Traditional evolutionary games assume uniform interaction rate, which means that the rate at which individuals meet and interact is independent of their strategies. But in some systems, especially biological systems, ...Traditional evolutionary games assume uniform interaction rate, which means that the rate at which individuals meet and interact is independent of their strategies. But in some systems, especially biological systems, the players interact with each other discriminately. Taylor and Nowak (2006) were the first to establish the corresponding non-uniform interaction rate model by allowing the interaction rates to depend on strategies. Their model is based on replicator dynamics which assumes an infinite size population. But in reality, the number of individuals in the population is always finite, and there will be some random interference in the individuals' strategy selection process. Therefore, it is more practical to establish the corresponding stochastic evolutionary model in finite populations. In fact, the analysis of evolutionary games in a finite size population is more difficult. Just as Taylor and Nowak said in the outlook section of their paper, 'The analysis of non-uniform interaction rates should be extended to stochastic game dynamics of finite populations.' In this paper, we are exactly doing this work. We extend Taylor and Nowak's model from infinite to finite case, especially focusing on the influence of non-uniform connection characteristics on the evolutionary stable state of the system. We model the strategy evolutionary process of the population by a continuous ergodic Markov process. Based on the limit distribution of the process, we can give the evolutionary stable state of the system. We make a complete classification of the symmetric 2×2 games. For each case game, the corresponding limit distribution of the Markov-based process is given when noise intensity is small enough. In contrast with most literatures in evolutionary games using the simulation method, all our results obtained are analytical. Especially, in the dominant-case game, coexistence of the two strategies may become evolutionary stable states in our model. This result can be used to explain the emergence of cooperation in the Prisoner is Dilemma Games to some extent. Some specific examples are given to illustrate our results.展开更多
Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is...Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is proposed by using molecular dynamics simulation,and the relationship between ion-to-ion interaction and salt solubility in a simulated seawater water-salt system is investigated.By analyzing the variation of distance and contact time between ions in an electrolyte solution,from both spatial and temporal perspectives,new parameters were proposed to describe the interaction between ions:interaction distance(ID),and interaction time ratio(ITR).The best correlation between characteristic time ratio and solubility was found for a molar ratio of salt-to-water of 10:100 with a correlation coefficient of 0.96.For the same salt,a positive correlation was found between CTR and the molar ratio of salt and water.For type 1-1,type 2-1,type 1-2,and type 2-2 salts,the correlation coefficients between CTR and solubility were 0.93,0.96,0.92,and 0.98 for a salt-to-water molar ratio of 10:100,respectively.The solubility of multiple salts was predicted by simulations and compared with experimental values,yielding an average relative deviation of 12.4%.The new ion-interaction parameters offer significant advantages in describing strongly correlated and strongly hydrated electrolyte solutions.展开更多
Interactive holography offers unmatched levels of immersion and user engagement in the field of future display.Despite of the substantial progress has been made in dynamic meta-holography,the realization of real-time,...Interactive holography offers unmatched levels of immersion and user engagement in the field of future display.Despite of the substantial progress has been made in dynamic meta-holography,the realization of real-time,highly smooth interactive holography remains a significant challenge due to the computational and display frame rate limitations.In this study,we introduced a dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates.To our knowledge,this is the first reported practical dynamic interactive metasurface holographic system.We spa-tially divided the metasurface device into multiple distinct channels,each projecting a reconstructed sub-pattern.The switching states of these channels were mapped to bitwise operations on a set of bit values,which avoids complex holo-gram computations,enabling an ultra-high computational frame rate.Our approach achieves a computational frame rate of 800 kHz and a display frame rate of 23 kHz on a low-power Raspberry Pi computational platform.According to this methodology,we demonstrated an interactive dynamic holographic Tetris game system that allows interactive gameplay,color display,and on-the-fly hologram creation.Our technology presents an inspiration for advanced dynamic meta-holography,which is promising for a broad range of applications including advanced human-computer interaction,real-time 3D visualization,and next-generation virtual and augmented reality systems.展开更多
Bacillus mucilaginosus is a common soil bacterium,and usually used as a model bacterium in studying microbe-mineral interactions.Several reaction mechanisms of B.mucilaginosus weathering silicate minerals were propose...Bacillus mucilaginosus is a common soil bacterium,and usually used as a model bacterium in studying microbe-mineral interactions.Several reaction mechanisms of B.mucilaginosus weathering silicate minerals were proposed.However,the molecule mechanisms and detailed processes were still unclear.In this paper,bacterium-mineral interactions were studied in terms of variations in pH value over the experimental period,variations in mineral composition,weathering rates of silicate minerals and volatile metabolites in the culture medium,etc.,to further explore the bacterium-mineral interaction mechanisms.The results showed that B.mucilaginosus could enhance silicate mineral weathering obviously.The weathering rates were quite different for various kinds of silicate minerals,and the weathering rate of weathered adamellite could reach 150 mg/m2/d.Although B.mucilaginosus produced little acidic substance,pH in the microenvironment of bacterium-mineral complex might be far lower than that of the circumjacent environment;a large amount of acetic acid was found in the metabolites,and was likely to play an important role as a ligand.These results appear to suggest that acidolysis and ligand degradation are the main mechanisms of B.mucilaginosus dissolving silicate minerals,the formation of bacterium-mineral complexes is the necessary condition for the bacteria weathering silicate minerals,and extracelluar polysaccharides played important roles in bacterium-mineral interaction processes by forming bacterium-mineral complexes and maintaining the spe-cial physicochemical properties of microenvironment.展开更多
