Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle frac...Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle fracture of concrete,the fracture phase field driven by the compressive-shear term is constructed and added to the traditional brittle fracture phase field model.The rationality of the proposed model is verified by a mixed fracture example under a shear displacement load.Then,the extended fracture phase model is applied to simulate the corrosion-induced cracking process of RC.The cracking patterns caused by non-uniform corrosion expansion are discussed for RC specimens with homogeneous macroscopically or heterogeneous with different polygonal aggregate distributions at the mesoscopic scale.Then,the effects of the protective layer on the crack propagation trajectory and cracking resistance are investigated,illustrating that the cracking angle and cracking resistance increase with the increase of the protective layer thickness,consistent with the experimental observation.Finally,the corrosion-induced cracking process of concrete specimens with large and small spacing rebars is simulated,and the interaction of multiple corrosion cracking is easily influenced by the reinforcement spacing,which increases with the decrease of the steel bar interval.These conclusions play an important role in the design of engineering anti-corrosion measures.The fracture phase field model can provide strong support for the life assessment of RC structures.展开更多
Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state phase e...Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state phase error, and wider locking range compared to the conventional ZCDPLL. This work presents a Zero Crossing Digital Phase Locked Loop with Arc Sine block (ZCDPLL-AS). The performance of the loop is analyzed under mobile faded channel conditions. The mobile channel is assumed to be two path fading channel corrupted by additive white Gaussian noise (AWGM). It is shown that for a constant filter gain, the frequency spread has no effect on the steady state phase error variance when the loop is subjected to a phase step. For a frequency step and under the same conditions, the effect on phase error is minimal.展开更多
The stable operation of first and second order Zero Crossing Digital Phase Locked Loop (ZCDPLL) is extended by using a Fixed Point Iteration (FPI) method with relaxation. The non-linear components of ZCDPLL such as sa...The stable operation of first and second order Zero Crossing Digital Phase Locked Loop (ZCDPLL) is extended by using a Fixed Point Iteration (FPI) method with relaxation. The non-linear components of ZCDPLL such as sampler phase detector and Digital Controlled Oscillator (DCO) lead to unstable and chaotic operation when the filter gains are high. FPI will be used to stabilize the chaotic operation and consequently extend the lock range of the loop. The proposed stabilized loop can work in higher filter gains which are needed for faster signal acquisition.展开更多
Bubbles with different sizes have different dynamic and kinetic behavior in a two-phase bubbly flow. A common two-fluid model based on the uniform bubble size assumption is not suitable for a bubbly flow with non-unif...Bubbles with different sizes have different dynamic and kinetic behavior in a two-phase bubbly flow. A common two-fluid model based on the uniform bubble size assumption is not suitable for a bubbly flow with non-uniform bubble sizes. To deal with non-uniform bubbly flows, a multi-fluid model is established, with which bubbles are divided into several groups according to their sizes and a set of basic equations is derived for each group of bubbles with almost the same size. Through analyzing the bubble-bubble and bubble-pipe wall interactions, two new constitutive laws for the wall-force and pressure difference between the liquid phase and interface are developed to close the averaged basic equations. The respective phase distributions for each group of bubbles measured by a specially designed three-dimensional photographic method are used to check the model. Comparison between model-predicted values and experimental data shows that the model can describe laminar bubbly flow with non-uniform bubble sizes.展开更多
Traditional Amplitude Phase Shift Keying (APSK) consists of rings with points uniformly spaced. By giving up this uniform-spacing feature, we propose an APSK optimization method based on the uniform APSK with Gray l...Traditional Amplitude Phase Shift Keying (APSK) consists of rings with points uniformly spaced. By giving up this uniform-spacing feature, we propose an APSK optimization method based on the uniform APSK with Gray labeling (Gray-APSK). The aim of the optimization is to maximize the Generalized Mutual Information (GMI) of Bit-Interleaved Coded Modulation (BICM) for the targeted code rate and channel. We show that our optimized non-uniform APSK could offer further performance gain compared with the conventional uniform Gray-APSK and considerably outperforms the traditional quadrature amplitude modulation at the targeted SNR and channel.展开更多
基金the National Natural Science Foundation of China(Qing Zhang,Nos.11932006,U1934206,12172121)the Fundamental Research Funds for the Central Universities(Xin Gu,No.B210201031).
