This paper analyzed the distribution of thermohaline and circulation characteristics of Zhejiang and Fujian waters,based on the cross-sectional thermohaline data and on current data (up to 30 d duration) at fixed-po...This paper analyzed the distribution of thermohaline and circulation characteristics of Zhejiang and Fujian waters,based on the cross-sectional thermohaline data and on current data (up to 30 d duration) at fixed-point moorings,collected in the summer of 2006.We also performed low-pass filtering and spectrum analysis on the mooring submersible buoy data.Based on that analysis,we discussed the characteristics of low frequency currents and time-variations in these waters.The main conclusions are as follows.(1) There is a low salinity pinnate area near the Hangzhou Bay in summer,and outside the low salinity area,an obvious salinity front is present from surface to bottom near 123 E.There is also a temperature front below the surface at a corresponding position.(2) Bottom water of the Taiwan Warm Current comes from the subsurface of Kuroshio.(3) The direction of low frequency current at fixed anchor stations is N-NE or S,which mainly depends on the interaction of control currents in this waters.(4) Significant spectral peaks at all mooring stations are typically semidiurnal and diurnal tides.Semidiurnal tidal waves are the main ones in these waters,and have more energy closer to the shore.(5) Significant energy spectral peaks of middle period (3 to 8 d) of currents are responses to weather frequency.(6) Significant energy spectral peaks of long periods at the surface or bottom are probably responses to seasonal wind or bottom friction,while,the long period peaks of other depths can reflect cyclical changes of interactions between currents.We conclude that the pulsation period of the Taiwan Warm Current in these waters is 10-17 d.展开更多
Heat transfer and fluid flow in a weld pool had been simulated for several decades, which underwent from theoretically analysis to numerical solutions. Because of the complexity of the welding process, many ideal assu...Heat transfer and fluid flow in a weld pool had been simulated for several decades, which underwent from theoretically analysis to numerical solutions. Because of the complexity of the welding process, many ideal assumptions were made to simplify the question. This makes the solution somewhat not complied with the practical conditions. In previous papers, the current distribution in the weld pool is assumed as axi-symmetrical, and so does the electromagnetic forces, which plays an important role in determining the fluid flow field. Actually the current distribution is different from the assumption. In this paper; a three dimensional current distribution in Gas Tungsten Arc Welding (GTAW) process is performed. The current density distribution field is evaluated by numerically solving Maxwell’s equations in the domain of the workpiece. In the boundary condition, the current density on the top surface is assumed as Gaussian distribution. Results show that the current distribution in GTAW is not axi-symmetrical, and the relative location of the torch and the earth clamp influence the current distribution greatly.展开更多
Microstructure of reaction sintering of ZnAl2O4 at 1500℃ by hot-pressing(HP) and pulse electric current was investigated. The results indicated that the existed cracks in sintered body were caused by structure mismat...Microstructure of reaction sintering of ZnAl2O4 at 1500℃ by hot-pressing(HP) and pulse electric current was investigated. The results indicated that the existed cracks in sintered body were caused by structure mismatch. It is the evidence that periodical temperature field existed during pulse electric current sintering of nonconductive materials. The distance between high temperature areas was related to die diameter.展开更多
In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is gr...In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is greatly improved. To analyze the current density distribution in DSAW is beneficial to understanding of this process. Considering all kinds of dynamic factors acting on the weldpool, this paper discusses firstly the surface deformation of the weldpool and the keyhole formation in PAW+TIG DSAW process on the basis of the magnetohydrodynamic theory and variation principles. Hence, a model of the current density distribution is developed. Through numerical simulation, the current density distribution in PAW+TIG DSAW process is quantitatively analyzed. It shows that the minimal radius of keyhole formed in PAW+TIG DSAW process is 0.5 mm and 89.5 percent of current flows through the keyhole.展开更多
Temperature distribution and weld bead profiles of constant current and pulsed current gas tungsten arc welded aluminium alloy joints were compared. The effects of pulsed current welding on tensile properties, hardnes...Temperature distribution and weld bead profiles of constant current and pulsed current gas tungsten arc welded aluminium alloy joints were compared. The effects of pulsed current welding on tensile properties, hardness profiles, microstructural features and residual stress distribution of aluminium alloy joints were reported. The use of pulsed current technique is found to improve the tensile properties of the weld compared with continuous current welding due to grain refinement occurring in the fusion zone.展开更多