Gases containing sulfur oxides can cause corrosion and failure of bellows used as furnace blowers in high-temperature environments.In order to mitigate this issue,the behavior of an effective blast furnace blower has ...Gases containing sulfur oxides can cause corrosion and failure of bellows used as furnace blowers in high-temperature environments.In order to mitigate this issue,the behavior of an effective blast furnace blower has been examined in detail.Firstly,the Sereda corrosion model has been introduced to simulate the corrosion rate of the related bellows taking into account the effects of temperature and SO_(2) gas;such results have been compared with effective measurements;then,the average gas velocity in the pipeline and the von Mises stress distribution of the inner draft tube have been analyzed using a Fluid-Structure Interaction model.Finally,the semi-closed internal corrosion environment caused by a 5 mm radial gap between the inner draft tube and the bellows has been considered.The gas flow rate in the residential space has been found to be low(0.5 ms–this value leads to a stable semi-closed internal corrosion environment for exhaust gas exchange);water phase in the exhaust gas is prone to accelerate the corrosion rate.On this basis,a bellows with an optimized inner draft tube has proposed,which includes corrosion-resistant honeycomb buffer rings.展开更多
In recent years,deep learning has been widely applied in the fields of recommendation systems and click-through rate(CTR)prediction,and thus recommendation models incorporating deep learning have emerged.In addition,t...In recent years,deep learning has been widely applied in the fields of recommendation systems and click-through rate(CTR)prediction,and thus recommendation models incorporating deep learning have emerged.In addition,the design and implementation of recommendation models using information related to user behavior sequences is an important direction of current research in recommendation systems,and models calculate the likelihood of users clicking on target items based on their behavior sequence information.In order to explore the relationship between features,this paper improves and optimizes on the basis of deep interest network(DIN)proposed by Ali’s team.Based on the user behavioral sequences information,the attentional factorization machine(AFM)is integrated to obtain richer and more accurate behavioral sequence information.In addition,this paper designs a new way of calculating attention weights,which uses the relationship between the cosine similarity of any two vectors and the absolute value of their modal length difference to measure their relevance degree.Thus,a novel deep learning CTR prediction mode is proposed,that is,the CTR prediction network based on user behavior sequence and feature interactions deep interest and machines network(DIMN).We conduct extensive comparison experiments on three public datasets and one private music dataset,which are more recognized in the industry,and the results show that the DIMN obtains a better performance compared with the classical CTR prediction model.展开更多
Short Retraction NoticeThe paper does not meet the standards of "Journal of Applied Mathematics and Physics". This article has been retracted to straighten the academic record. In making this decision the Ed...Short Retraction NoticeThe paper does not meet the standards of "Journal of Applied Mathematics and Physics". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.Editor guiding this retraction: Prof. Wen-Xiu Ma (EiC of JAMP)The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED".展开更多
The transition energies, E1 transitional oscillator strengths of the spin-allowed as well as the spin-forbidden and the corresponding transition rates, and complete M1, E2, M2 forbidden transition rates for 1s^(2), 1s...The transition energies, E1 transitional oscillator strengths of the spin-allowed as well as the spin-forbidden and the corresponding transition rates, and complete M1, E2, M2 forbidden transition rates for 1s^(2), 1s2s, and 1s2p states of He I, are investigated using the multi-configuration Dirac–Hartree–Fock method. In the subsequent relativistic configuration interaction computations, the Breit interaction and the QED effect are considered as perturbation, separately. Our transition energies, oscillator strengths, and transition rates are in good agreement with the experimental and other theoretical results. As a result, the QED effect is not important for helium atoms, however, the effect of the Breit interaction plays a significant role in the transition energies, the oscillator strengths and transition rates.展开更多
Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under sat...Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under saturated ground, i.e. circular footing and deep tunnel. However, the technique is only conditionally stable and requires small time steps, portending its inefficiency for simulating large-scale H-M problems. To improve its efficiency, the unconditionally stable alternating direction explicit(ADE)scheme could be used to solve the flow problem. The standard ADE scheme, however, is only moderately accurate and is restricted to uniform grids and plane strain flow conditions. This paper aims to remove these drawbacks by developing a novel high-order ADE scheme capable of solving flow problems in nonuniform grids and under axisymmetric conditions. The new scheme is derived by performing a fourthorder finite difference(FD) approximation to the spatial derivatives of the axisymmetric fluid-diffusion equation in a non-uniform grid configuration. The implicit Crank-Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps,giving rise to a new axisymmetric ADE scheme. The pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer code fast Lagrangian analysis of continua(FLAC). This coupling procedure is called the sequentially-explicit coupling technique based on the fourth-order axisymmetric ADE scheme or SEA-4-AXI. Application of SEA-4-AXI for solving axisymmetric consolidation of a circular footing and of advancing tunnel in deep saturated ground shows that SEA-4-AXI reduces computer runtime up to 42%-50% that of FLAC’s basic scheme without numerical instability. In addition, it produces high numerical accuracy of the H-M solutions with average percentage difference of only 0.5%-1.8%.展开更多
An adaptive finite element method for high-speed flow-structure interaction is pre- sented.The cell-centered finite element method is combined with an adaptive meshing technique to solve the Navier-Stokes equations fo...An adaptive finite element method for high-speed flow-structure interaction is pre- sented.The cell-centered finite element method is combined with an adaptive meshing technique to solve the Navier-Stokes equations for high-speed compressible flow behavior.The energy equation and the quasi-static structural equations for aerodynamically heated structures are solved by applying the Galerkin finite element method.The finite element formulation and computational procedure are de- scribed.Interactions between the high-speed flow,structural heat transfer,and deformation are studied by two applications of Mach 10 flow over an inclined plate,and Mach 4 flow in a channel.展开更多
