton, in this region. In this study, the potential effects of transgenic Bt+CpTI cotton on the seasonal abundance of non-target pests and predators were assessed from 2009 to 2011 in Korla, Xinjiang. The results showed that species composition and seasonal abundance of 5 groups of pests and 5 groups of predators were not significantly different between transgenic Bt+CpTI cotton and non-transgenic cotton every year. It suggests that transgenic Bt+CpTI cotton per se does not affect the population dynamics of non-target pests and predators on this crop in Xinjiang.
基金supported by the National Natural Science Foundation of China (31501253)the Project for the Development of Genetically Modified Crops, Ministry of Agriculture, China (2016ZX08011-002)
文摘With increased cultivation of transgenic Bacillus thuringiensis (Bt) cotton in the saline alkaline soil of China, assessments of transgenic crop biosafety have focused on the effects of soil salinity on rhizosphere microbes and Bt protein residues. In 2013 and 2014, investigations were conducted on the rhizosphere microbial biomass, soil enzyme activities and Bt protein contents of the soil under transgenic Bt cotton (variety GK19) and its parental non-transgenic cotton (Simian 3) cultivated at various salinity levels (1.15, 6.00 and 11.46 dS m-1). Under soil salinity stress, trace amounts of Bt proteins were ob- served in the Bt cotton GK19 rhizosphere soil, although the protein content increased with cotton growth and increased soil salinity levels. The populations of slight halophilic bacteria, phosphate solubilizing bacteria, ammonifying bacteria, nitrifying bacteria and denitrifying bacteria decreased with increased soil salinity in the Bt and non-Bt cotton rhizosphere soil, and the microbial biomass carbon, microbial respiration and soil catalase, urease and alkaline phosphatase activity also decreased. Correlation analyses showed that the increased Bt protein content in the Bt cotton rhizosphere soil may have been caused by the slower decomposition of soil microorganisms, which suggests that salinity was the main factor influencing the relevant activities of the soil microorganisms and indicates that Bt proteins had no clear adverse effects on the soil microorganisms. The results of this study may provide a theoretical basis for risk assessments of genetically modified cotton in saline alkaline soil.
基金supported by the National Natural Science Foundation of China (31601253)the Modern Agroindustry Technology Research System, China (SDAIT-03)the Natural Science Foundation of Shandong Province, China (ZR2016CQ20)
文摘To optimize the spatial distribution of cotton bolls and to increase the yield,the relationship between yield components and boll spatial distribution was investigated among different Bt(Bacillus thuringensis)cotton varieties.A five-year field experiment was conducted to reveal the reasons for the differences in lint yield and fiber quality across three Bt cotton varieties with different yield formations from 2013 to 2017.The lint yield of Jiman 169(the average yield from 2013-2017 was 42.2 g/plant)was the highest,i.e.,16.3 and 36.9%higher than Lumianyan 21(L21)and Daizimian 99B(99B),respectively.And the differences in boll weight among the three cultivars were similar to the lint yield,while the others yield components were not.So the increase in lint yield was mainly attributed to the enlargement in boll weight.However,the change in fiber quality was inconsistent with the lint yield,and the quality of L21 was significantly better than that of Jimian 169(J169)and 99B,which was caused by the diversity of boll spatial distribution.Compared with 99B,the loose-type J169 had the highest number of large bolls in inner positions;the tight-type L21 had a few large bolls and the highest number of lower and middle bolls.And approximately 80.72%of the lint yield was concentrated on the inner nodes in Jiman 169,compared with 77.44%of L21 and 66.73%of 99B during the five-year experiment.Although lint yield was significantly affected by the interannual changes,the lint yield of J169 was the highest and the most stable,as well as its yield components.These observations demonstrated the increase in lint yield was due to the increase in boll weight,and the large bolls and high fiber quality were attributed to the optimal distribution of bolls within the canopies.
基金supported by the National Natural Science Foundation of China (31171479, 31301263 and 31471435)the Doctoral Advisor Foundation of Ministry of Education of China (20113250110001)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD)the Three New Technology Foundation of Agriculture in Jiangsu Province, China (SXGC(2014)317)
文摘Higher boll worm survival rates were detected after high temperature presented during square period in Bt cotton. The objective of this study was to investigate the effects of high temperature level on the Bt efficacy of two different types of Bt cotton cultivars at squaring stage. During the 2011 to 2013 cotton growth seasons, high temperature treatments ranged from 34 to 44°C in climate chambers, and field experiments under high temperature weather with various temperature levels were conducted to investigate the effects of the high temperature level on square Bt protein concentration and nitrogen metabolism. The climate chamber experiments showed that the square insecticidal protein contents reduced after 24 h elevated temperature treatments for both cultivars, whereas significant declines of the square insecticidal protein contents were detected at temperature 〉38°C, and only slightly numerical reductions were observed when temperature below 38°C. Similar high temperature responses were also observed at the two field experimental sites in 2013. Correspondingly, high temperature below 38°C seems have little effect on the square amino acid concentrations, soluble protein contents, glutamic-pyruvic transaminase(GPT) and glutamic-oxalacetic transaminase(GOT) activities as well as protease and peptidase activities; however, when the temperature was above 38°C, reduced soluble protein contents, enhanced amino acid concentrations, decreased GPT and GOT activities, bolstered protease and peptidase activities in square were detected. In general, the higher the temperature is(〉38°C), the larger the changes for the above compound contents and key enzymes activities of the square protein cycle. The findings indicated that the unstable insect resistance of the square was related to high temperature level during square stage.