The mechanical property and deformation mechanism of twinned gold nanowire with non-uniform distribution of twinned boundaries(TBs)are studied by the molecular dynamics(MD)method.It is found that the twin boundary spa...The mechanical property and deformation mechanism of twinned gold nanowire with non-uniform distribution of twinned boundaries(TBs)are studied by the molecular dynamics(MD)method.It is found that the twin boundary spacing(TBS)has a great effect on the strength and plasticity of the nanowires with uniform distribution of TBs.And the strength enhances with the decrease of TBS,while its plasticity declines.For the nanowires with non-uniform distribution of TBs,the differences in distribution among different TBSs have little effect on the Young's modulus or strength,and the compromise in strength appears.But the differences have a remarkable effect on the plasticity of twinned gold nanowire.The twinned gold nanowire with higher local symmetry ratio has better plasticity.The initial dislocations always form in the largest TBS and the fracture always appears at or near the twin boundaries adjacent to the smallest TBS.Some simulation results are consistent with the experimental results.展开更多
Magnetic flux density around the weld area was used to reconstruct the current density distribution during resistance spot welding(RSW) of aluminum alloy according to inverse problem theory. A current-magnetic field m...Magnetic flux density around the weld area was used to reconstruct the current density distribution during resistance spot welding(RSW) of aluminum alloy according to inverse problem theory. A current-magnetic field model was established and the conjugate gradient method was used to solve this model. The results showed that the current density was low at the center of nugget while high on the edge of nugget. Moreover, the welding time of 30ms—60 ms is a key period for nucleation. The current density distribution can reflect whether the weld nugget is formed or splashed, therefore it has the potential to monitor the weld quality of RSW.展开更多
The uniformity of current density distribution upon electrodes is one of the most important factors determining the lithium dendrites growth and cycling performance of lithium metal batteries(LMBs). Herein,current den...The uniformity of current density distribution upon electrodes is one of the most important factors determining the lithium dendrites growth and cycling performance of lithium metal batteries(LMBs). Herein,current density distributions of lithium metal anodes induced by various engineering factors, consisting of uneven cathode, electrolyte distribution, and different tab positions, and their effects on the electrochemical performance are investigated theoretically and experimentally in pouch cells. The deviation of current density in lithium metal anodes ranges from 2.47% to 196.18% due to the different levels of uneven cathode materials. However, the deviation is just 13.60% for different electrolyte thicknesses between cathodes and anodes, even a ten-layer separator in some positions. The maximum deviation for variational tab positions is only 0.17%. The nonuniformity in current density distribution results in severe dendrite growth issues and poor electrochemical performance of LMBs. This work not only confirms the direct correlation between the uneven current density distribution and lithium deposition behaviors, but also points out the decisive effects of cathode surface roughness on current distribution of anodes, to which more attentions should be paid in practical applications of LMBs.展开更多
A two-dimensional, three-temperature radiation magneto-hydrodynamics model is applied to the investigation of evolutional trends in x-ray radiation power, energy, peak plasma temperature and density as functions of dr...A two-dimensional, three-temperature radiation magneto-hydrodynamics model is applied to the investigation of evolutional trends in x-ray radiation power, energy, peak plasma temperature and density as functions of drive current rise-time and initial load density distribution by using the typical experimental parameters of tungsten wire-array Z- pinch on the Qiangguang-I generator. The numerical results show that as the drive current rise-time is shortened, x-ray radiation peak power, energy, peak plasma density and peak ion temperature increase approximately linearly, but among them the x-ray radiation peak power increases more quickly. As the initial plasma density distribution in the radial direction becomes gradually flattened, the peak radiation power and the peak ion-temperature almost exponentially increase, while the radiation energy and the peak plasma density change only a little. The main effect of shortening drive current rise-time is to enhance compression of plasma, and the effect of flattening initial load density distribution in the radial direction is to raise the plasma temperature. Both of the approaches elevate the x-ray peak radiation power展开更多
Tissues in biological objects from the point of view of electromagnetic effects must be modeled not only for their conductivity. The ionic double layer induced by the electric field, built by electrolytic diffusion, m...Tissues in biological objects from the point of view of electromagnetic effects must be modeled not only for their conductivity. The ionic double layer induced by the electric field, built by electrolytic diffusion, must be counted. The micro (frequency dispersion phenomena) and macro (interfacial polarization), as well as more generalized by Nernst-Planck cells describe the biophysical aspects of this phenomena. The charge distribution depends on the processes and produces charge gradients in space. The dynamic feasibility of the-charge transition layer has memory and adaptability, working like a memristor in cancerous development. The memristor processes may complete the adaptation mechanisms of cancer cells to extremely stressful conditions. Our objective is to show the distribution and redistribution of space charges that generate memristors and internal