ELI-Beamlines(ELI-BL),one of the three pillars of the Extreme Light Infrastructure endeavour,will be in a unique position to perform research in high-energy-density-physics(HEDP),plasma physics and ultra-high intensit...ELI-Beamlines(ELI-BL),one of the three pillars of the Extreme Light Infrastructure endeavour,will be in a unique position to perform research in high-energy-density-physics(HEDP),plasma physics and ultra-high intensity(UHI)ð>10^(22) W=cm^(2)) lasereplasma interaction.Recently the need for HED laboratory physics was identified and the P3(plasma physics platform)installation under construction in ELI-BL will be an answer.The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones,high-pressure quantum ones,warm dense matter(WDM)and ultra-relativistic plasmas.HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion(ICF).Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses.This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI,and gives a brief overview of some research under way in the field of UHI,laboratory astrophysics,ICF,WDM,and plasma optics.展开更多
A method for analysing the vehicle-bridge interaction system with enhanced objectivity is proposed in the paper, which considers the time-variant and random characteristics and allows finding the power spectral densit...A method for analysing the vehicle-bridge interaction system with enhanced objectivity is proposed in the paper, which considers the time-variant and random characteristics and allows finding the power spectral densities(PSDs) of the system responses directly from the PSD of track irregularity. The pseudo-excitation method is adopted in the proposed framework, where the vehicle is modelled as a rigid body and the bridge is modelled using the finite element method. The vertical and lateral wheel-rail pseudo-excitations are established assuming the wheel and rail have the same displacement and using the simplified Kalker creep theory, respectively. The power spectrum function of vehicle and bridge responses is calculated by history integral. Based on the dynamic responses from the deterministic and random analyses of the interaction system, and the probability density functions for three safety factors(derailment coefficient, wheel unloading rate, and lateral wheel axle force) are obtained, and the probabilities of the safety factors exceeding the given limits are calculated. The proposed method is validated by Monte Carlo simulations using a case study of a high-speed train running over a bridge with five simply supported spans and four piers.展开更多
Using 19-year satellite altimetric data, variations in the eddy kinetic energy, energy exchanges and interaction between the eddy fi eld and mean fl ow are discussed for the Kuroshio south of Japan. In the seasonal cy...Using 19-year satellite altimetric data, variations in the eddy kinetic energy, energy exchanges and interaction between the eddy fi eld and mean fl ow are discussed for the Kuroshio south of Japan. In the seasonal cycle, the eddy kinetic energy level is a minimum in December/January and a maximum in April/May. In addition to seasonal variations, the eddy kinetic energy undergoes interannual changes. The energy transfers mainly from the mean fl ow to the eddy fi eld in the Kuroshio south of Japan, and dominant energy exchanges mainly occur along the Kuroshio path south of Japan in each year from 1993 to 2011. In addition, there is often barotropic instability south of Honshu. Regarding interactions between the eddy fi eld and mean fl ow, cyclonic and anticyclonic accelerations are also found along the Kuroshio path and they fl ank each other. There is cyclonic acceleration always imposed on southeast of Kyushu, and anticyclonic acceleration dominates south of Honshu from 2001 to mid-2005. Reynolds stress is used to explain the dynamic process of energy exchange. Furthermore, lag-correlation and linear regression analysis show that variability of the energy conversion rate and Reynolds stress involve responses to eddy acceleration at two time scales. The enhanced eddy acceleration induces large Reynolds stress, and enhanced Reynolds stress or barotropic instability further enforces energy transfer from the mean fl ow to the eddy fi eld.展开更多
Although the importance to global oceanography of ice shelf-oceaaa interactions has been recognized for many years, only more recently has its role in the control of ice flow- from the interior, grounded ice sheet int...Although the importance to global oceanography of ice shelf-oceaaa interactions has been recognized for many years, only more recently has its role in the control of ice flow- from the interior, grounded ice sheet into the ocean been more clearly understood. The consequences for global sea level of increasing ice loss from the Antarctic and Greenland ice sheets has prompted rapidly growing research efforts in this area. Here we describe the different techniques commonly employed in the field study of ice shelf-ocean interactions. We focus on techniques used by the British Antarctic Survey, primarily on Filchner-Ronne Ice Shelf, and describe some recent results from instruments deployed both beneath the ice shelf and on its upper surface, which demonstrate variability at a broad range of time scales.展开更多
The present study theoretically as well as experimentally investigates the interaction between waves and an array of porous circular cylinders with or without an inner porous plate based on the linear wave theory. To ...The present study theoretically as well as experimentally investigates the interaction between waves and an array of porous circular cylinders with or without an inner porous plate based on the linear wave theory. To design more effective floating breakwaters, the transmission rate of waves propagating through the array is evaluated. Each cylinder in the array is partly made of porous materials. Specifically, it possesses a porous sidewall and an impermeable bottom. In addition, an inner porous plate is horizontally fixed inside the cylinders. It dissipates the wave more effectively and eliminates the sloshing phenomenon. The approach suggested by Kagemoto and Yue (1986) is adopted to solve the multiple-scatter problem, while a hierarchical interaction theory is adopted to deal with hydrodynamic interactions among a great number of bodies, which efficiently saves computation time. Meanwhile, a series of model tests with an array of porous cylinders is performed in a wave basin to validate the theoretical work and the calculated results. The draft of the cylinders, the location of the inner porous plate, and the spacing between adjacent cylinders are also adjusted to investigate their effects on wave dissipation.展开更多
Based on the plant model of 600-MW PWR,the molten core-concrete interactions(MCCI) under different models are studied.Station blackout (SBO) with steam-driven auxiliary feed water pump failure is selected as the case ...Based on the plant model of 600-MW PWR,the molten core-concrete interactions(MCCI) under different models are studied.Station blackout (SBO) with steam-driven auxiliary feed water pump failure is selected as the case for the model comparisons analysis.The result shows that thermal resistance model between debris and concrete has much influence on the consequence of MCCI.The concrete erosion rate calculated with gas film model is much higher than that of slag film model.Some other model comparisons such as the chemical reaction heat and the configuration molten pool are also discussed.展开更多
