This paper investigates the effect of non-uniform temperature gradient and magnetic field on Marangoni convection in a horizontal fluid layer heated from below and cooled from above with a constant heat flux. A linear...This paper investigates the effect of non-uniform temperature gradient and magnetic field on Marangoni convection in a horizontal fluid layer heated from below and cooled from above with a constant heat flux. A linear stability analysis is performed. The influence of various parameters on the convection onset is analyzed. Six non-uniform basic temperature profiles are considered, and some general conclusions about their desta- bilizing effects are presented.展开更多
In indoor environments and shady outdoor environments, there is little influence of short-wavelength solar radiation, so a strikingly non-uniform and asymmetric environment is not formed. In outdoor sunny environment,...In indoor environments and shady outdoor environments, there is little influence of short-wavelength solar radiation, so a strikingly non-uniform and asymmetric environment is not formed. In outdoor sunny environment, however, shaded areas occur even for the same site of the body, and a remarkable difference in skin temperature is considered to occur under the influence of the short-wavelength solar radiation. The purpose of this study is to clarify the influence of the non-uniform and asymmetric thermal radiation of short-wavelength solar radiation in outdoor environment on the division of the body surface section and the calculation of the mean skin temperature. The skin temperature of the front of the coronal surface, which was facing the sun and where the body received direct short-wavelength solar radiation, and the skin temperature of the rear of the coronal surface, which was in the shadow and did not receive direct short-wavelength solar radiation were respectively measured. The feet, upper arm, forearm, hand and lower leg, which are susceptible to short-wavelength solar radiation in a standing posture, had a noticeable difference in skin temperature between sites in the sun and in shade. The mean skin temperature of sites facing the sun was significantly higher than the mean skin temperature of those in the shade.展开更多
The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are obtained for...The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are obtained for free-free, rigid-free and rigid-rigid velocity boundary combinations and for isothermal and/or adiabatic temperature boundaries. The microrotation is assumed to vanish at the boundaries. A linear stability analysis is performed. The influence of various micropolar fluid parameters and electric Rayleigh number on the onset of convection has been analyzed. One linear and five non-uniform temperature profiles are considered and their comparative influence on onset is discussed.展开更多
The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard-Marangoni convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are ob...The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard-Marangoni convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are obtained for an upper free/adiabatic and lower rigid/isothermal boundaries. The microrotation is assumed to vanish at the boundaries. A linear stability analysis is performed. The influence of various micropolar fluid parameters and electric Rayleigh number on the onset of convection has been analysed. Six different non-uniform temperature profiles are considered and their comparative influence on onset is discussed.展开更多
The objective of this paper is to computationally explore the structural stability and strength of gypsum-protected CFS(cold-formed steel)beam channel sections under non-uniform elevated temperatures when exposed to s...The objective of this paper is to computationally explore the structural stability and strength of gypsum-protected CFS(cold-formed steel)beam channel sections under non-uniform elevated temperatures when exposed to standard fire on one side of the panel and subjected to pure bending.When a CFS member is subjected to fire(or thermal gradients)its material properties change-but this change happens around the cross-section and along the length creating a member which is potentially non-uniform and unsymmetrical in its response even if the apparent geometry is uniform and symmetric.Computational finite element models were analyzed in ABAQUS to establish steady-state thermal gradients of interest.Existing test data were utilized to develop the temperature dependence of the stress-strain response.The time-dependent temperature distribution on the cross-sections obtained from heat transfer analysis was later used in the stability and collapse analyses.The stability of the models was explored to characterize how local,distortional,and global buckling of the member evolves under both uniform and non-uniform temperature distributions.Finally,collapse simulations were performed to characterize the strength under pure bending and explore directly the evolution of strength under the influence of non-uniform temperature.展开更多
Line-of-sight tunable-diode-laser absorption spectroscopy(LOS-TDLAS) with multiple absorption lines is introduced for non-uniform temperature measurement. Temperature binning method combined with Gauss–Seidel itera...Line-of-sight tunable-diode-laser absorption spectroscopy(LOS-TDLAS) with multiple absorption lines is introduced for non-uniform temperature measurement. Temperature binning method combined with Gauss–Seidel iteration method is used to measure temperature probability distribution function(PDF) along the line-of-sight(LOS). Through 100 simulated measurements, the variation of measurement accuracy is investigated with the number of absorption lines, the number of temperature bins and the magnitude of temperature non-uniformity. A field model with 2-T temperature distribution and15 well-selected absorption lines are used for the simulation study. The Gauss–Seidel iteration method is discussed for its reliability. The investigation result about the variation of measurement accuracy with the number of temperature bins is different from the previous research results.展开更多