currents like injury current (IC) in the development of cancer. We show some connected aspects of the modulated electrohyperthermia (mEHT) limiting the proliferation process in the micro-range like the macro-range electrochemotherapy (ECT) processes do. The internal polarization effects form space-charge, which characteristically differ in malignant and healthy environments. The electrical resistivity of the electrolytes depends on the distribution of the charges and concentrations of ions in the electrolytes, consequently the space-charge differences appear in the conductivity parameters too. The polarization heterogeneities caused by the irregularities of the healthy tissue induce a current (called injury current), which appears in the cancerous tumor as well. Due to the nonlinearity of the space-charge production and the differences of the relaxation time of the processes in various subunits. The tumor develops the space-charge which appears as an inductive component in the otherwise capacitive setting and forms a memristive behavior of the tumorous tissue. This continuously developing space-charge accommodates the tumor to the permanently changing conditions and helps the adopting the malignant cells in the new environment. Applying external radiofrequency electric field, the disturbance of the space-charge may change the conditions, and seek to reestablish the healthy homeostatic equilibrium, blocking the pathologic injury current components. The hypothetical memristive behavior of the tumor microenvironment and the tumor mass may be a biophysical addition to the adaption mechanisms of tumor cell and could provide a way to block the pathogen biophysical processes. An electric field in the direction of the place of disturbance from the healthy neighborhood appears, starting a current, which promotes cell migrations and wound healing, re-establishing homeostatic equilibrium. In pathological disturbance, the same process starts, which supports further proliferation, so its blocking is desired.展开更多
DC magnetic biasing problem,caused by the DC grounding electrode, threatened the safe operation of AC power grid. In this paper, the characteristics of the soil stratification near DC grounding electrode was researche...DC magnetic biasing problem,caused by the DC grounding electrode, threatened the safe operation of AC power grid. In this paper, the characteristics of the soil stratification near DC grounding electrode was researched. The AC-DC interconnected large-scale system model under the monopole operation mode was established. The earth surface potential and DC current distribution in various stations under the different surface thickness was calculated. Some useful conclusions are drawn from the analyzed results.展开更多
This paper focus on the Modeling and Calculation of DC current distribution in AC power grid induced under HVDC Ground-Return-Mode. Applying complex image method and boundary element method, a new field-circuit coupli...This paper focus on the Modeling and Calculation of DC current distribution in AC power grid induced under HVDC Ground-Return-Mode. Applying complex image method and boundary element method, a new field-circuit coupling model was set up. Based on the calculation result with complex image method, this paper derived the modification factor for induced earth potential from practical measurement, which increased the accuracy of calculation. The modification method is helpful for evaluation on the effect of means used for blocking the dc-bias current in transformer neutral and also useful for the forecast of the DC current distribution when the power grid is in different line connection mode. The DC distribution character in Guangdong power grid is shown and suggestion is proposed that the mitigation of dc-bias should start from those substations whose earth-potential is highest.展开更多
Energy is the determinant factor for the survival of Mobile Sensor Networks(MSN).Based on the analysis of the energy distribution in this paper,a two-phase relocation algorithm is proposed based on the balance between...Energy is the determinant factor for the survival of Mobile Sensor Networks(MSN).Based on the analysis of the energy distribution in this paper,a two-phase relocation algorithm is proposed based on the balance between the energy provision and energy consumption distribution.Our main objectives are to maximize the coverage percentage and to minimize the total distance of node movements.This algorithm is designed to meet the requirement of non-uniform distribution network applications,to extend the lifetime of MSN and to simplify the design of the routing protocol.In ad-dition,test results show the feasibility of our proposed relocation algorithm.展开更多
Objective: The purpose of this work is to examine the usefulness of the topological approach for analysis of current density maps during ST-T interval in detection of coronary artery disease (CAD) in patients with pro...Objective: The purpose of this work is to examine the usefulness of the topological approach for analysis of current density maps during ST-T interval in detection of coronary artery disease (CAD) in patients with proved CAD but normal results of routine tests. Materials and Methods: The patient group included 123 patients. Coronary angiography was done due to chest pain. The control group consisted of 124 healthy volunteers. The MCG test was done by 4-channels MCG system installed at unshielded setting. An integral topological index Kideal, consisting of 4 parameters, has been counted. Results and Conclusions: It is shown that Kideal was higher in patient group compared to control one. Sensitivity was 87%, and specificity was 64%. The topological analysis of MCG current density maps is a valuable tool in noninvasive detection of CAD in difficult-to-diagnose patients with uninformative results of routine tests.展开更多