The intermolecular interaction in an azobenzene self-assembled monolayers (SAMs) on gold electrode was investigated by controlling the assembling time and using mixed self-assembled techniques, and the variation of ap...The intermolecular interaction in an azobenzene self-assembled monolayers (SAMs) on gold electrode was investigated by controlling the assembling time and using mixed self-assembled techniques, and the variation of apparent electron transfer rate constant (k(s)) of azobenzene SAMs with different molecular packing density is reported.展开更多
Soybean (Glycine max (L.) Merrill) is one of the most important oil and protein sources in the world. Interactive effect of elevated carbon dioxide (CO2) and soil water availability potentially impact future food secu...Soybean (Glycine max (L.) Merrill) is one of the most important oil and protein sources in the world. Interactive effect of elevated carbon dioxide (CO2) and soil water availability potentially impact future food security of the world under climate change. A rhizotron growth chamber experiment was conducted to study soil moisture interactions with elevated CO2 on gaseous exchange parameters of soybean under two CO2 concentrations (380 and 800 μmol·mol-1) with three soil moisture levels. Elevated CO2 decreased photosynthetic rate (11.1% and 10.8%), stomatal conductance (40.5% and 36.0%), intercellular CO2 concentration (16.68% and 12.28%), relative intercellular CO2 concentration (17.4% and 11.2%), and transpiration rate (43.6% and 39%) at 42 and 47 DAP. This down-regulation of photosynthesis was probably caused by low leaf nitrogen content and decrease in uptake of nutrients due to decrease in stomatal conductance and transpiration rate. Water use efficiency (WUE) increased under elevated CO2 because increase in total dry weight of plant was greater than that of water use under high CO2 conditions. Plants under normal and high soil moisture levels had significantly higher photosynthetic rate (7% to 16%) favored by optimum soil moisture content and high specific water content of soybean plants. Total dry matter production was significantly high when plants grown under elevated CO2 with normal (74.3% to 137.3%) soil moisture level. Photosynthetic rate was significantly and positively correlated with leaf conductance and intercellular CO2 concentration but WUE was significantly negatively correlated with leaf conductance, intercellular CO2 concentration and transpiration rate. However, the effect of high CO2 on plants depends on availability of nutrients and soil moisture for positive feedback from CO2 enrichment.展开更多
A modified form of the Townsend equations for the fluctuating velocity wave vectors is applied to the interaction of a longitudinal vortex with a laminar boundary-layer flow. These three-dimensional equations are cast...A modified form of the Townsend equations for the fluctuating velocity wave vectors is applied to the interaction of a longitudinal vortex with a laminar boundary-layer flow. These three-dimensional equations are cast into a Lorenz-format system of equations for the spectral velocity component solutions. Tsallis-form empirical entropic indices are obtained from the solutions of the modified Lorenz equations. These solutions are sensitive to the initial conditions applied to the time-dependent coupled, non-linear differential equations for the spectral velocity components. Eighteen sets of initial conditions for these solutions are examined. The empirical entropic indices yield corresponding intermittency exponents which then yield the entropy generation rates for each set of initial conditions. The flow environment consists of the flow of hydrogen gas with impurities at a given temperature and pressure in the interaction of a longitudinal vortex with a laminar boundary layer flow. Results are presented that indicate a strong correlation of predicted entropy generation rates and the corresponding applied initial conditions. These initial conditions may be ascribed to the turbulence levels in the boundary layer, thus indicating a source for the subsequent entropy generation rates by the interactive instabilities.展开更多
Root pullout performance of plants is an important mechanical basis for soil reinforcement by plant roots in the semi-arid areas.Studies have shown that it is affected by plant factors(species,ages,root geometry,etc.)...Root pullout performance of plants is an important mechanical basis for soil reinforcement by plant roots in the semi-arid areas.Studies have shown that it is affected by plant factors(species,ages,root geometry,etc.)and soil factors(soil types,soil moisture,soil bulk densities,etc.).However,the effects of loading rates on root pullout performance are not well studied.To explore the mechanical interactions under different loading rates,we conducted pullout tests on Medicago sativa L.and Hippophae rhamnoides L.roots under five loading rates,i.e.,5,50,100,150,and 200 mm/min.In addition,tensile tests were conducted on the roots in diameters of 0.5-2.0 mm to compare the relationship between root tensile properties and root pullout properties.Results showed that two root failure modes,slippage and breakage,were observed during root pullout tests.All M.sativa roots were pulled out,while 72.2%of H.rhamnoides roots were broken.The maximum fracture diameter and fracture root length of H.rhamnoides were 1.22 mm and 7.44 cm under 100 mm/min loading rate,respectively.Root displacement values were 4.63%(±0.43%)and 8.91%(±0.52%)of the total root length for M.sativa and H.rhamnoides,respectively.The values of maximum pullout force were 14.6(±0.7)and 17.7(±1.8)N under 100 mm/min for M.sativa and H.rhamnoides,respectively.Values of the maximum pullout strength for M.sativa and H.rhamnoides were 38.38(±5.48)MPa under 150 mm/min and 12.47(±1.43)MPa under 100 mm/min,respectively.Root-soil friction coefficient under 100 mm/min was significantly larger than those under other loading rates for both the two species.Values of the maximum root pullout energy for M.sativa and H.rhamnoides were 87.83(±21.55)mm•N under 100 mm/min and 173.53(±38.53)mm•N under 200 mm/min,respectively.Root pullout force was significantly related to root diameter(P<0.01).Peak root pullout force was significantly affected by loading rates when the effect of root diameter was included(P<0.01),and vice versa.Except for the failure mode and peak pullout force,other pullout parameters,including root pullout strength,root displacement,root-soil friction coefficient,and root pullout energy were not significantly affected by loading rates(P>0.05).Root pullout strength was greater than root tensile strength for the two species.The results suggested that there was no need to deliberately control loading rate in root pullout tests in the semi-arid soil,and root pullout force and pullout strength could be better parameters for root reinforcement model compared with root tensile strength as root pullout force and pullout strength could more realistically reflect the working state of roots in the semi-arid soil.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos. 71231007, 71071119, and 60574071