The working conditions of the MK-3 type full hydraulic tunnel drilling machine during the course of drilling were analyzed. Based on the energy balance governing equations for the drill rod, the temperature field of d...The working conditions of the MK-3 type full hydraulic tunnel drilling machine during the course of drilling were analyzed. Based on the energy balance governing equations for the drill rod, the temperature field of drill rod at the normal and non-normal working conditions was numerically obtained. The numerical results show that the maximum temperature at the head of drill rod under the normal working circumstance is insufficient to ignite the gas. But under the non-normal working condition, the local high temperature can ignite the gas easily and cause the fire. In order to prevent the gas fire, the occurrence of the non-normal operating condition must be prevented as far as possible during the drilling.展开更多
Dynamical formation and growth of compressible thermal-hyperelastic Gent-Thomas cavity in a sphere composed of two inmaterials were discussed under the case of a non-uniform temperature field and the surface dead load...Dynamical formation and growth of compressible thermal-hyperelastic Gent-Thomas cavity in a sphere composed of two inmaterials were discussed under the case of a non-uniform temperature field and the surface dead loading. The mathematical model was first presented based on the dynamical theory of finite deformations. An exact differential relation between the void radius and surface load was obtained by using the variable transformation method. By numerical computation, critical loads and cavitation growth curves were obtained for different temperatures. The influence of the temperature and material parameters of the composed sphere on the void formation and growth was considered and compared with those for static analysis. The results show that the cavity occurs stiddenly with a finite radius and its evolvement with time displays a non-linear periodic vibration and that the critical load decreases with the increase of temperature and also the dynamical critical load is lower than the static critical load under the same conditions.展开更多
The independent LNG(Liquified Nature Gas)containment is widely used for small or medium-sized LNG carrier and ship using LNG as fuels.The common tank pattern includes single-spherical-cylindrical tank and double-spher...The independent LNG(Liquified Nature Gas)containment is widely used for small or medium-sized LNG carrier and ship using LNG as fuels.The common tank pattern includes single-spherical-cylindrical tank and double-spherical-cylindrical tank,which is the key to design the hull structure and its support.The support is designed to connect the hull structure and LNG tank.Its main functions are heat transferring and force loading.This paper focus on the temperature field distribution of hull and its support structure.The thermal boundary conditions are simulated according to the heat transfer action,such as thermal convection,heat conduction and thermal radiation.The method on how to carry out thermal analysis is presented for an independent LNG containment.The case study is carried out with two typical independent LNG tanks.One is a tank with double spherical cylindrical in the LNG carrier,and the other is a tank with single spherical cylindrical on the deck of the ship using LNG as fuels.The result shows the method presented in this paper is a good reference for the structural design with independent LNG containment.展开更多
Heating the whole space,which is currently used in northern China,leads to high energy consumption and substantial pollution.A transition to local heating has the potential to help address this problem.In this paper,t...Heating the whole space,which is currently used in northern China,leads to high energy consumption and substantial pollution.A transition to local heating has the potential to help address this problem.In this paper,the effects of radiator-related parameters(position,power,and size)and room-related parameters(aspect ratio and height)on local heating were studied.Two evaluation indices,the effective coefficient of operative temperature(OTEC)and the effective coefficient of local heating(LHEC),were proposed.In addition,the heat source-control core-area(HSCCA)was proposed,and the effect range of heat sources in the space was evaluated by the attenuation of operative temperature.The findings demonstrated that the radiator position has a greater influence on local heating than size.When the position of the radiator was changed from"close to the inner wall"to"close to the outer wall",the LHEC(the interior one-quarter of room is a local heating zone)was found to decrease by 73%.The size of the radiator,which is close to the inner wall,doubled or quadrupled,and the LHEC increased by 9%and 18%.Moreover,rooms with a larger aspect ratio or small room height were found to be the most optimal for local heating applications.The area of the HSCCA decreased as the position of the radiator approached the outer wall.The findings of this study can be used as a design reference for the radiator when the heating mode changes from"full-space heating"to"local heating".展开更多