This study was conducted on the spatial distribution characteristics of surface tidal currents in the southwestern Taiwan Strait based on the quasi-harmonic analysis of current data obtained by two high frequency surf...This study was conducted on the spatial distribution characteristics of surface tidal currents in the southwestern Taiwan Strait based on the quasi-harmonic analysis of current data obtained by two high frequency surface wave radar(HFSWR) systems. The analysis shows that the tidal current pattern in the southwestern Taiwan Strait is primarily semi-diurnal and influenced significantly by shallow water constituents. The spatial distribution of tidal current ellipses of M2 is probably affected by the interaction between two different systems of tide wave, one from the northern mouth of Taiwan Strait and the other from the Bashi Channel. The directions of the major axes of M2 tidal current ellipses coincide roughly with the axis of the Taiwan Strait. The spatial distribution of the magnitudes of the probable maximum current velocity(PMCS) shows gradual increase of the velocity from northeast to southwest, which is in accordance with the spatial distribution of the measured maximum current velocity(MMCS). The directions of the residual currents are in accordance with the direction of the prevailing monsoon wind at the Taiwan Strait and the direction of the Taiwan warm current during summer. The bathymetry also shows a significant effect on the spatial distribution characteristics of tidal currents.展开更多
An accurate plasma current profile has irreplaceable value for the steady-state operation of the plasma.In this study,plasma current tomography based on Bayesian inference is applied to an HL-2A device and used to rec...An accurate plasma current profile has irreplaceable value for the steady-state operation of the plasma.In this study,plasma current tomography based on Bayesian inference is applied to an HL-2A device and used to reconstruct the plasma current profile.Two different Bayesian probability priors are tried,namely the Conditional Auto Regressive(CAR)prior and the Advanced Squared Exponential(ASE)kernel prior.Compared to the CAR prior,the ASE kernel prior adopts nonstationary hyperparameters and introduces the current profile of the reference discharge into the hyperparameters,which can make the shape of the current profile more flexible in space.The results indicate that the ASE prior couples more information,reduces the probability of unreasonable solutions,and achieves higher reconstruction accuracy.展开更多
Protection of radial distribution networks is widely based on coordinated inverse time overcurrent relays (OCRs) ensuring both effectiveness and selectivity. However, the integration of distributed generation (DG) int...Protection of radial distribution networks is widely based on coordinated inverse time overcurrent relays (OCRs) ensuring both effectiveness and selectivity. However, the integration of distributed generation (DG) into an existing distribution network not only inevitably increases fault current levels to levels that may exceed the OCR ratings, but it may also disturb the original overcurrent relay coordination adversely effecting protection selectivity. To analyze the potentially adverse impact of DG on distribution system protective devices with respect to circuit breaker ratings and OCR coordination fault current studies are carried out for common reference test system under the influence of additional DG. The possible advantages of Superconducting Fault Current Limiter (SFCL) as a means to limit the adverse effect of DG on distribution system protection and their effectiveness will be demonstrated. Furthermore, minimum SFCL impedances required to avoid miss-operation of the primary and back-up OCRs are determined. The theoretical analysis will be validated using the IEEE 13-bus distribution test system is used. Both theoretical and simulation results indicate that the proposed application of SFCL is a viable option to effectively mitigate the DG impact on protective devices, thus enhancing the reliability of distribution network interfaced with DG.展开更多
In this paper, by change of integration path in complex spectrum domain and by defining input admittance as the ratio of complex radiated power to amplitude of square of voltage across the gap, new expressions of admi...In this paper, by change of integration path in complex spectrum domain and by defining input admittance as the ratio of complex radiated power to amplitude of square of voltage across the gap, new expressions of admittance (valid for all frequencies ) of infinitely long cylindrical antenna with and without conducting ground are obtained. Meanwhile corresponding formulas of current distribution are derived in detail. Some numerical computations are also given.展开更多
The distribution coefficient of return current network is an important method to decrease the rail potential. In order to resolve the problem of high rail potential in high-speed railway based on EN50122-1 and Pr EN50...The distribution coefficient of return current network is an important method to decrease the rail potential. In order to resolve the problem of high rail potential in high-speed railway based on EN50122-1 and Pr EN50170 the distribution coefficient of longitudinal traction return current conductors is calculated through changing the interval of transverse connection. Based on field data and theoretical analysis, the parameters of longitudinal traction return current conductors are calculated. Results indicate that the best distance of the transverse connection is 400 m – 600 m.展开更多
