A three-dimensional cyclic symmetry finite element model of titanium-matrix composites(TMCs) ring was developed to investigate the stress distribution and burst failure. The effects of fiber volume fractions, reinfo...A three-dimensional cyclic symmetry finite element model of titanium-matrix composites(TMCs) ring was developed to investigate the stress distribution and burst failure. The effects of fiber volume fractions, reinforced areas, thermal residual stresses and two different temperatures on stress distribution were studied. The burst speed was obtained through analyzing the hoop tensile stresses under a series of rotating speeds. The results indicate that at the two different temperatures, the influences of fiber volume fractions and reinforced areas on stress level and distribution are different. Some proposals are provided for the structure design of the TMCs ring. With regard to thermal residual stresses, a larger reinforced area is an advisable choice for design of the ring at higher temperature.展开更多
Analytical method for the distributions of axial-load and stress is based on elastic assumption, but the threaded connections are often in plastic deformation stage in practice. Meanwhile the strain in the threaded co...Analytical method for the distributions of axial-load and stress is based on elastic assumption, but the threaded connections are often in plastic deformation stage in practice. Meanwhile the strain in the threaded connection is difficult to measure. So it is necessary to study the reliable numerical method. At present neither the convergence analysis of the computational results nor the elastic-plastic analysis in the loading-unloading process are studied. In this paper, von Mises plasticity and kinematic hardening model is used to describe the material response. A new convergence criterion for nonlinear finite element analysis of the loading-unloading process is proposed. An axisymmetric finite element model according to the proposed convergence criterion is developed and used to analyze the distributions of axial-load and stress. It can be conclude that the stress distribution analysis is more dependent on the mesh density than the axial-load distribution analysis. The stress distribution result indicates that with increasing of applied load, the engaged threads close to the nut-bearing surface become plastic firstly. The axial-load distribution result reveals that the load percentage carried by single thread depends on the position of thread and load intensity. When the load is relatively small, the applied load is mainly carried by the engaged threads near the nut-bearing surface, when the load is larger, the differences of percentages for all threads become small. The proposed convergence analyzing procedure is applicable for other nonlinear analyses. The obtained distributions of axial-load and stress can be a reference of engineering application.展开更多
The occurrence of overlying coal pillar(OCP)exerts a strong effect on the stress and strain distribution of the surrounding rock in the stope.In this paper,the stress distribution characteristics are analyzed via the ...The occurrence of overlying coal pillar(OCP)exerts a strong effect on the stress and strain distribution of the surrounding rock in the stope.In this paper,the stress distribution characteristics are analyzed via the numerical calculation with the account of OCP presence or absence.In addition,this study revealed the joint effect of side pressure relief area of the goaf and stress concentration in OCP on the final stress distribution.Furthermore,the rules of abutment stress distribution affected by three influencing factors,namely horizontal-vertical distances between OCP and working face and buried depth of OCP,are analyzed.The functional model linking the peak stress of surrounding rock with the above influencing factors is developed.The field application of the above results proved that the rib spalling and deformation of a 2.95 m-high and 5.66 m-wide roadway could be efficiently controlled by rationally adjusting working states of the support,and adopting the hydraulic prop coordinated with the p type metal beam and anchor cable to strengthen the surrounding rock of working face and roadway,respectively.The proposed measures are considered appropriate to satisfy the safe operation requirements.展开更多
Tidal flow is a periodic movement of unsteady and non-uniform, which has acceleration and deceleration process obviously, especially in coastal shallow waters. Many researches show that vertical distribution of tidal ...Tidal flow is a periodic movement of unsteady and non-uniform, which has acceleration and deceleration process obviously, especially in coastal shallow waters. Many researches show that vertical distribution of tidal flow Reynolds stress deviated from linear distribution. The parabolic distribution of the tidal flow Reynolds stress was proposed by Song et al. (2009). Although the model fills better with field observations and indoor experimental data, it has the lower truncated series expansion of tidal flow Reynolds stress, and the description of the distribution is not very comprehensive By introducing the motion equation of tidal flow and improving the parabolic distribution established by Song et al. (2009), the cubic distribution of the tidal flow Reynolds stress is proposed. The cubic distribution is verified well by field data (Bowden and Fairbairn, 1952; Bowden et al., 1959; Rippeth et al., 2002) and experimental data (Anwar and Atkins, 1980), is consistent with the numerical model results of Kuo et al. (1996), and is compared with the parabolic distribution of the tidal flow Reynolds stress. It is shown that this cubic distribution is not only better than the parabolic distribution, but also can better reflect the basic features of Reynolds stress deviating from linear distribution downward with the tidal flow acceleration and upward with the tidal flow deceleration, for the foundation of further study on the velocity profile of tidal flow.展开更多