The existing investigations on thermal comfort mostly focus on the thermal environment conditions, especially of the air-flow field and the temperature distributions in vehicle cabin. Less attention appears to direct ...The existing investigations on thermal comfort mostly focus on the thermal environment conditions, especially of the air-flow field and the temperature distributions in vehicle cabin. Less attention appears to direct to the thermal comfort or thermal sensation of occupants, even to the relationship between thermal conditions and thermal sensation. In this paper, a series of experiments were designed and conducted for understanding the non-uniform conditions and the occupant's thermal responses in vehicle cabin during the heating period. To accurately assess the transient temperature distribution in cabin in common daily condition, the air temperature at a number of positions is measured in a full size vehicle cabin under natural winter environment in South China by using a discrete thermocouples network. The occupant body is divided into nine segments, the skin temperature at each segment and the occupant's local thermal sensation at the head, body, upper limb and lower limb are monitored continuously. The skin temperature is observed by using a discrete thermocouples network, and the local thermal sensation is evaluated by using a seven-point thermal comfort survey questionnaire proposed by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc(ASHRAE) Standard. The relationship between the skin temperature and the thermal sensation is discussed and regressed by statistics method. The results show that the interior air temperature is highly non-uniform over the vehicle cabin. The locations where the occupants sit have a significant effect on the occupant's thermal responses, including the skin temperature and the thermal sensation. The skin temperaWa-e and thermal sensation are quite different between body segments due to the effect of non-uniform conditions, clothing resistance, and the human thermal regulating system. A quantitative relationship between the thermal sensation and the skin temperature at each body segment of occupant in real life traffic is presented. The investigation result indicates that the skin temperature is a robust index to evaluate the thermal sensation. Applying the skin temperature to designing and controlling parameters of the heating, ventilation and air conditioning(HVAC) system may benefit the thermal comfort and reducing energy consumption.展开更多
The uncooled microbolometer has a severe temperature requirement for non-uniformity correction. An improved two-point non-uniformity correction method is proposed, which can operate in wider uniform substrate temperat...The uncooled microbolometer has a severe temperature requirement for non-uniformity correction. An improved two-point non-uniformity correction method is proposed, which can operate in wider uniform substrate temperatures. This method can control the bias voltage of MOS transistors by memory and DAC to meet two restrictions about responsivity and offset before traditional two-point calibration is implemented. The simulation results seem that this non-uniformity correction can work at uniform substrate temperature with fluctuant range of 4K.展开更多
Contrary to conventional design methods that assume uniform and slow temperature changes tied to atmospheric conditions,single-layer spherical reticulated shells undergo significant non-uniform and time-variant temper...Contrary to conventional design methods that assume uniform and slow temperature changes tied to atmospheric conditions,single-layer spherical reticulated shells undergo significant non-uniform and time-variant temperature variations due to dynamic environmental coupling.These differences can affect structural performance and pose safety risks.Here,a systematic numerical method was developed and applied to simulate long-term temperature variations in such a structure under real environmental conditions,revealing its non-uniform distribution characteristics and time-variant regularity.A simplified design method for non-uniform thermal loads,accounting for time-variant environmental factors,was theoretically derived and validated through experiments and simulations.The maximum deviation and mean error rate between calculated and tested results were 6.1℃ and 3.7%,respectively.Calculated temperature fields aligned with simulated ones,with deviations under 6.0℃.Using the design method,non-uniform thermal effects of the structure are analyzed.Maximum member stress and nodal displacement under non-uniform thermal loads reached 119.3 MPa and 19.7 mm,representing increases of 167.5%and 169.9%,respectively,compared to uniform thermal loads.The impacts of healing construction time on non-uniform thermal effects were evaluated,resulting in construction recommendations.The methodologies and conclusions presented here can serve as valuable references for the thermal design,construction,and control of single-layer spherical reticulated shells or similar structures.展开更多
基金supported by the Science Fund Research Grant from Kementerian Sains dan Teknologi(MOSTI)
文摘This paper investigates the effect of non-uniform temperature gradient and magnetic field on Marangoni convection in a horizontal fluid layer heated from below and cooled from above with a constant heat flux. A linear stability analysis is performed. The influence of various parameters on the convection onset is analyzed. Six non-uniform basic temperature profiles are considered, and some general conclusions about their desta- bilizing effects are presented.