文摘Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle fracture of concrete,the fracture phase field driven by the compressive-shear term is constructed and added to the traditional brittle fracture phase field model.The rationality of the proposed model is verified by a mixed fracture example under a shear displacement load.Then,the extended fracture phase model is applied to simulate the corrosion-induced cracking process of RC.The cracking patterns caused by non-uniform corrosion expansion are discussed for RC specimens with homogeneous macroscopically or heterogeneous with different polygonal aggregate distributions at the mesoscopic scale.Then,the effects of the protective layer on the crack propagation trajectory and cracking resistance are investigated,illustrating that the cracking angle and cracking resistance increase with the increase of the protective layer thickness,consistent with the experimental observation.Finally,the corrosion-induced cracking process of concrete specimens with large and small spacing rebars is simulated,and the interaction of multiple corrosion cracking is easily influenced by the reinforcement spacing,which increases with the decrease of the steel bar interval.These conclusions play an important role in the design of engineering anti-corrosion measures.The fracture phase field model can provide strong support for the life assessment of RC structures.
文摘Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state phase error, and wider locking range compared to the conventional ZCDPLL. This work presents a Zero Crossing Digital Phase Locked Loop with Arc Sine block (ZCDPLL-AS). The performance of the loop is analyzed under mobile faded channel conditions. The mobile channel is assumed to be two path fading channel corrupted by additive white Gaussian noise (AWGM). It is shown that for a constant filter gain, the frequency spread has no effect on the steady state phase error variance when the loop is subjected to a phase step. For a frequency step and under the same conditions, the effect on phase error is minimal.
文摘The stable operation of first and second order Zero Crossing Digital Phase Locked Loop (ZCDPLL) is extended by using a Fixed Point Iteration (FPI) method with relaxation. The non-linear components of ZCDPLL such as sampler phase detector and Digital Controlled Oscillator (DCO) lead to unstable and chaotic operation when the filter gains are high. FPI will be used to stabilize the chaotic operation and consequently extend the lock range of the loop. The proposed stabilized loop can work in higher filter gains which are needed for faster signal acquisition.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 19572042).
文摘Bubbles with different sizes have different dynamic and kinetic behavior in a two-phase bubbly flow. A common two-fluid model based on the uniform bubble size assumption is not suitable for a bubbly flow with non-uniform bubble sizes. To deal with non-uniform bubbly flows, a multi-fluid model is established, with which bubbles are divided into several groups according to their sizes and a set of basic equations is derived for each group of bubbles with almost the same size. Through analyzing the bubble-bubble and bubble-pipe wall interactions, two new constitutive laws for the wall-force and pressure difference between the liquid phase and interface are developed to close the averaged basic equations. The respective phase distributions for each group of bubbles measured by a specially designed three-dimensional photographic method are used to check the model. Comparison between model-predicted values and experimental data shows that the model can describe laminar bubbly flow with non-uniform bubble sizes.
基金supported by the China Electric Power Research Institute (CEPRI) (No. TX71-13-007)Science Fund for Creative Research Groups of NSFC (No. 61321061)
文摘Traditional Amplitude Phase Shift Keying (APSK) consists of rings with points uniformly spaced. By giving up this uniform-spacing feature, we propose an APSK optimization method based on the uniform APSK with Gray labeling (Gray-APSK). The aim of the optimization is to maximize the Generalized Mutual Information (GMI) of Bit-Interleaved Coded Modulation (BICM) for the targeted code rate and channel. We show that our optimized non-uniform APSK could offer further performance gain compared with the conventional uniform Gray-APSK and considerably outperforms the traditional quadrature amplitude modulation at the targeted SNR and channel.