Based on simplified axisymmetrical forming model, a elasto-plastic FEM simulation system of multi-pass conventional spinning is developed. Taking the typical draw-spinning as the study object, and establishing reasona...Based on simplified axisymmetrical forming model, a elasto-plastic FEM simulation system of multi-pass conventional spinning is developed. Taking the typical draw-spinning as the study object, and establishing reasonable mechanics model, research on the first pass of spinning process is carried out with FEM system developed. The distributions of the stress and strain are obtained by three types of roller-trace curves: straight line, involute curves and quadratic curves. The results are as follows: (1) The values of equivalent stress and strain are the lowest under involute curve compared to other two curves, and they change relatively small and decrease with the increase of radius. The values of equivalent stress and strain is the highest under quadratic curves, and increase with the increase of radius. (2) The value of radial stress is smallest under involute curve, and is the largest under straight line. Value of radial stress is often used as the criterion of cracking limit, so its distribution laws can provide references for studying the condition of cracking in multi-pass conventional spinning under different roller-trace. (3) Tangential stress is compressive stress. Absolute value of tangential stress is the smallest under involute curve, and values of tangential stress are close between other two curves. The distribution laws of tangential stress can serve as a significant guide to research the critical condition of wrinkling in multi-pass conventional spinning under different roller-trace. (4) The reduction of thickness is the smallest under involute curve. The distribution of the thickness strain is very unequal under quadratic curves. The results obtained can provide references for selecting reasonable roller-trace in multi-pass conventional spinning.展开更多
In light of the severe deformation and destruction of the district raise tunnel in the mining area at the northern part of the Lubanshan colliery, by the theoretic analysis and numerical simulation, both the mining st...In light of the severe deformation and destruction of the district raise tunnel in the mining area at the northern part of the Lubanshan colliery, by the theoretic analysis and numerical simulation, both the mining stress distribution in seams group and the deformation and destruction mechanism of floor district raise were investigated. The results show that, at the maximum vertical distance of 40 m, the abutment stress has an influence on the recovery of 2# and 3# coal seam and 8# coal seam at distance of 30 m. As a result, the recovery of 8# is rather than those of 2# or 3# coal seam, which contributes to the deformation and destruction of the district raise surrounding rock. The major factors affecting the abutment stress include the mining depth, mining height, residual gob space, adjacent working faces and short spacing coal seam recovery.展开更多
The thermal residual stresses and the stress distributions of short fiber reinforced metal matrix composite under tensile and compressive loadings were studied using large strain axisymmetric elasto plastic finite ele...The thermal residual stresses and the stress distributions of short fiber reinforced metal matrix composite under tensile and compressive loadings were studied using large strain axisymmetric elasto plastic finite element method. It is demonstrated that the thermal residual stresses can result in asymmetrical stress distributions and matrix plasticity. The thermal residual stresses decrease the stress transfer in tension and enhance the stress transfer in compression. The fiber volume fraction has more important effects on the thermal residual stresses and the stress distributions under tensile and compressive loadings than the fiber aspect ratio and the fiber end distance. [展开更多
The stress state around circular openings,such as boreholes,shafts,and tunnels,is usually needed to be evaluated.Solutions for stresses,strains and ultimate bearing capacities of pressurized hollow cylinder are common...The stress state around circular openings,such as boreholes,shafts,and tunnels,is usually needed to be evaluated.Solutions for stresses,strains and ultimate bearing capacities of pressurized hollow cylinder are common cases.Stress analytical method for plane problem of a double-layered thick-walled cylinder subjected to a type of non-uniform pressure on the outer surface and uniform radial pressure on the inner surface is given.The power series method of complex function is used.The stress analytical solution is obtained with the assumption that two layers of a cylinder are fully contacted.The distributions of normal and tangential contact stress along the interface,tangential stress on the inner boundary and stresses in the radial direction at θ=0°,45° and 90°,are obtained.An example indicates that,when the elastic modulus of the inner layer of a double-layered thick-walled cylinder is smaller than that of the outer layer,the tangential stress is smaller than that in the corresponding point for a traditional cylinder composed of homogeneous materials.In that way,stress concentration at the inner surface can be alleviated and the stress distribution is more uniform.This is a capable way to enhance the elastic ultimate bearing capacity of thick-walled cylinder.展开更多
Given the analysis of underground pressure, a stress calculation model of coal floor stress has been established based on a theory of elasticity. The model presents the law of stress distribution on the relatively fix...Given the analysis of underground pressure, a stress calculation model of coal floor stress has been established based on a theory of elasticity. The model presents the law of stress distribution on the relatively fixed position of the mining coal floor: the extent of stress variation in a fixed floor position decreases gradually along with depth, the decreasing rate of the vertical stress is clearly larger than that of the horizontal stress at a specific depth. The direction of the maximum principal stress changes gradually from a vertical direction to a horizontal direction with the advance of the working face. The deformation and permeability of the rock mass of the coal floor are obtained by contrasting the difference of the principal stress established from theoretical calculations with curves of stress-strain and permeability-strain from tests, which is an important mechanical basis for preventing water inrush from confined aauifers.展开更多
A new model of porous electrodes based on the Gibbs free energy is developed, in which lithium-ion(Liion) diffusion, diffusion-induced stress(DIS), Butler–Volmer(BV) reaction kinetics, and size polydispersity of elec...A new model of porous electrodes based on the Gibbs free energy is developed, in which lithium-ion(Liion) diffusion, diffusion-induced stress(DIS), Butler–Volmer(BV) reaction kinetics, and size polydispersity of electrode particles are considered. The influence of BV reaction kinetics and concentration-dependent exchange current density(ECD) on concentration profile and DIS evolution are numerically investigated. BV reaction kinetics leads to a decrease in Li-ion concentration and DIS. In addition, concentrationdependent ECD results in a decrease in Li-ion concentration and an increase in DIS. Size polydispersity of electrode particles significantly affects the concentration profile and DIS.Optimal macroscopic state of charge(SOC) should consider the influence of the microscopic SOC values and mass fractions of differently sized particles.展开更多