文摘In indoor environments and shady outdoor environments, there is little influence of short-wavelength solar radiation, so a strikingly non-uniform and asymmetric environment is not formed. In outdoor sunny environment, however, shaded areas occur even for the same site of the body, and a remarkable difference in skin temperature is considered to occur under the influence of the short-wavelength solar radiation. The purpose of this study is to clarify the influence of the non-uniform and asymmetric thermal radiation of short-wavelength solar radiation in outdoor environment on the division of the body surface section and the calculation of the mean skin temperature. The skin temperature of the front of the coronal surface, which was facing the sun and where the body received direct short-wavelength solar radiation, and the skin temperature of the rear of the coronal surface, which was in the shadow and did not receive direct short-wavelength solar radiation were respectively measured. The feet, upper arm, forearm, hand and lower leg, which are susceptible to short-wavelength solar radiation in a standing posture, had a noticeable difference in skin temperature between sites in the sun and in shade. The mean skin temperature of sites facing the sun was significantly higher than the mean skin temperature of those in the shade.
文摘The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are obtained for free-free, rigid-free and rigid-rigid velocity boundary combinations and for isothermal and/or adiabatic temperature boundaries. The microrotation is assumed to vanish at the boundaries. A linear stability analysis is performed. The influence of various micropolar fluid parameters and electric Rayleigh number on the onset of convection has been analyzed. One linear and five non-uniform temperature profiles are considered and their comparative influence on onset is discussed.
文摘The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard-Marangoni convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are obtained for an upper free/adiabatic and lower rigid/isothermal boundaries. The microrotation is assumed to vanish at the boundaries. A linear stability analysis is performed. The influence of various micropolar fluid parameters and electric Rayleigh number on the onset of convection has been analysed. Six different non-uniform temperature profiles are considered and their comparative influence on onset is discussed.
文摘The objective of this paper is to computationally explore the structural stability and strength of gypsum-protected CFS(cold-formed steel)beam channel sections under non-uniform elevated temperatures when exposed to standard fire on one side of the panel and subjected to pure bending.When a CFS member is subjected to fire(or thermal gradients)its material properties change-but this change happens around the cross-section and along the length creating a member which is potentially non-uniform and unsymmetrical in its response even if the apparent geometry is uniform and symmetric.Computational finite element models were analyzed in ABAQUS to establish steady-state thermal gradients of interest.Existing test data were utilized to develop the temperature dependence of the stress-strain response.The time-dependent temperature distribution on the cross-sections obtained from heat transfer analysis was later used in the stability and collapse analyses.The stability of the models was explored to characterize how local,distortional,and global buckling of the member evolves under both uniform and non-uniform temperature distributions.Finally,collapse simulations were performed to characterize the strength under pure bending and explore directly the evolution of strength under the influence of non-uniform temperature.