文摘Traditional evolutionary games assume uniform interaction rate, which means that the rate at which individuals meet and interact is independent of their strategies. But in some systems, especially biological systems, the players interact with each other discriminately. Taylor and Nowak (2006) were the first to establish the corresponding non-uniform interaction rate model by allowing the interaction rates to depend on strategies. Their model is based on replicator dynamics which assumes an infinite size population. But in reality, the number of individuals in the population is always finite, and there will be some random interference in the individuals' strategy selection process. Therefore, it is more practical to establish the corresponding stochastic evolutionary model in finite populations. In fact, the analysis of evolutionary games in a finite size population is more difficult. Just as Taylor and Nowak said in the outlook section of their paper, 'The analysis of non-uniform interaction rates should be extended to stochastic game dynamics of finite populations.' In this paper, we are exactly doing this work. We extend Taylor and Nowak's model from infinite to finite case, especially focusing on the influence of non-uniform connection characteristics on the evolutionary stable state of the system. We model the strategy evolutionary process of the population by a continuous ergodic Markov process. Based on the limit distribution of the process, we can give the evolutionary stable state of the system. We make a complete classification of the symmetric 2×2 games. For each case game, the corresponding limit distribution of the Markov-based process is given when noise intensity is small enough. In contrast with most literatures in evolutionary games using the simulation method, all our results obtained are analytical. Especially, in the dominant-case game, coexistence of the two strategies may become evolutionary stable states in our model. This result can be used to explain the emergence of cooperation in the Prisoner is Dilemma Games to some extent. Some specific examples are given to illustrate our results.
基金supported by the National Natural Science Foundation of China(No.21776264).
文摘Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is proposed by using molecular dynamics simulation,and the relationship between ion-to-ion interaction and salt solubility in a simulated seawater water-salt system is investigated.By analyzing the variation of distance and contact time between ions in an electrolyte solution,from both spatial and temporal perspectives,new parameters were proposed to describe the interaction between ions:interaction distance(ID),and interaction time ratio(ITR).The best correlation between characteristic time ratio and solubility was found for a molar ratio of salt-to-water of 10:100 with a correlation coefficient of 0.96.For the same salt,a positive correlation was found between CTR and the molar ratio of salt and water.For type 1-1,type 2-1,type 1-2,and type 2-2 salts,the correlation coefficients between CTR and solubility were 0.93,0.96,0.92,and 0.98 for a salt-to-water molar ratio of 10:100,respectively.The solubility of multiple salts was predicted by simulations and compared with experimental values,yielding an average relative deviation of 12.4%.The new ion-interaction parameters offer significant advantages in describing strongly correlated and strongly hydrated electrolyte solutions.
基金supports from National Natural Science Foundation of China (Grant No.62205117,52275429)National Key Research and Development Program of China (Grant No.2021YFF0502700)+3 种基金Young Elite Scientists Sponsorship Program by CAST (Grant No.2022QNRC001)West Light Foundation of the Chinese Academy of Sciences (Grant No.xbzg-zdsys-202206)Knowledge Innovation Program of Wuhan-Shuguang,Innovation project of Optics Valley Laboratory (Grant No.OVL2021ZD002)Hubei Provincial Natural Science Foundation of China (Grant No.2022CFB792).
文摘Interactive holography offers unmatched levels of immersion and user engagement in the field of future display.Despite of the substantial progress has been made in dynamic meta-holography,the realization of real-time,highly smooth interactive holography remains a significant challenge due to the computational and display frame rate limitations.In this study,we introduced a dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates.To our knowledge,this is the first reported practical dynamic interactive metasurface holographic system.We spa-tially divided the metasurface device into multiple distinct channels,each projecting a reconstructed sub-pattern.The switching states of these channels were mapped to bitwise operations on a set of bit values,which avoids complex holo-gram computations,enabling an ultra-high computational frame rate.Our approach achieves a computational frame rate of 800 kHz and a display frame rate of 23 kHz on a low-power Raspberry Pi computational platform.According to this methodology,we demonstrated an interactive dynamic holographic Tetris game system that allows interactive gameplay,color display,and on-the-fly hologram creation.Our technology presents an inspiration for advanced dynamic meta-holography,which is promising for a broad range of applications including advanced human-computer interaction,real-time 3D visualization,and next-generation virtual and augmented reality systems.
基金supported by the National High Technology Research and Development Program of China (2008AA06Z108)
文摘Bacillus mucilaginosus is a common soil bacterium,and usually used as a model bacterium in studying microbe-mineral interactions.Several reaction mechanisms of B.mucilaginosus weathering silicate minerals were proposed.However,the molecule mechanisms and detailed processes were still unclear.In this paper,bacterium-mineral interactions were studied in terms of variations in pH value over the experimental period,variations in mineral composition,weathering rates of silicate minerals and volatile metabolites in the culture medium,etc.,to further explore the bacterium-mineral interaction mechanisms.The results showed that B.mucilaginosus could enhance silicate mineral weathering obviously.The weathering rates were quite different for various kinds of silicate minerals,and the weathering rate of weathered adamellite could reach 150 mg/m2/d.Although B.mucilaginosus produced little acidic substance,pH in the microenvironment of bacterium-mineral complex might be far lower than that of the circumjacent environment;a large amount of acetic acid was found in the metabolites,and was likely to play an important role as a ligand.These results appear to suggest that acidolysis and ligand degradation are the main mechanisms of B.mucilaginosus dissolving silicate minerals,the formation of bacterium-mineral complexes is the necessary condition for the bacteria weathering silicate minerals,and extracelluar polysaccharides played important roles in bacterium-mineral interaction processes by forming bacterium-mineral complexes and maintaining the spe-cial physicochemical properties of microenvironment.