This article presents a computer simulation of stress distribution around tunnels and interaction between tunnels using an elasto-plastic model. A finite element method using ANSYS software has been used for the analy...This article presents a computer simulation of stress distribution around tunnels and interaction between tunnels using an elasto-plastic model. A finite element method using ANSYS software has been used for the analyses of one and two tunnels at different overburden depths with different separating distances between the tunnels. The results of numerical analyses indicate that stress distribution and stress concentration around the tunnels vary with the overburden depths. It is found that the coefficients of stress concentration for elasto-plastic medium are smaller than those for elastic one by 1.9%. Furthermore, the interaction between the two tunnels rapidly decreases with the increase of separation distance between them. In addition, for quantitatively describing the interaction between the two tunnels, a critical separation distance is introduced. The critical separation distances between the two tunnels at different overburden depths are 8 m, 12 m, and 14 m respectively. This fact is very important and essential for the design of mining tunnels and to ensure safety in tunnel engineering.展开更多
To ensure the stability of a tunnel during construction, rock bolts are usually installed, which affects the stress distribution around the tunnel. Therefore, it is necessary to study the effects of rock bolting on th...To ensure the stability of a tunnel during construction, rock bolts are usually installed, which affects the stress distribution around the tunnel. Therefore, it is necessary to study the effects of rock bolting on the stress distribution around the tunnel. In this article, the effects of rock bolting on the stress distribution around the tunnel, including the pesition and orientation of bolts, the overburden depths, and the bolt lengths, are simulated using the ANSYS software with an elnstoplastic model. The effect of multiple bolts of 2 m and 1 m lengths on the stress distribution in the roof and on the lateral sides of a tunnel and at different overburden depths is considered. An important finding is that the tensile stress region that is very dangerous for rock in the bottom of the tunnel grows rapidly with increasing overburden depths when rock bolts are installed only in the roof or on the lateral sides of a tunnel. The determination of the length of the rock bolt used around a tunnel is dependent on the loads and the integrity of the rock mass around the tunnel. In addition, rock bolting around the tunnel can obviously reduce the coefficients and the size of the region of stress concentration, especially when installed in high-stress areas. This fact is very important and essential for the design of tunnels and ensures engineering safety in tunnel engineering.展开更多
Based on the results of the tidal flow Reynolds stresses of the field observations, indoor experiments, and numerical models, the parabolic distribution of the tidal flow Reynolds stress is proposed and its coefficien...Based on the results of the tidal flow Reynolds stresses of the field observations, indoor experiments, and numerical models, the parabolic distribution of the tidal flow Reynolds stress is proposed and its coefficients are determined theoretically in this paper. Having been well verified with the field data and experimental data, the proposed distribution of Reynolds stress is also compared with numerical model results, and a good agreement is obtained, showing that this distribution can well reflect the basic features of Reynolds stress deviating from the linear distribution that is downward when the tidal flow is of acceleration, upward when the tidal flow is of deceleration. Its dynamics cause is also discussed preliminarily and the influence of the water depth is pointed out from the definition of Reynolds stress, turbulent generation, transmission, and so on. The established expression for the vertical distribution of the tidal flow Reynolds stress is not only simple and explicit, but can also well reflect the features of the tidal flow acceleration and deceleration for further study on the velocity profile of tidal flow.展开更多
The incidence of dynamic coal or rock disasters is closely related to the distribution of stress in the surrounding rock. Our experiments show that electromagnetic radiation (EMR) signals are related to the state of...The incidence of dynamic coal or rock disasters is closely related to the distribution of stress in the surrounding rock. Our experiments show that electromagnetic radiation (EMR) signals are related to the state of stress of a coal body. The higher the stress, the more intense the deformation and fractures of a coal body and the stronger the EMR signals. EMR signals reflect the degrees of concentrated stress of a coal body and danger of a rock burst. We selected EMR intensity as the test index of the No.237 gob-surrounded coal face in the Nanshan coal mine. We tested the EMR characteristics of the stress distribution on the strike, on the incline and in the interior of the coal body. The EMR rule of rock bursts, caused by sudden changes in stress, is analyzed. Our research shows that EMR technology can be not only used to test qualitatively the stress distribution of the surrounding rock, but also to predict a possible occurrence of rock burst. Based on this, effective distress measures are used to eliminate or at least weaken the incidence of rock bursts. We hooe that safetv in coalmines will be enhanced.展开更多
The Yanchang Formation Chang 7 oil-bearing layer of the Ordos Basin is important in China for producing shale oil.The present-day in situ stress state is of practical implications for the exploration and development o...The Yanchang Formation Chang 7 oil-bearing layer of the Ordos Basin is important in China for producing shale oil.The present-day in situ stress state is of practical implications for the exploration and development of shale oil;however,few studies are focused on stress distributions within the Chang 7 reservoir.In this study,the present-day in situ stress distribution within the Chang 7 reservoir was predicted using the combined spring model based on well logs and measured stress data.The results indicate that stress magnitudes increase with burial depth within the Chang 7 reservoir.Overall,the horizontal maximum principal stress(SHmax),horizontal minimum principal stress(Shmin) and vertical stress(Sv) follow the relationship of Sv≥SHmax>Shmin,indicating a dominant normal faulting stress regime within the Chang 7 reservoir of Ordos Basin.Laterally,high stress values are mainly distributed in the northwestern parts of the studied region,while low stress values are found in the southeastern parts.Factors influencing stress distributions are also analyzed.Stress magnitudes within the Chang 7 reservoir show a positive linear relationship with burial depth.A larger value of Young's modulus results in higher stress magnitudes,and the differential horizontal stress becomes higher when the rock Young's modulus grows larger.展开更多
Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation....Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation.The results show that,under a coal pillar,vertical stress in a floor stratum increases while horizontal stress decreases.We conclude that the increased difference between vertical and horizontal stress is an important reason for deformation of the surrounding rock and failures of roadways under coal pillars.Based on this,we propose control technologies of the surrounding rock of a roadway under a coal pillar,such as high strength and high pre-stressed bolt support,cable reinforcement support single hydraulic prop with beam support and reinforcement by grouting of the surrounding rock,which have been successfully applied in a stability control project of a roadway under a coal pillar.展开更多
Puhe Coal Mine is a typical Tertiary coal in Shenbei mining area. With an increase in mining depth, tectonic stress field becomes more complex, leading to increased deformation and failure of the soft rock roadway. St...Puhe Coal Mine is a typical Tertiary coal in Shenbei mining area. With an increase in mining depth, tectonic stress field becomes more complex, leading to increased deformation and failure of the soft rock roadway. Stress becomes an important factor of mine safety and stability. This paper analyzes the distribution of the regional tectonic field, and determines the distribution of situ stress measurement through measuring the ground stress field in the main mining area level of Puhe Coal Mine using stress relief method. The acquired in situ stress data at different locations and depths provide a reference for the rational arrangement of the stop and mine roadway supporting design, which are of great significance for the efficient safety production of the mine.展开更多
An inflatable cuff wrapped around the upper arm is widely used in noninvasive blood pressure measurement.However, the mechanical interaction between cuff and arm tissues, a factor that potentially affects the accuracy...An inflatable cuff wrapped around the upper arm is widely used in noninvasive blood pressure measurement.However, the mechanical interaction between cuff and arm tissues, a factor that potentially affects the accuracy of noninvasive blood pressure measurement, remains rarely addressed. In the present study, finite element(FE) models were constructed to quantify intra-arm stresses generated by cuff compression, aiming to provide some theoretical evidence for identifying factors of importance for blood pressure measurement or explaining clinical observations. Obtained results showed that the simulated tissue stresses were highly sensitive to the distribution of cuff pressure on the arm surface and the contact condition between muscle and bone. In contrast, the magnitude of cuff pressure and small variations in elastic properties of arm soft tissues had little influence on the efficiency of pressure transmission in arm tissues. In particular, it was found that a thickened subcutaneous fat layer in obese subjects significantly reduced the effective pressure transmitted to the brachial artery, which may explain why blood pressure overestimation occurs more frequently in obese subjects in noninvasive blood pressure measurement.展开更多
We studied the effect of loose tenon dimensions on stress and strain distributions in T-shaped mortise and loose tenon (M&LT) furni-ture joints under uniaxial bending loads, and determined the effects of loose ...We studied the effect of loose tenon dimensions on stress and strain distributions in T-shaped mortise and loose tenon (M&LT) furni-ture joints under uniaxial bending loads, and determined the effects of loose tenon length (30, 45, 60, and 90 mm) and loose tenon thickness (6 and 8 mm) on bending moment capacity of M&LT joints constructed with polyvinyl acetate (PVAc) adhesive. Stress and strain distributions in joint elements were then estimated for each joint using ANSYS finite element (FE) software. The bending moment capacity of joints increased significantly with thickness and length of the tenon. Based on the FE analysis results, under uniaxial bending, the highest shear stress values were obtained in the middle parts of the tenon, while the highest shear elastic strain values were estimated in glue lines between the tenon sur-faces and walls of the mortise. Shear stress and shear elastic strain values in joint elements generally increased with tenon dimensions and corre-sponding bending moment capacities. There was consistency between predicted maximum shear stress values and failure modes of the joints.展开更多
Numerical investigation was performed to examine the effect of rear barrier pillar on stress distribution around a longwall face. Salamon theoretical formula was used to calculate the parameters of the caving zone, wh...Numerical investigation was performed to examine the effect of rear barrier pillar on stress distribution around a longwall face. Salamon theoretical formula was used to calculate the parameters of the caving zone, which was later assigned to double yield constitutive model in FLAC3 D. Numerical results demonstrate that high stress concentration zone exists above the region where the second open-off cut intersects with the rear barrier pillar due to stress transfer and plastic zone expansion. It is also found that the maximum vertical stresses with varied distance to the seam floor are all within the projective plane of the rear barrier pillar and their positions concentrate on the barrier pillar adjacent to the connection corner of the second open-off cut. In addition, position of the maximum vertical stresses abruptly transfer from the connection corner adjacent to former panel to that adjacent to current panel along the panel direction.展开更多
基金Projects(51071122,51271147,51201134)supported by the National Natural Science Foundation of ChinaProject(3102014JCQ01023)supported by the Fundamental Research Funds for the Central UniversitiesProject(115-QP-2014)supported by the Research Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,China
文摘A three-dimensional cyclic symmetry finite element model of titanium-matrix composites(TMCs) ring was developed to investigate the stress distribution and burst failure. The effects of fiber volume fractions, reinforced areas, thermal residual stresses and two different temperatures on stress distribution were studied. The burst speed was obtained through analyzing the hoop tensile stresses under a series of rotating speeds. The results indicate that at the two different temperatures, the influences of fiber volume fractions and reinforced areas on stress level and distribution are different. Some proposals are provided for the structure design of the TMCs ring. With regard to thermal residual stresses, a larger reinforced area is an advisable choice for design of the ring at higher temperature.