It is important for the safety of transmission system to accurately calculate single-phase earth fault current distribution.Features of double sided elimination method were illustrated.Quantitative calculation of sing...It is important for the safety of transmission system to accurately calculate single-phase earth fault current distribution.Features of double sided elimination method were illustrated.Quantitative calculation of single-phase earth fault current distribution and case verification were accomplished by using the loop method.Influences of some factors,such as single-phase earth fault location and ground resistance of poles,on short-circuit current distribution were discussed.Results show that:1) results of the loop method conform to those of double sided elimination method;2) the fault location hardly influences macro-distribution of short-circuit current.However,current near fault location is evidently influenced;and 3) the short-circuit current distribution is not so sensitive to the ground resistance of poles.展开更多
基金The Public Science and Technology Research Funds Projects of Ocean under contract Nos 200905001,200905010 and 201005019the Research Programs of the Science and Technology Commission of Shanghai under contract No.09DZ1201200the Young Scientist Foundation of the State Oceanic Administration of China under contract No.2011209
文摘This paper analyzed the distribution of thermohaline and circulation characteristics of Zhejiang and Fujian waters,based on the cross-sectional thermohaline data and on current data (up to 30 d duration) at fixed-point moorings,collected in the summer of 2006.We also performed low-pass filtering and spectrum analysis on the mooring submersible buoy data.Based on that analysis,we discussed the characteristics of low frequency currents and time-variations in these waters.The main conclusions are as follows.(1) There is a low salinity pinnate area near the Hangzhou Bay in summer,and outside the low salinity area,an obvious salinity front is present from surface to bottom near 123 E.There is also a temperature front below the surface at a corresponding position.(2) Bottom water of the Taiwan Warm Current comes from the subsurface of Kuroshio.(3) The direction of low frequency current at fixed anchor stations is N-NE or S,which mainly depends on the interaction of control currents in this waters.(4) Significant spectral peaks at all mooring stations are typically semidiurnal and diurnal tides.Semidiurnal tidal waves are the main ones in these waters,and have more energy closer to the shore.(5) Significant energy spectral peaks of middle period (3 to 8 d) of currents are responses to weather frequency.(6) Significant energy spectral peaks of long periods at the surface or bottom are probably responses to seasonal wind or bottom friction,while,the long period peaks of other depths can reflect cyclical changes of interactions between currents.We conclude that the pulsation period of the Taiwan Warm Current in these waters is 10-17 d.
文摘Heat transfer and fluid flow in a weld pool had been simulated for several decades, which underwent from theoretically analysis to numerical solutions. Because of the complexity of the welding process, many ideal assumptions were made to simplify the question. This makes the solution somewhat not complied with the practical conditions. In previous papers, the current distribution in the weld pool is assumed as axi-symmetrical, and so does the electromagnetic forces, which plays an important role in determining the fluid flow field. Actually the current distribution is different from the assumption. In this paper; a three dimensional current distribution in Gas Tungsten Arc Welding (GTAW) process is performed. The current density distribution field is evaluated by numerically solving Maxwell’s equations in the domain of the workpiece. In the boundary condition, the current density on the top surface is assumed as Gaussian distribution. Results show that the current distribution in GTAW is not axi-symmetrical, and the relative location of the torch and the earth clamp influence the current distribution greatly.
基金This work was supported by the National Natural Science Foundation of China under grant No.50232020 and 50220160657.
文摘Microstructure of reaction sintering of ZnAl2O4 at 1500℃ by hot-pressing(HP) and pulse electric current was investigated. The results indicated that the existed cracks in sintered body were caused by structure mismatch. It is the evidence that periodical temperature field existed during pulse electric current sintering of nonconductive materials. The distance between high temperature areas was related to die diameter.
基金The authors wish to express their gratitude to the financial support to this project from the project foundation of the National Key Laboratory of Advanced Welding Production Technology of Harbin Institute of Technology and the US National Science Foundation under grant No.DMI 9812981
文摘In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is greatly improved. To analyze the current density distribution in DSAW is beneficial to understanding of this process. Considering all kinds of dynamic factors acting on the weldpool, this paper discusses firstly the surface deformation of the weldpool and the keyhole formation in PAW+TIG DSAW process on the basis of the magnetohydrodynamic theory and variation principles. Hence, a model of the current density distribution is developed. Through numerical simulation, the current density distribution in PAW+TIG DSAW process is quantitatively analyzed. It shows that the minimal radius of keyhole formed in PAW+TIG DSAW process is 0.5 mm and 89.5 percent of current flows through the keyhole.