基金funded by Science and Technology Project of Hebei Education Department(Project No.QN2022198).
文摘Gases containing sulfur oxides can cause corrosion and failure of bellows used as furnace blowers in high-temperature environments.In order to mitigate this issue,the behavior of an effective blast furnace blower has been examined in detail.Firstly,the Sereda corrosion model has been introduced to simulate the corrosion rate of the related bellows taking into account the effects of temperature and SO_(2) gas;such results have been compared with effective measurements;then,the average gas velocity in the pipeline and the von Mises stress distribution of the inner draft tube have been analyzed using a Fluid-Structure Interaction model.Finally,the semi-closed internal corrosion environment caused by a 5 mm radial gap between the inner draft tube and the bellows has been considered.The gas flow rate in the residential space has been found to be low(0.5 ms–this value leads to a stable semi-closed internal corrosion environment for exhaust gas exchange);water phase in the exhaust gas is prone to accelerate the corrosion rate.On this basis,a bellows with an optimized inner draft tube has proposed,which includes corrosion-resistant honeycomb buffer rings.
文摘In recent years,deep learning has been widely applied in the fields of recommendation systems and click-through rate(CTR)prediction,and thus recommendation models incorporating deep learning have emerged.In addition,the design and implementation of recommendation models using information related to user behavior sequences is an important direction of current research in recommendation systems,and models calculate the likelihood of users clicking on target items based on their behavior sequence information.In order to explore the relationship between features,this paper improves and optimizes on the basis of deep interest network(DIN)proposed by Ali’s team.Based on the user behavioral sequences information,the attentional factorization machine(AFM)is integrated to obtain richer and more accurate behavioral sequence information.In addition,this paper designs a new way of calculating attention weights,which uses the relationship between the cosine similarity of any two vectors and the absolute value of their modal length difference to measure their relevance degree.Thus,a novel deep learning CTR prediction mode is proposed,that is,the CTR prediction network based on user behavior sequence and feature interactions deep interest and machines network(DIMN).We conduct extensive comparison experiments on three public datasets and one private music dataset,which are more recognized in the industry,and the results show that the DIMN obtains a better performance compared with the classical CTR prediction model.
文摘Short Retraction NoticeThe paper does not meet the standards of "Journal of Applied Mathematics and Physics". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.Editor guiding this retraction: Prof. Wen-Xiu Ma (EiC of JAMP)The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED".
基金Supported by the National Key Research and Development Program of China (Grant No. 2017YFA0402300)the National Natural Science Foundation of China (Grant Nos. 11774344 and 11474033)。
文摘The transition energies, E1 transitional oscillator strengths of the spin-allowed as well as the spin-forbidden and the corresponding transition rates, and complete M1, E2, M2 forbidden transition rates for 1s^(2), 1s2s, and 1s2p states of He I, are investigated using the multi-configuration Dirac–Hartree–Fock method. In the subsequent relativistic configuration interaction computations, the Breit interaction and the QED effect are considered as perturbation, separately. Our transition energies, oscillator strengths, and transition rates are in good agreement with the experimental and other theoretical results. As a result, the QED effect is not important for helium atoms, however, the effect of the Breit interaction plays a significant role in the transition energies, the oscillator strengths and transition rates.
基金the support from the University Transportation Center for Underground Transportation Infrastructure at the Colorado School of Mines for partially funding this research under Grant No. 69A3551747118 of the Fixing America's Surface Transportation Act (FAST Act) of U.S. DoT FY2016
文摘Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under saturated ground, i.e. circular footing and deep tunnel. However, the technique is only conditionally stable and requires small time steps, portending its inefficiency for simulating large-scale H-M problems. To improve its efficiency, the unconditionally stable alternating direction explicit(ADE)scheme could be used to solve the flow problem. The standard ADE scheme, however, is only moderately accurate and is restricted to uniform grids and plane strain flow conditions. This paper aims to remove these drawbacks by developing a novel high-order ADE scheme capable of solving flow problems in nonuniform grids and under axisymmetric conditions. The new scheme is derived by performing a fourthorder finite difference(FD) approximation to the spatial derivatives of the axisymmetric fluid-diffusion equation in a non-uniform grid configuration. The implicit Crank-Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps,giving rise to a new axisymmetric ADE scheme. The pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer code fast Lagrangian analysis of continua(FLAC). This coupling procedure is called the sequentially-explicit coupling technique based on the fourth-order axisymmetric ADE scheme or SEA-4-AXI. Application of SEA-4-AXI for solving axisymmetric consolidation of a circular footing and of advancing tunnel in deep saturated ground shows that SEA-4-AXI reduces computer runtime up to 42%-50% that of FLAC’s basic scheme without numerical instability. In addition, it produces high numerical accuracy of the H-M solutions with average percentage difference of only 0.5%-1.8%.
基金The project supported by the Thailand Research Fund(TRF)
文摘An adaptive finite element method for high-speed flow-structure interaction is pre- sented.The cell-centered finite element method is combined with an adaptive meshing technique to solve the Navier-Stokes equations for high-speed compressible flow behavior.The energy equation and the quasi-static structural equations for aerodynamically heated structures are solved by applying the Galerkin finite element method.The finite element formulation and computational procedure are de- scribed.Interactions between the high-speed flow,structural heat transfer,and deformation are studied by two applications of Mach 10 flow over an inclined plate,and Mach 4 flow in a channel.