基金supported by the National Natural Science Foundation of China (30871490)the Specialized Research Fund for the Doctoral Program of Higher Education of Chinathe Innovation Fund for Graduate Students of China Agricultural University (KYCX2011007)
文摘Bacillus thuringiensis (Bt) cotton is grown worldwide, including in saline soils, but the effect of salinity on ion fluxes of Bt cotton remains unknown. Responses of two transgenic Bt cotton genotypes (SGK321 and 29317) and their corresponding receptors, Shiyuan 321 (SY321) and Jihe 321 (J321), to 150 mmol L-1 NaCl stress were studied in a growth chamber. The root dry weight of SGK321 and 29317 under NaCl treatment was decreased by 30 and 31%, respectively. However, their corresponding receptor cultivars SY321 and J321 were less affected (19 and 24%, respectively). The root length and surface area of the Bt cultivars were significantly decreased relative to their receptors under salt stress. NaCl treatment significantly increased CrylAc mRNA transcript levels in SGK321 and 29317 but did not affect Bt protein content in leaves or roots of either cultivar at 1 and 7 d after NaCl treatment. Fluxes of Na^+, K^+, and H^+ in roots were investigated using the scanning ion-selective electrode technique. Both mean K^+ efflux rate and transient K^+ efflux of the Bt cultivars increased four-fold compared to their corresponding receptors when exposed to salinity stress. There were no significant differences in Na^+ efflux between Bt and non-Bt cottons. Furthermore, the Na^+ contents in roots and leaves of all genotypes dramatically increased under salt stress, whereas K^+ contents decreased. Our results suggested that Bt cotton cultivars are more sensitive to salt stress than their receptor genotypes.
基金supported by the National Natural Science Foundation of China(31471435,31671613,and 31301263)the China Postdoctoral Science Foundation Grant(2016M591934)+3 种基金the Postdoctoral Science Foundation Grant in Jiangsu Province,China(1601116C)the Key Projects of Natural Science Research in Colleges and Universities of Jiangsu,China(17KJA210003)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(PAPD)the Practice Innovation Training Project for College Students in Jiangsu Province,China
文摘This study was conducted to investigate the effects of alternating high temperature on CrylAc protein content on Bt cotton cultivars Sikang 1 (SK-1, a conventional cultivar) and Sikang 3 (SK-3, a hybrid cultivar). In 2011 and 2012, cotton plants were subjected to high temperature treatments ranging from 32 to 40℃ in climate chambers to investigate the effects of high temperature on boll shell insecticidal protein expression. The experiments showed that significant decline of the boll shell insecticidal protein was detected at temperatures higher than 38℃ after 24 h. Based on the results, the cotton plants were treated with the threshold temperature of 38℃ from 6:00 a.m. to 6:00 p.m. followed by a normal temperature of 27℃ during the remaining night hours (DH/NN) in 2012 and 2013. These treatments were conducted at peak boll growth stage for both cultivars in study periods of 0, 4, 7, and 10 d. Temperature treatment of 32℃ from 6:00 a.m. to 6:00 p.m. and 27℃ in the remaining hours was set as control. The results showed that, compared with the control, after the DH/NN stress treatment applied for 7 d, the boll shell CrylAc protein content level was significantly decreased by 19.1 and 17.5% for SK-1 and by 15.3 and 13.7% for SK-3 in 2012 and 2013, respectively. Further analysis of nitrogen metabolic physiology under DH/NN showed that the soluble protein content and the glutamic pyruvic transaminase (GPT) activities decreased slightly after 4 d, and then decreased sharply after 7 d. The free amino acid content and the protease content increased sharply after 7 d. The changes in SK-1 were greater than those in SK-3. These results suggest that under DH/NN stress, boll shell CrylAc protein content decline was delayed. Reduced protein synthesis and increased protein degradation in the boll shell decreased protein content, including Bt protein, which may reduce resistance to the cotton bollworm.