文摘Temperature distribution and weld bead profiles of constant current and pulsed current gas tungsten arc welded aluminium alloy joints were compared. The effects of pulsed current welding on tensile properties, hardness profiles, microstructural features and residual stress distribution of aluminium alloy joints were reported. The use of pulsed current technique is found to improve the tensile properties of the weld compared with continuous current welding due to grain refinement occurring in the fusion zone.
基金the National Natural Science Foundation of China(Grant No.51771033).
文摘The mechanical property and deformation mechanism of twinned gold nanowire with non-uniform distribution of twinned boundaries(TBs)are studied by the molecular dynamics(MD)method.It is found that the twin boundary spacing(TBS)has a great effect on the strength and plasticity of the nanowires with uniform distribution of TBs.And the strength enhances with the decrease of TBS,while its plasticity declines.For the nanowires with non-uniform distribution of TBs,the differences in distribution among different TBSs have little effect on the Young's modulus or strength,and the compromise in strength appears.But the differences have a remarkable effect on the plasticity of twinned gold nanowire.The twinned gold nanowire with higher local symmetry ratio has better plasticity.The initial dislocations always form in the largest TBS and the fracture always appears at or near the twin boundaries adjacent to the smallest TBS.Some simulation results are consistent with the experimental results.
基金Supported by the National Natural Science Foundation of China(No.51275342 and No.51275338)
文摘Magnetic flux density around the weld area was used to reconstruct the current density distribution during resistance spot welding(RSW) of aluminum alloy according to inverse problem theory. A current-magnetic field model was established and the conjugate gradient method was used to solve this model. The results showed that the current density was low at the center of nugget while high on the edge of nugget. Moreover, the welding time of 30ms—60 ms is a key period for nucleation. The current density distribution can reflect whether the weld nugget is formed or splashed, therefore it has the potential to monitor the weld quality of RSW.
基金supported by the National Natural Science Foundation of China (22075029, 22179070, U1932220)。
文摘The uniformity of current density distribution upon electrodes is one of the most important factors determining the lithium dendrites growth and cycling performance of lithium metal batteries(LMBs). Herein,current density distributions of lithium metal anodes induced by various engineering factors, consisting of uneven cathode, electrolyte distribution, and different tab positions, and their effects on the electrochemical performance are investigated theoretically and experimentally in pouch cells. The deviation of current density in lithium metal anodes ranges from 2.47% to 196.18% due to the different levels of uneven cathode materials. However, the deviation is just 13.60% for different electrolyte thicknesses between cathodes and anodes, even a ten-layer separator in some positions. The maximum deviation for variational tab positions is only 0.17%. The nonuniformity in current density distribution results in severe dendrite growth issues and poor electrochemical performance of LMBs. This work not only confirms the direct correlation between the uneven current density distribution and lithium deposition behaviors, but also points out the decisive effects of cathode surface roughness on current distribution of anodes, to which more attentions should be paid in practical applications of LMBs.
基金Project supported by the National Natural Science Foundation of China (Grant No 10035020).