基金supported by Vehicular Diesel Engine Development Program of China (Grant No. DEDP0202)
文摘Analytical method for the distributions of axial-load and stress is based on elastic assumption, but the threaded connections are often in plastic deformation stage in practice. Meanwhile the strain in the threaded connection is difficult to measure. So it is necessary to study the reliable numerical method. At present neither the convergence analysis of the computational results nor the elastic-plastic analysis in the loading-unloading process are studied. In this paper, von Mises plasticity and kinematic hardening model is used to describe the material response. A new convergence criterion for nonlinear finite element analysis of the loading-unloading process is proposed. An axisymmetric finite element model according to the proposed convergence criterion is developed and used to analyze the distributions of axial-load and stress. It can be conclude that the stress distribution analysis is more dependent on the mesh density than the axial-load distribution analysis. The stress distribution result indicates that with increasing of applied load, the engaged threads close to the nut-bearing surface become plastic firstly. The axial-load distribution result reveals that the load percentage carried by single thread depends on the position of thread and load intensity. When the load is relatively small, the applied load is mainly carried by the engaged threads near the nut-bearing surface, when the load is larger, the differences of percentages for all threads become small. The proposed convergence analyzing procedure is applicable for other nonlinear analyses. The obtained distributions of axial-load and stress can be a reference of engineering application.
基金supported by the Special Funding Projects of Sanjin Scholars” Supporting Plan (No. 2050205)the National Key Research Projects (No. 2016YFC0600701)Ordinary University Graduate Student Scientific Research Innovation Projects of Jiangsu Province of China (No. KYLX16_0564)
文摘The occurrence of overlying coal pillar(OCP)exerts a strong effect on the stress and strain distribution of the surrounding rock in the stope.In this paper,the stress distribution characteristics are analyzed via the numerical calculation with the account of OCP presence or absence.In addition,this study revealed the joint effect of side pressure relief area of the goaf and stress concentration in OCP on the final stress distribution.Furthermore,the rules of abutment stress distribution affected by three influencing factors,namely horizontal-vertical distances between OCP and working face and buried depth of OCP,are analyzed.The functional model linking the peak stress of surrounding rock with the above influencing factors is developed.The field application of the above results proved that the rib spalling and deformation of a 2.95 m-high and 5.66 m-wide roadway could be efficiently controlled by rationally adjusting working states of the support,and adopting the hydraulic prop coordinated with the p type metal beam and anchor cable to strengthen the surrounding rock of working face and roadway,respectively.The proposed measures are considered appropriate to satisfy the safe operation requirements.
基金supported by the National Natural Science Foundation of China (Grant No. 41076008)the Science and Technology Project of Chongqing Education Committee (Grant No. KJ110409 and No. KJ111501)+1 种基金the National Engineering Research Center for Inland Waterway Regulation Program (Grant No. SLK2012A02)the National Key Technology R&D Program (Grant No. 2012BAB05B03)
文摘Tidal flow is a periodic movement of unsteady and non-uniform, which has acceleration and deceleration process obviously, especially in coastal shallow waters. Many researches show that vertical distribution of tidal flow Reynolds stress deviated from linear distribution. The parabolic distribution of the tidal flow Reynolds stress was proposed by Song et al. (2009). Although the model fills better with field observations and indoor experimental data, it has the lower truncated series expansion of tidal flow Reynolds stress, and the description of the distribution is not very comprehensive By introducing the motion equation of tidal flow and improving the parabolic distribution established by Song et al. (2009), the cubic distribution of the tidal flow Reynolds stress is proposed. The cubic distribution is verified well by field data (Bowden and Fairbairn, 1952; Bowden et al., 1959; Rippeth et al., 2002) and experimental data (Anwar and Atkins, 1980), is consistent with the numerical model results of Kuo et al. (1996), and is compared with the parabolic distribution of the tidal flow Reynolds stress. It is shown that this cubic distribution is not only better than the parabolic distribution, but also can better reflect the basic features of Reynolds stress deviating from linear distribution downward with the tidal flow acceleration and upward with the tidal flow deceleration, for the foundation of further study on the velocity profile of tidal flow.