基金The authors acknowledge support from the project ELI:Extreme Light Infrastructure from European Regional Devel-opment(CZ.02.1.01/0.0/0.0/15-008/0000162)Also supported by the project High Field Initiative(CZ.02.1.01/0.0/0.0/15-003/0000449)from European Regional Development Fund.
文摘ELI-Beamlines(ELI-BL),one of the three pillars of the Extreme Light Infrastructure endeavour,will be in a unique position to perform research in high-energy-density-physics(HEDP),plasma physics and ultra-high intensity(UHI)ð>10^(22) W=cm^(2)) lasereplasma interaction.Recently the need for HED laboratory physics was identified and the P3(plasma physics platform)installation under construction in ELI-BL will be an answer.The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones,high-pressure quantum ones,warm dense matter(WDM)and ultra-relativistic plasmas.HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion(ICF).Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses.This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI,and gives a brief overview of some research under way in the field of UHI,laboratory astrophysics,ICF,WDM,and plasma optics.
文摘A method for analysing the vehicle-bridge interaction system with enhanced objectivity is proposed in the paper, which considers the time-variant and random characteristics and allows finding the power spectral densities(PSDs) of the system responses directly from the PSD of track irregularity. The pseudo-excitation method is adopted in the proposed framework, where the vehicle is modelled as a rigid body and the bridge is modelled using the finite element method. The vertical and lateral wheel-rail pseudo-excitations are established assuming the wheel and rail have the same displacement and using the simplified Kalker creep theory, respectively. The power spectrum function of vehicle and bridge responses is calculated by history integral. Based on the dynamic responses from the deterministic and random analyses of the interaction system, and the probability density functions for three safety factors(derailment coefficient, wheel unloading rate, and lateral wheel axle force) are obtained, and the probabilities of the safety factors exceeding the given limits are calculated. The proposed method is validated by Monte Carlo simulations using a case study of a high-speed train running over a bridge with five simply supported spans and four piers.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-EW-201)the Basic Research Program of Science and Technology Projects of Qingdao(No.11-1-4-95-jch)
文摘Using 19-year satellite altimetric data, variations in the eddy kinetic energy, energy exchanges and interaction between the eddy fi eld and mean fl ow are discussed for the Kuroshio south of Japan. In the seasonal cycle, the eddy kinetic energy level is a minimum in December/January and a maximum in April/May. In addition to seasonal variations, the eddy kinetic energy undergoes interannual changes. The energy transfers mainly from the mean fl ow to the eddy fi eld in the Kuroshio south of Japan, and dominant energy exchanges mainly occur along the Kuroshio path south of Japan in each year from 1993 to 2011. In addition, there is often barotropic instability south of Honshu. Regarding interactions between the eddy fi eld and mean fl ow, cyclonic and anticyclonic accelerations are also found along the Kuroshio path and they fl ank each other. There is cyclonic acceleration always imposed on southeast of Kyushu, and anticyclonic acceleration dominates south of Honshu from 2001 to mid-2005. Reynolds stress is used to explain the dynamic process of energy exchange. Furthermore, lag-correlation and linear regression analysis show that variability of the energy conversion rate and Reynolds stress involve responses to eddy acceleration at two time scales. The enhanced eddy acceleration induces large Reynolds stress, and enhanced Reynolds stress or barotropic instability further enforces energy transfer from the mean fl ow to the eddy fi eld.
文摘Although the importance to global oceanography of ice shelf-oceaaa interactions has been recognized for many years, only more recently has its role in the control of ice flow- from the interior, grounded ice sheet into the ocean been more clearly understood. The consequences for global sea level of increasing ice loss from the Antarctic and Greenland ice sheets has prompted rapidly growing research efforts in this area. Here we describe the different techniques commonly employed in the field study of ice shelf-ocean interactions. We focus on techniques used by the British Antarctic Survey, primarily on Filchner-Ronne Ice Shelf, and describe some recent results from instruments deployed both beneath the ice shelf and on its upper surface, which demonstrate variability at a broad range of time scales.
基金supported by the Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China (Grant Nos. 40876049 and 31172446)+1 种基金the Science and Technology Department of Zhejiang Province(Grant No. 2008C12065-1)the Teaching Department of Zhejiang Province (Grant No. Z200803912)
文摘The present study theoretically as well as experimentally investigates the interaction between waves and an array of porous circular cylinders with or without an inner porous plate based on the linear wave theory. To design more effective floating breakwaters, the transmission rate of waves propagating through the array is evaluated. Each cylinder in the array is partly made of porous materials. Specifically, it possesses a porous sidewall and an impermeable bottom. In addition, an inner porous plate is horizontally fixed inside the cylinders. It dissipates the wave more effectively and eliminates the sloshing phenomenon. The approach suggested by Kagemoto and Yue (1986) is adopted to solve the multiple-scatter problem, while a hierarchical interaction theory is adopted to deal with hydrodynamic interactions among a great number of bodies, which efficiently saves computation time. Meanwhile, a series of model tests with an array of porous cylinders is performed in a wave basin to validate the theoretical work and the calculated results. The draft of the cylinders, the location of the inner porous plate, and the spacing between adjacent cylinders are also adjusted to investigate their effects on wave dissipation.
文摘Based on the plant model of 600-MW PWR,the molten core-concrete interactions(MCCI) under different models are studied.Station blackout (SBO) with steam-driven auxiliary feed water pump failure is selected as the case for the model comparisons analysis.The result shows that thermal resistance model between debris and concrete has much influence on the consequence of MCCI.The concrete erosion rate calculated with gas film model is much higher than that of slag film model.Some other model comparisons such as the chemical reaction heat and the configuration molten pool are also discussed.