文摘A two-dimensional, three-temperature radiation magneto-hydrodynamics model is applied to the investigation of evolutional trends in x-ray radiation power, energy, peak plasma temperature and density as functions of drive current rise-time and initial load density distribution by using the typical experimental parameters of tungsten wire-array Z- pinch on the Qiangguang-I generator. The numerical results show that as the drive current rise-time is shortened, x-ray radiation peak power, energy, peak plasma density and peak ion temperature increase approximately linearly, but among them the x-ray radiation peak power increases more quickly. As the initial plasma density distribution in the radial direction becomes gradually flattened, the peak radiation power and the peak ion-temperature almost exponentially increase, while the radiation energy and the peak plasma density change only a little. The main effect of shortening drive current rise-time is to enhance compression of plasma, and the effect of flattening initial load density distribution in the radial direction is to raise the plasma temperature. Both of the approaches elevate the x-ray peak radiation power
文摘Tissues in biological objects from the point of view of electromagnetic effects must be modeled not only for their conductivity. The ionic double layer induced by the electric field, built by electrolytic diffusion, must be counted. The micro (frequency dispersion phenomena) and macro (interfacial polarization), as well as more generalized by Nernst-Planck cells describe the biophysical aspects of this phenomena. The charge distribution depends on the processes and produces charge gradients in space. The dynamic feasibility of the-charge transition layer has memory and adaptability, working like a memristor in cancerous development. The memristor processes may complete the adaptation mechanisms of cancer cells to extremely stressful conditions. Our objective is to show the distribution and redistribution of space charges that generate memristors and internal currents like injury current (IC) in the development of cancer. We show some connected aspects of the modulated electrohyperthermia (mEHT) limiting the proliferation process in the micro-range like the macro-range electrochemotherapy (ECT) processes do. The internal polarization effects form space-charge, which characteristically differ in malignant and healthy environments. The electrical resistivity of the electrolytes depends on the distribution of the charges and concentrations of ions in the electrolytes, consequently the space-charge differences appear in the conductivity parameters too. The polarization heterogeneities caused by the irregularities of the healthy tissue induce a current (called injury current), which appears in the cancerous tumor as well. Due to the nonlinearity of the space-charge production and the differences of the relaxation time of the processes in various subunits. The tumor develops the space-charge which appears as an inductive component in the otherwise capacitive setting and forms a memristive behavior of the tumorous tissue. This continuously developing space-charge accommodates the tumor to the permanently changing conditions and helps the adopting the malignant cells in the new environment. Applying external radiofrequency electric field, the disturbance of the space-charge may change the conditions, and seek to reestablish the healthy homeostatic equilibrium, blocking the pathologic injury current components. The hypothetical memristive behavior of the tumor microenvironment and the tumor mass may be a biophysical addition to the adaption mechanisms of tumor cell and could provide a way to block the pathogen biophysical processes. An electric field in the direction of the place of disturbance from the healthy neighborhood appears, starting a current, which promotes cell migrations and wound healing, re-establishing homeostatic equilibrium. In pathological disturbance, the same process starts, which supports further proliferation, so its blocking is desired.
文摘DC magnetic biasing problem,caused by the DC grounding electrode, threatened the safe operation of AC power grid. In this paper, the characteristics of the soil stratification near DC grounding electrode was researched. The AC-DC interconnected large-scale system model under the monopole operation mode was established. The earth surface potential and DC current distribution in various stations under the different surface thickness was calculated. Some useful conclusions are drawn from the analyzed results.
文摘This paper focus on the Modeling and Calculation of DC current distribution in AC power grid induced under HVDC Ground-Return-Mode. Applying complex image method and boundary element method, a new field-circuit coupling model was set up. Based on the calculation result with complex image method, this paper derived the modification factor for induced earth potential from practical measurement, which increased the accuracy of calculation. The modification method is helpful for evaluation on the effect of means used for blocking the dc-bias current in transformer neutral and also useful for the forecast of the DC current distribution when the power grid is in different line connection mode. The DC distribution character in Guangdong power grid is shown and suggestion is proposed that the mitigation of dc-bias should start from those substations whose earth-potential is highest.
文摘Energy is the determinant factor for the survival of Mobile Sensor Networks(MSN).Based on the analysis of the energy distribution in this paper,a two-phase relocation algorithm is proposed based on the balance between the energy provision and energy consumption distribution.Our main objectives are to maximize the coverage percentage and to minimize the total distance of node movements.This algorithm is designed to meet the requirement of non-uniform distribution network applications,to extend the lifetime of MSN and to simplify the design of the routing protocol.In ad-dition,test results show the feasibility of our proposed relocation algorithm.
文摘Objective: The purpose of this work is to examine the usefulness of the topological approach for analysis of current density maps during ST-T interval in detection of coronary artery disease (CAD) in patients with proved CAD but normal results of routine tests. Materials and Methods: The patient group included 123 patients. Coronary angiography was done due to chest pain. The control group consisted of 124 healthy volunteers. The MCG test was done by 4-channels MCG system installed at unshielded setting. An integral topological index Kideal, consisting of 4 parameters, has been counted. Results and Conclusions: It is shown that Kideal was higher in patient group compared to control one. Sensitivity was 87%, and specificity was 64%. The topological analysis of MCG current density maps is a valuable tool in noninvasive detection of CAD in difficult-to-diagnose patients with uninformative results of routine tests.