文摘Based on simplified axisymmetrical forming model, a elasto-plastic FEM simulation system of multi-pass conventional spinning is developed. Taking the typical draw-spinning as the study object, and establishing reasonable mechanics model, research on the first pass of spinning process is carried out with FEM system developed. The distributions of the stress and strain are obtained by three types of roller-trace curves: straight line, involute curves and quadratic curves. The results are as follows: (1) The values of equivalent stress and strain are the lowest under involute curve compared to other two curves, and they change relatively small and decrease with the increase of radius. The values of equivalent stress and strain is the highest under quadratic curves, and increase with the increase of radius. (2) The value of radial stress is smallest under involute curve, and is the largest under straight line. Value of radial stress is often used as the criterion of cracking limit, so its distribution laws can provide references for studying the condition of cracking in multi-pass conventional spinning under different roller-trace. (3) Tangential stress is compressive stress. Absolute value of tangential stress is the smallest under involute curve, and values of tangential stress are close between other two curves. The distribution laws of tangential stress can serve as a significant guide to research the critical condition of wrinkling in multi-pass conventional spinning under different roller-trace. (4) The reduction of thickness is the smallest under involute curve. The distribution of the thickness strain is very unequal under quadratic curves. The results obtained can provide references for selecting reasonable roller-trace in multi-pass conventional spinning.
基金Project(51104176)supported by the National Natural Science Foundation of China
文摘In light of the severe deformation and destruction of the district raise tunnel in the mining area at the northern part of the Lubanshan colliery, by the theoretic analysis and numerical simulation, both the mining stress distribution in seams group and the deformation and destruction mechanism of floor district raise were investigated. The results show that, at the maximum vertical distance of 40 m, the abutment stress has an influence on the recovery of 2# and 3# coal seam and 8# coal seam at distance of 30 m. As a result, the recovery of 8# is rather than those of 2# or 3# coal seam, which contributes to the deformation and destruction of the district raise surrounding rock. The major factors affecting the abutment stress include the mining depth, mining height, residual gob space, adjacent working faces and short spacing coal seam recovery.
文摘The thermal residual stresses and the stress distributions of short fiber reinforced metal matrix composite under tensile and compressive loadings were studied using large strain axisymmetric elasto plastic finite element method. It is demonstrated that the thermal residual stresses can result in asymmetrical stress distributions and matrix plasticity. The thermal residual stresses decrease the stress transfer in tension and enhance the stress transfer in compression. The fiber volume fraction has more important effects on the thermal residual stresses and the stress distributions under tensile and compressive loadings than the fiber aspect ratio and the fiber end distance. [
基金Projects(50874047,51074014,51174014)supported by the National Natural Science Foundation of China
文摘The stress state around circular openings,such as boreholes,shafts,and tunnels,is usually needed to be evaluated.Solutions for stresses,strains and ultimate bearing capacities of pressurized hollow cylinder are common cases.Stress analytical method for plane problem of a double-layered thick-walled cylinder subjected to a type of non-uniform pressure on the outer surface and uniform radial pressure on the inner surface is given.The power series method of complex function is used.The stress analytical solution is obtained with the assumption that two layers of a cylinder are fully contacted.The distributions of normal and tangential contact stress along the interface,tangential stress on the inner boundary and stresses in the radial direction at θ=0°,45° and 90°,are obtained.An example indicates that,when the elastic modulus of the inner layer of a double-layered thick-walled cylinder is smaller than that of the outer layer,the tangential stress is smaller than that in the corresponding point for a traditional cylinder composed of homogeneous materials.In that way,stress concentration at the inner surface can be alleviated and the stress distribution is more uniform.This is a capable way to enhance the elastic ultimate bearing capacity of thick-walled cylinder.
文摘Given the analysis of underground pressure, a stress calculation model of coal floor stress has been established based on a theory of elasticity. The model presents the law of stress distribution on the relatively fixed position of the mining coal floor: the extent of stress variation in a fixed floor position decreases gradually along with depth, the decreasing rate of the vertical stress is clearly larger than that of the horizontal stress at a specific depth. The direction of the maximum principal stress changes gradually from a vertical direction to a horizontal direction with the advance of the working face. The deformation and permeability of the rock mass of the coal floor are obtained by contrasting the difference of the principal stress established from theoretical calculations with curves of stress-strain and permeability-strain from tests, which is an important mechanical basis for preventing water inrush from confined aauifers.
基金financial support by the National Natural Science Foundation of China (Grants 11472165, 11332005)
文摘A new model of porous electrodes based on the Gibbs free energy is developed, in which lithium-ion(Liion) diffusion, diffusion-induced stress(DIS), Butler–Volmer(BV) reaction kinetics, and size polydispersity of electrode particles are considered. The influence of BV reaction kinetics and concentration-dependent exchange current density(ECD) on concentration profile and DIS evolution are numerically investigated. BV reaction kinetics leads to a decrease in Li-ion concentration and DIS. In addition, concentrationdependent ECD results in a decrease in Li-ion concentration and an increase in DIS. Size polydispersity of electrode particles significantly affects the concentration profile and DIS.Optimal macroscopic state of charge(SOC) should consider the influence of the microscopic SOC values and mass fractions of differently sized particles.