基金Project supported by the National Natural Science Foundation of China(Grant No.61108034)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.61205151)
文摘Line-of-sight tunable-diode-laser absorption spectroscopy(LOS-TDLAS) with multiple absorption lines is introduced for non-uniform temperature measurement. Temperature binning method combined with Gauss–Seidel iteration method is used to measure temperature probability distribution function(PDF) along the line-of-sight(LOS). Through 100 simulated measurements, the variation of measurement accuracy is investigated with the number of absorption lines, the number of temperature bins and the magnitude of temperature non-uniformity. A field model with 2-T temperature distribution and15 well-selected absorption lines are used for the simulation study. The Gauss–Seidel iteration method is discussed for its reliability. The investigation result about the variation of measurement accuracy with the number of temperature bins is different from the previous research results.
基金Supported by the "863" Program(2003AA131100-02-06)the National Natural Science Foundation of China(50274061)
文摘The working conditions of the MK-3 type full hydraulic tunnel drilling machine during the course of drilling were analyzed. Based on the energy balance governing equations for the drill rod, the temperature field of drill rod at the normal and non-normal working conditions was numerically obtained. The numerical results show that the maximum temperature at the head of drill rod under the normal working circumstance is insufficient to ignite the gas. But under the non-normal working condition, the local high temperature can ignite the gas easily and cause the fire. In order to prevent the gas fire, the occurrence of the non-normal operating condition must be prevented as far as possible during the drilling.
基金Project supported by the National Natural Science Foundation of China (No.10272069)Shanghai Leading Academic Discipline Project (No.Y0103)
文摘Dynamical formation and growth of compressible thermal-hyperelastic Gent-Thomas cavity in a sphere composed of two inmaterials were discussed under the case of a non-uniform temperature field and the surface dead loading. The mathematical model was first presented based on the dynamical theory of finite deformations. An exact differential relation between the void radius and surface load was obtained by using the variable transformation method. By numerical computation, critical loads and cavitation growth curves were obtained for different temperatures. The influence of the temperature and material parameters of the composed sphere on the void formation and growth was considered and compared with those for static analysis. The results show that the cavity occurs stiddenly with a finite radius and its evolvement with time displays a non-linear periodic vibration and that the critical load decreases with the increase of temperature and also the dynamical critical load is lower than the static critical load under the same conditions.
文摘The independent LNG(Liquified Nature Gas)containment is widely used for small or medium-sized LNG carrier and ship using LNG as fuels.The common tank pattern includes single-spherical-cylindrical tank and double-spherical-cylindrical tank,which is the key to design the hull structure and its support.The support is designed to connect the hull structure and LNG tank.Its main functions are heat transferring and force loading.This paper focus on the temperature field distribution of hull and its support structure.The thermal boundary conditions are simulated according to the heat transfer action,such as thermal convection,heat conduction and thermal radiation.The method on how to carry out thermal analysis is presented for an independent LNG containment.The case study is carried out with two typical independent LNG tanks.One is a tank with double spherical cylindrical in the LNG carrier,and the other is a tank with single spherical cylindrical on the deck of the ship using LNG as fuels.The result shows the method presented in this paper is a good reference for the structural design with independent LNG containment.
基金The research was supported by the National Natural Science Foundation of China(No.52078408)the Science Foundation for Outstanding Youth of Shaanxi Province(2020JC-43).
文摘Heating the whole space,which is currently used in northern China,leads to high energy consumption and substantial pollution.A transition to local heating has the potential to help address this problem.In this paper,the effects of radiator-related parameters(position,power,and size)and room-related parameters(aspect ratio and height)on local heating were studied.Two evaluation indices,the effective coefficient of operative temperature(OTEC)and the effective coefficient of local heating(LHEC),were proposed.In addition,the heat source-control core-area(HSCCA)was proposed,and the effect range of heat sources in the space was evaluated by the attenuation of operative temperature.The findings demonstrated that the radiator position has a greater influence on local heating than size.When the position of the radiator was changed from"close to the inner wall"to"close to the outer wall",the LHEC(the interior one-quarter of room is a local heating zone)was found to decrease by 73%.The size of the radiator,which is close to the inner wall,doubled or quadrupled,and the LHEC increased by 9%and 18%.Moreover,rooms with a larger aspect ratio or small room height were found to be the most optimal for local heating applications.The area of the HSCCA decreased as the position of the radiator approached the outer wall.The findings of this study can be used as a design reference for the radiator when the heating mode changes from"full-space heating"to"local heating".