基金supported by the National High Technology Research and Development Program (‘863’ Program) of China under contract No. 2012AA091701the Fundamental Research Fund for the Central University of China under the contract No. 2012212020211
文摘This study was conducted on the spatial distribution characteristics of surface tidal currents in the southwestern Taiwan Strait based on the quasi-harmonic analysis of current data obtained by two high frequency surface wave radar(HFSWR) systems. The analysis shows that the tidal current pattern in the southwestern Taiwan Strait is primarily semi-diurnal and influenced significantly by shallow water constituents. The spatial distribution of tidal current ellipses of M2 is probably affected by the interaction between two different systems of tide wave, one from the northern mouth of Taiwan Strait and the other from the Bashi Channel. The directions of the major axes of M2 tidal current ellipses coincide roughly with the axis of the Taiwan Strait. The spatial distribution of the magnitudes of the probable maximum current velocity(PMCS) shows gradual increase of the velocity from northeast to southwest, which is in accordance with the spatial distribution of the measured maximum current velocity(MMCS). The directions of the residual currents are in accordance with the direction of the prevailing monsoon wind at the Taiwan Strait and the direction of the Taiwan warm current during summer. The bathymetry also shows a significant effect on the spatial distribution characteristics of tidal currents.
基金supported by the National MCF Energy R&D Program of China (Nos. 2018 YFE0301105, 2022YFE03010002 and 2018YFE0302100)the National Key R&D Program of China (Nos. 2022YFE03070004 and 2022YFE03070000)National Natural Science Foundation of China (Nos. 12205195, 12075155 and 11975277)
文摘An accurate plasma current profile has irreplaceable value for the steady-state operation of the plasma.In this study,plasma current tomography based on Bayesian inference is applied to an HL-2A device and used to reconstruct the plasma current profile.Two different Bayesian probability priors are tried,namely the Conditional Auto Regressive(CAR)prior and the Advanced Squared Exponential(ASE)kernel prior.Compared to the CAR prior,the ASE kernel prior adopts nonstationary hyperparameters and introduces the current profile of the reference discharge into the hyperparameters,which can make the shape of the current profile more flexible in space.The results indicate that the ASE prior couples more information,reduces the probability of unreasonable solutions,and achieves higher reconstruction accuracy.
文摘Protection of radial distribution networks is widely based on coordinated inverse time overcurrent relays (OCRs) ensuring both effectiveness and selectivity. However, the integration of distributed generation (DG) into an existing distribution network not only inevitably increases fault current levels to levels that may exceed the OCR ratings, but it may also disturb the original overcurrent relay coordination adversely effecting protection selectivity. To analyze the potentially adverse impact of DG on distribution system protective devices with respect to circuit breaker ratings and OCR coordination fault current studies are carried out for common reference test system under the influence of additional DG. The possible advantages of Superconducting Fault Current Limiter (SFCL) as a means to limit the adverse effect of DG on distribution system protection and their effectiveness will be demonstrated. Furthermore, minimum SFCL impedances required to avoid miss-operation of the primary and back-up OCRs are determined. The theoretical analysis will be validated using the IEEE 13-bus distribution test system is used. Both theoretical and simulation results indicate that the proposed application of SFCL is a viable option to effectively mitigate the DG impact on protective devices, thus enhancing the reliability of distribution network interfaced with DG.
文摘In this paper, by change of integration path in complex spectrum domain and by defining input admittance as the ratio of complex radiated power to amplitude of square of voltage across the gap, new expressions of admittance (valid for all frequencies ) of infinitely long cylindrical antenna with and without conducting ground are obtained. Meanwhile corresponding formulas of current distribution are derived in detail. Some numerical computations are also given.
文摘The distribution coefficient of return current network is an important method to decrease the rail potential. In order to resolve the problem of high rail potential in high-speed railway based on EN50122-1 and Pr EN50170 the distribution coefficient of longitudinal traction return current conductors is calculated through changing the interval of transverse connection. Based on field data and theoretical analysis, the parameters of longitudinal traction return current conductors are calculated. Results indicate that the best distance of the transverse connection is 400 m – 600 m.
文摘It is important for the safety of transmission system to accurately calculate single-phase earth fault current distribution.Features of double sided elimination method were illustrated.Quantitative calculation of single-phase earth fault current distribution and case verification were accomplished by using the loop method.Influences of some factors,such as single-phase earth fault location and ground resistance of poles,on short-circuit current distribution were discussed.Results show that:1) results of the loop method conform to those of double sided elimination method;2) the fault location hardly influences macro-distribution of short-circuit current.However,current near fault location is evidently influenced;and 3) the short-circuit current distribution is not so sensitive to the ground resistance of poles.