文摘This article presents a computer simulation of stress distribution around tunnels and interaction between tunnels using an elasto-plastic model. A finite element method using ANSYS software has been used for the analyses of one and two tunnels at different overburden depths with different separating distances between the tunnels. The results of numerical analyses indicate that stress distribution and stress concentration around the tunnels vary with the overburden depths. It is found that the coefficients of stress concentration for elasto-plastic medium are smaller than those for elastic one by 1.9%. Furthermore, the interaction between the two tunnels rapidly decreases with the increase of separation distance between them. In addition, for quantitatively describing the interaction between the two tunnels, a critical separation distance is introduced. The critical separation distances between the two tunnels at different overburden depths are 8 m, 12 m, and 14 m respectively. This fact is very important and essential for the design of mining tunnels and to ensure safety in tunnel engineering.
文摘To ensure the stability of a tunnel during construction, rock bolts are usually installed, which affects the stress distribution around the tunnel. Therefore, it is necessary to study the effects of rock bolting on the stress distribution around the tunnel. In this article, the effects of rock bolting on the stress distribution around the tunnel, including the pesition and orientation of bolts, the overburden depths, and the bolt lengths, are simulated using the ANSYS software with an elnstoplastic model. The effect of multiple bolts of 2 m and 1 m lengths on the stress distribution in the roof and on the lateral sides of a tunnel and at different overburden depths is considered. An important finding is that the tensile stress region that is very dangerous for rock in the bottom of the tunnel grows rapidly with increasing overburden depths when rock bolts are installed only in the roof or on the lateral sides of a tunnel. The determination of the length of the rock bolt used around a tunnel is dependent on the loads and the integrity of the rock mass around the tunnel. In addition, rock bolting around the tunnel can obviously reduce the coefficients and the size of the region of stress concentration, especially when installed in high-stress areas. This fact is very important and essential for the design of tunnels and ensures engineering safety in tunnel engineering.
基金supported by the National Natural Science Foundation of China(Grant No.50339010)the Public Fund Project of Ministry of Water Resource of China(Grant No.200701026)
文摘Based on the results of the tidal flow Reynolds stresses of the field observations, indoor experiments, and numerical models, the parabolic distribution of the tidal flow Reynolds stress is proposed and its coefficients are determined theoretically in this paper. Having been well verified with the field data and experimental data, the proposed distribution of Reynolds stress is also compared with numerical model results, and a good agreement is obtained, showing that this distribution can well reflect the basic features of Reynolds stress deviating from the linear distribution that is downward when the tidal flow is of acceleration, upward when the tidal flow is of deceleration. Its dynamics cause is also discussed preliminarily and the influence of the water depth is pointed out from the definition of Reynolds stress, turbulent generation, transmission, and so on. The established expression for the vertical distribution of the tidal flow Reynolds stress is not only simple and explicit, but can also well reflect the features of the tidal flow acceleration and deceleration for further study on the velocity profile of tidal flow.
基金Projects 50204010 and 50427401 supported by the National Natural Science Foundation of China2005CB221505 by the National Basic Research Programof China2005BA813B-3-09 by the National "Tenth Five" Scientific and Technology Key Projects of China
文摘The incidence of dynamic coal or rock disasters is closely related to the distribution of stress in the surrounding rock. Our experiments show that electromagnetic radiation (EMR) signals are related to the state of stress of a coal body. The higher the stress, the more intense the deformation and fractures of a coal body and the stronger the EMR signals. EMR signals reflect the degrees of concentrated stress of a coal body and danger of a rock burst. We selected EMR intensity as the test index of the No.237 gob-surrounded coal face in the Nanshan coal mine. We tested the EMR characteristics of the stress distribution on the strike, on the incline and in the interior of the coal body. The EMR rule of rock bursts, caused by sudden changes in stress, is analyzed. Our research shows that EMR technology can be not only used to test qualitatively the stress distribution of the surrounding rock, but also to predict a possible occurrence of rock burst. Based on this, effective distress measures are used to eliminate or at least weaken the incidence of rock bursts. We hooe that safetv in coalmines will be enhanced.
基金financial supports are from the National Natural Science Foundation of China (41702130 and 41971335)China Postdoctoral Science Foundation (2017T100419 and 2019M660269)Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘The Yanchang Formation Chang 7 oil-bearing layer of the Ordos Basin is important in China for producing shale oil.The present-day in situ stress state is of practical implications for the exploration and development of shale oil;however,few studies are focused on stress distributions within the Chang 7 reservoir.In this study,the present-day in situ stress distribution within the Chang 7 reservoir was predicted using the combined spring model based on well logs and measured stress data.The results indicate that stress magnitudes increase with burial depth within the Chang 7 reservoir.Overall,the horizontal maximum principal stress(SHmax),horizontal minimum principal stress(Shmin) and vertical stress(Sv) follow the relationship of Sv≥SHmax>Shmin,indicating a dominant normal faulting stress regime within the Chang 7 reservoir of Ordos Basin.Laterally,high stress values are mainly distributed in the northwestern parts of the studied region,while low stress values are found in the southeastern parts.Factors influencing stress distributions are also analyzed.Stress magnitudes within the Chang 7 reservoir show a positive linear relationship with burial depth.A larger value of Young's modulus results in higher stress magnitudes,and the differential horizontal stress becomes higher when the rock Young's modulus grows larger.