文摘The intermolecular interaction in an azobenzene self-assembled monolayers (SAMs) on gold electrode was investigated by controlling the assembling time and using mixed self-assembled techniques, and the variation of apparent electron transfer rate constant (k(s)) of azobenzene SAMs with different molecular packing density is reported.
文摘Soybean (Glycine max (L.) Merrill) is one of the most important oil and protein sources in the world. Interactive effect of elevated carbon dioxide (CO2) and soil water availability potentially impact future food security of the world under climate change. A rhizotron growth chamber experiment was conducted to study soil moisture interactions with elevated CO2 on gaseous exchange parameters of soybean under two CO2 concentrations (380 and 800 μmol·mol-1) with three soil moisture levels. Elevated CO2 decreased photosynthetic rate (11.1% and 10.8%), stomatal conductance (40.5% and 36.0%), intercellular CO2 concentration (16.68% and 12.28%), relative intercellular CO2 concentration (17.4% and 11.2%), and transpiration rate (43.6% and 39%) at 42 and 47 DAP. This down-regulation of photosynthesis was probably caused by low leaf nitrogen content and decrease in uptake of nutrients due to decrease in stomatal conductance and transpiration rate. Water use efficiency (WUE) increased under elevated CO2 because increase in total dry weight of plant was greater than that of water use under high CO2 conditions. Plants under normal and high soil moisture levels had significantly higher photosynthetic rate (7% to 16%) favored by optimum soil moisture content and high specific water content of soybean plants. Total dry matter production was significantly high when plants grown under elevated CO2 with normal (74.3% to 137.3%) soil moisture level. Photosynthetic rate was significantly and positively correlated with leaf conductance and intercellular CO2 concentration but WUE was significantly negatively correlated with leaf conductance, intercellular CO2 concentration and transpiration rate. However, the effect of high CO2 on plants depends on availability of nutrients and soil moisture for positive feedback from CO2 enrichment.
文摘A modified form of the Townsend equations for the fluctuating velocity wave vectors is applied to the interaction of a longitudinal vortex with a laminar boundary-layer flow. These three-dimensional equations are cast into a Lorenz-format system of equations for the spectral velocity component solutions. Tsallis-form empirical entropic indices are obtained from the solutions of the modified Lorenz equations. These solutions are sensitive to the initial conditions applied to the time-dependent coupled, non-linear differential equations for the spectral velocity components. Eighteen sets of initial conditions for these solutions are examined. The empirical entropic indices yield corresponding intermittency exponents which then yield the entropy generation rates for each set of initial conditions. The flow environment consists of the flow of hydrogen gas with impurities at a given temperature and pressure in the interaction of a longitudinal vortex with a laminar boundary layer flow. Results are presented that indicate a strong correlation of predicted entropy generation rates and the corresponding applied initial conditions. These initial conditions may be ascribed to the turbulence levels in the boundary layer, thus indicating a source for the subsequent entropy generation rates by the interactive instabilities.
基金supported by the Natural Science Foundation of Shanxi Province of China(20210302123105)the Shanxi Scholarship Council of China(2020-054)the Changjiang River Scientific Research Institute(CRSRI)Open Research Program(CKWV20221006/KY).
文摘Root pullout performance of plants is an important mechanical basis for soil reinforcement by plant roots in the semi-arid areas.Studies have shown that it is affected by plant factors(species,ages,root geometry,etc.)and soil factors(soil types,soil moisture,soil bulk densities,etc.).However,the effects of loading rates on root pullout performance are not well studied.To explore the mechanical interactions under different loading rates,we conducted pullout tests on Medicago sativa L.and Hippophae rhamnoides L.roots under five loading rates,i.e.,5,50,100,150,and 200 mm/min.In addition,tensile tests were conducted on the roots in diameters of 0.5-2.0 mm to compare the relationship between root tensile properties and root pullout properties.Results showed that two root failure modes,slippage and breakage,were observed during root pullout tests.All M.sativa roots were pulled out,while 72.2%of H.rhamnoides roots were broken.The maximum fracture diameter and fracture root length of H.rhamnoides were 1.22 mm and 7.44 cm under 100 mm/min loading rate,respectively.Root displacement values were 4.63%(±0.43%)and 8.91%(±0.52%)of the total root length for M.sativa and H.rhamnoides,respectively.The values of maximum pullout force were 14.6(±0.7)and 17.7(±1.8)N under 100 mm/min for M.sativa and H.rhamnoides,respectively.Values of the maximum pullout strength for M.sativa and H.rhamnoides were 38.38(±5.48)MPa under 150 mm/min and 12.47(±1.43)MPa under 100 mm/min,respectively.Root-soil friction coefficient under 100 mm/min was significantly larger than those under other loading rates for both the two species.Values of the maximum root pullout energy for M.sativa and H.rhamnoides were 87.83(±21.55)mm•N under 100 mm/min and 173.53(±38.53)mm•N under 200 mm/min,respectively.Root pullout force was significantly related to root diameter(P<0.01).Peak root pullout force was significantly affected by loading rates when the effect of root diameter was included(P<0.01),and vice versa.Except for the failure mode and peak pullout force,other pullout parameters,including root pullout strength,root displacement,root-soil friction coefficient,and root pullout energy were not significantly affected by loading rates(P>0.05).Root pullout strength was greater than root tensile strength for the two species.The results suggested that there was no need to deliberately control loading rate in root pullout tests in the semi-arid soil,and root pullout force and pullout strength could be better parameters for root reinforcement model compared with root tensile strength as root pullout force and pullout strength could more realistically reflect the working state of roots in the semi-arid soil.