基金supported by National Natural Science Foundation of China(Grant No.51375170)Open Fund of State Key Lab of Environmental Adaptability for Industrial Products of China
文摘The existing investigations on thermal comfort mostly focus on the thermal environment conditions, especially of the air-flow field and the temperature distributions in vehicle cabin. Less attention appears to direct to the thermal comfort or thermal sensation of occupants, even to the relationship between thermal conditions and thermal sensation. In this paper, a series of experiments were designed and conducted for understanding the non-uniform conditions and the occupant's thermal responses in vehicle cabin during the heating period. To accurately assess the transient temperature distribution in cabin in common daily condition, the air temperature at a number of positions is measured in a full size vehicle cabin under natural winter environment in South China by using a discrete thermocouples network. The occupant body is divided into nine segments, the skin temperature at each segment and the occupant's local thermal sensation at the head, body, upper limb and lower limb are monitored continuously. The skin temperature is observed by using a discrete thermocouples network, and the local thermal sensation is evaluated by using a seven-point thermal comfort survey questionnaire proposed by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc(ASHRAE) Standard. The relationship between the skin temperature and the thermal sensation is discussed and regressed by statistics method. The results show that the interior air temperature is highly non-uniform over the vehicle cabin. The locations where the occupants sit have a significant effect on the occupant's thermal responses, including the skin temperature and the thermal sensation. The skin temperaWa-e and thermal sensation are quite different between body segments due to the effect of non-uniform conditions, clothing resistance, and the human thermal regulating system. A quantitative relationship between the thermal sensation and the skin temperature at each body segment of occupant in real life traffic is presented. The investigation result indicates that the skin temperature is a robust index to evaluate the thermal sensation. Applying the skin temperature to designing and controlling parameters of the heating, ventilation and air conditioning(HVAC) system may benefit the thermal comfort and reducing energy consumption.
文摘The uncooled microbolometer has a severe temperature requirement for non-uniformity correction. An improved two-point non-uniformity correction method is proposed, which can operate in wider uniform substrate temperatures. This method can control the bias voltage of MOS transistors by memory and DAC to meet two restrictions about responsivity and offset before traditional two-point calibration is implemented. The simulation results seem that this non-uniformity correction can work at uniform substrate temperature with fluctuant range of 4K.
基金This work is supported by the National Natural Science Foundation of China(Nos.51578491 and 52238001).
文摘Contrary to conventional design methods that assume uniform and slow temperature changes tied to atmospheric conditions,single-layer spherical reticulated shells undergo significant non-uniform and time-variant temperature variations due to dynamic environmental coupling.These differences can affect structural performance and pose safety risks.Here,a systematic numerical method was developed and applied to simulate long-term temperature variations in such a structure under real environmental conditions,revealing its non-uniform distribution characteristics and time-variant regularity.A simplified design method for non-uniform thermal loads,accounting for time-variant environmental factors,was theoretically derived and validated through experiments and simulations.The maximum deviation and mean error rate between calculated and tested results were 6.1℃ and 3.7%,respectively.Calculated temperature fields aligned with simulated ones,with deviations under 6.0℃.Using the design method,non-uniform thermal effects of the structure are analyzed.Maximum member stress and nodal displacement under non-uniform thermal loads reached 119.3 MPa and 19.7 mm,representing increases of 167.5%and 169.9%,respectively,compared to uniform thermal loads.The impacts of healing construction time on non-uniform thermal effects were evaluated,resulting in construction recommendations.The methodologies and conclusions presented here can serve as valuable references for the thermal design,construction,and control of single-layer spherical reticulated shells or similar structures.