基金the National Natural Science Foundation of China(No.50774077)the State Key Laboratory of Coal Resources and Safe Mining Autonomous Study Subject Foundation of China(No.SKLCRSM08X04)+2 种基金the National Basic Research Program of China,the National Excellence Doctor Degree Dissertation Special Foundation of China(No.200760)the New Century Talent Support Program of the Ministry of Education of China(No.NCET-06-0475)the Youth Scientific Research Foundation of China University of Mining & Technology(No. 2008A002)
文摘Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation.The results show that,under a coal pillar,vertical stress in a floor stratum increases while horizontal stress decreases.We conclude that the increased difference between vertical and horizontal stress is an important reason for deformation of the surrounding rock and failures of roadways under coal pillars.Based on this,we propose control technologies of the surrounding rock of a roadway under a coal pillar,such as high strength and high pre-stressed bolt support,cable reinforcement support single hydraulic prop with beam support and reinforcement by grouting of the surrounding rock,which have been successfully applied in a stability control project of a roadway under a coal pillar.
基金supported by the National Natural Science Foundation of China (No. 41040027)the Central University Basic Research Fund (No. 2009QL06)
文摘Puhe Coal Mine is a typical Tertiary coal in Shenbei mining area. With an increase in mining depth, tectonic stress field becomes more complex, leading to increased deformation and failure of the soft rock roadway. Stress becomes an important factor of mine safety and stability. This paper analyzes the distribution of the regional tectonic field, and determines the distribution of situ stress measurement through measuring the ground stress field in the main mining area level of Puhe Coal Mine using stress relief method. The acquired in situ stress data at different locations and depths provide a reference for the rational arrangement of the stop and mine roadway supporting design, which are of great significance for the efficient safety production of the mine.
基金supported in part by the National Natural Science Foundation of China (Grant 81370438)the SJTU Medical-Engineering Cross-cutting Research Project (Grant YG2015MS53)supported by the Hui-Chun Chin and Tsung-Dao Lee Chinese Undergraduate Research Program Endowment
文摘An inflatable cuff wrapped around the upper arm is widely used in noninvasive blood pressure measurement.However, the mechanical interaction between cuff and arm tissues, a factor that potentially affects the accuracy of noninvasive blood pressure measurement, remains rarely addressed. In the present study, finite element(FE) models were constructed to quantify intra-arm stresses generated by cuff compression, aiming to provide some theoretical evidence for identifying factors of importance for blood pressure measurement or explaining clinical observations. Obtained results showed that the simulated tissue stresses were highly sensitive to the distribution of cuff pressure on the arm surface and the contact condition between muscle and bone. In contrast, the magnitude of cuff pressure and small variations in elastic properties of arm soft tissues had little influence on the efficiency of pressure transmission in arm tissues. In particular, it was found that a thickened subcutaneous fat layer in obese subjects significantly reduced the effective pressure transmitted to the brachial artery, which may explain why blood pressure overestimation occurs more frequently in obese subjects in noninvasive blood pressure measurement.
文摘We studied the effect of loose tenon dimensions on stress and strain distributions in T-shaped mortise and loose tenon (M&LT) furni-ture joints under uniaxial bending loads, and determined the effects of loose tenon length (30, 45, 60, and 90 mm) and loose tenon thickness (6 and 8 mm) on bending moment capacity of M&LT joints constructed with polyvinyl acetate (PVAc) adhesive. Stress and strain distributions in joint elements were then estimated for each joint using ANSYS finite element (FE) software. The bending moment capacity of joints increased significantly with thickness and length of the tenon. Based on the FE analysis results, under uniaxial bending, the highest shear stress values were obtained in the middle parts of the tenon, while the highest shear elastic strain values were estimated in glue lines between the tenon sur-faces and walls of the mortise. Shear stress and shear elastic strain values in joint elements generally increased with tenon dimensions and corre-sponding bending moment capacities. There was consistency between predicted maximum shear stress values and failure modes of the joints.
基金Projects(5147420851304208)supported by the National Natural Science Foundation of China+3 种基金Project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)ChinaProject(SKLCRSM12X01)supported by the State Key Laboratory of Coal Resources and Mine SafetyChina University of Mining and Technology
文摘Numerical investigation was performed to examine the effect of rear barrier pillar on stress distribution around a longwall face. Salamon theoretical formula was used to calculate the parameters of the caving zone, which was later assigned to double yield constitutive model in FLAC3 D. Numerical results demonstrate that high stress concentration zone exists above the region where the second open-off cut intersects with the rear barrier pillar due to stress transfer and plastic zone expansion. It is also found that the maximum vertical stresses with varied distance to the seam floor are all within the projective plane of the rear barrier pillar and their positions concentrate on the barrier pillar adjacent to the connection corner of the second open-off cut. In addition, position of the maximum vertical stresses abruptly transfer from the connection corner adjacent to former panel to that adjacent to current panel along the panel direction.