Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the sta...Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the stability of the backfill bodies is the primary prerequisite for maintaining the safety of the backfilling working face, and the loading characteristics of backfill are closely related to the deformation and subsidence of the roof. Elastic thin plate model was used to explore the non-uniform subsidence law of the roof, and then the non-uniform distribution characteristics of backfill bodies’ load were revealed. Through a self-developed non-uniform loading device combined with acoustic emission (AE) and digital image correlation (DIC) monitoring technology, the synergistic dynamic evolution law of the bearing capacity, apparent crack, and internal fracture of cemented coal gangue backfills (CCGBs) under loads with different degrees of non-uniformity was deeply explored. The results showed that: 1) The uniaxial compressive strength (UCS) of CCGB increased and then decreased with an increase in the degree of non-uniformity of load (DNL). About 40% of DNL was the inflection point of DNL-UCS curve and when DNL exceeded 40%, the strength decreased in a cliff-like manner;2) A positive correlation was observed between the AE ringing count and UCS during the loading process of the specimen, which was manifested by a higher AE ringing count of the high-strength specimen. 3) Shear cracks gradually increased and failure mode of specimens gradually changed from “X” type dominated by tension cracks to inverted “Y” type dominated by shear cracks with an increase in DNL, and the crack opening displacement at the peak stress decreased and then increased. The crack opening displacement at 40% of the DNL was the smallest. This was consistent with the judgment of crack size based on the AE b-value, i. e., it showed the typical characteristics of “small b-value-large crack and large b-value-small crack”. The research results are of significance for preventing the instability and failure of backfill.展开更多
During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it i...During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it is oversimplified to a uniform flux distribution,which can result in inaccurate results for field applications.Therefore,this paper proposes a semi-analytical model of a directional well based on the assumption of non-uniform flux distribution.Specifically,the direction well is discretized into a carefully chosen series of linear sources,such that the complex well trajectory can be captured and the nonuniform flux distribution along the wellbore can be considered to model the three-dimensional flow behavior.By using the finite difference method,we can obtain the numerical solutions of the transient flow within the wellbore.With the aid of Green's function method,we can obtain the analytical solutions of the transient flow from the matrix to the wellbore.The complete flow behavior of a directional well is perfectly represented by coupling the above two types of transient flow.Subsequently,on the basis of the proposed model,we conduct a comprehensive analysis of the pressure transient behavior of a directional well.The computation results show that the flux variation along the direction well has a significant effect on pressure responses.In addition,the directional well in an infinite reservoir may exhibit the following flow regimes:wellbore afterflow,transition flow,inclined radial flow,elliptical flow,horizontal linear flow,and horizontal radial flow.The horizontal linear flow can be observed only if the formation thickness is much smaller than the well length.Furthermore,a dip region that appears on the pressure derivative curve indicates the three-dimensional flow behavior near the wellbore.展开更多
In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its in...In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its internal structures and transient processes.However,both internal structures and transient processes can lead to the non-uniform swelling.In this study,we hypothesize that the non-uniform swelling is responsible for why coal permeability in experimental measurements is not only controlled by the effective stress but also is affected by the adsorption-induced swelling.We propose a concept of the swelling triangle composed of swelling paths to characterize the evolution of the non-uniform swelling and serve as a core link in coupled multiphysics.A swelling path is determined by a dimensionless volumetric ratio and a dimensionless swelling ratio.Different swelling paths have the same start and end point,and each swelling path represents a unique swelling case.The swelling path as the diagonal of the triangle represents the case of the uniform swelling while that as the two perpendicular boundaries represents the case of the localized swelling.The paths of all intermediate cases populate inside the triangle.The corresponding relations between the swelling path and the response of coal multiphysics are established by a non-uniform swelling coefficient.We define this method as the triangle approach and corresponding models as swelling path-based ones.The proposed concept and models are verified against a long-term experimental measurement of permeability and strains under constant effective stress.Our results demonstrate that during gas injection,coal multiphysics responses have a close dependence on the swelling path,and that in both future experiments and field predictions,this dependence must be considered.展开更多
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni...Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.展开更多
Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption ev...Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.展开更多
Afuzzy extractor can extract an almost uniformrandom string from a noisy source with enough entropy such as biometric data.To reproduce an identical key from repeated readings of biometric data,the fuzzy extractor gen...Afuzzy extractor can extract an almost uniformrandom string from a noisy source with enough entropy such as biometric data.To reproduce an identical key from repeated readings of biometric data,the fuzzy extractor generates a helper data and a random string from biometric data and uses the helper data to reproduce the random string from the second reading.In 2013,Fuller et al.proposed a computational fuzzy extractor based on the learning with errors problem.Their construction,however,can tolerate a sub-linear fraction of errors and has an inefficient decoding algorithm,which causes the reproducing time to increase significantly.In 2016,Canetti et al.proposed a fuzzy extractor with inputs from low-entropy distributions based on a strong primitive,which is called digital locker.However,their construction necessitates an excessive amount of storage space for the helper data,which is stored in authentication server.Based on these observations,we propose a new efficient computational fuzzy extractorwith small size of helper data.Our scheme supports reusability and robustness,which are security notions that must be satisfied in order to use a fuzzy extractor as a secure authentication method in real life.Also,it conceals no information about the biometric data and thanks to the new decoding algorithm can tolerate linear errors.Based on the non-uniform learning with errors problem,we present a formal security proof for the proposed fuzzy extractor.Furthermore,we analyze the performance of our fuzzy extractor scheme and provide parameter sets that meet the security requirements.As a result of our implementation and analysis,we show that our scheme outperforms previous fuzzy extractor schemes in terms of the efficiency of the generation and reproduction algorithms,as well as the size of helper data.展开更多
An image can be degraded due to many environmental factors like foggy or hazy weather,low light conditions,extra light conditions etc.Image captured under the poor light conditions is generally known as non-uniform il...An image can be degraded due to many environmental factors like foggy or hazy weather,low light conditions,extra light conditions etc.Image captured under the poor light conditions is generally known as non-uniform illumination image.Non-uniform illumination hides some important information present in an image during the image capture Also,it degrades the visual quality of image which generates the need for enhancement of such images.Various techniques have been present in literature for the enhancement of such type of images.In this paper,a novel architecture has been proposed for enhancement of poor illumination images which uses radial basis approximations based BEMD(Bi-dimensional Empirical Mode Decomposition).The enhancement algorithm is applied on intensity and saturation components of image.Firstly,intensity component has been decomposed into various bi-dimensional intrinsic mode function and residue by using sifting algorithm.Secondly,some linear transformations techniques have been applied on various bidimensional intrinsic modes obtained and residue and further on joining the transformed modes with residue,enhanced intensity component is obtained.Saturation part of an image is then enhanced in accordance to the enhanced intensity component.Final enhanced image can be obtained by joining the hue,enhanced intensity and enhanced saturation parts of the given image.The proposed algorithm will not only give the visual pleasant image but maintains the naturalness of image also.展开更多
Background: Non-uniformity in signal intensity occurs commonly in magnetic resonance (MR) imaging, which may pose substantial problems when using a 3T scanner. Therefore, image non-uniformity correction is usually app...Background: Non-uniformity in signal intensity occurs commonly in magnetic resonance (MR) imaging, which may pose substantial problems when using a 3T scanner. Therefore, image non-uniformity correction is usually applied. Purpose: To compare the correction effects of the phased-array uniformity enhancement (PURE), a calibration-based image non-uniformity correction method, among three different software versions in 3T Gd-EOB-DTPA-enhanced MR imaging. Material and Methods: Hepatobiliary-phase images of a total of 120 patients who underwent Gd-EOB-DTPA-enhanced MR imaging on the same 3T scanner were analyzed retrospectively. Forty patients each were examined using three software versions (DV25, DV25.1, and DV26). The effects of PURE were compared by visual assessment, histogram analysis of liver signal intensity, evaluation of the spatial distribution of correction effects, and evaluation of quantitative indices of liver parenchymal enhancement. Results: The visual assessment indicated the highest uniformity of PURE-corrected images for DV26, followed by DV25 and DV25.1. Histogram analysis of corrected images demonstrated significantly larger variations in liver signal for DV25.1 than for the other two versions. Although PURE caused a relative increase in pixel values for central and lateral regions, such effects were weaker for DV25.1 than for the other two versions. In the evaluation of quantitative indices of liver parenchymal enhancement, the liver-to-muscle ratio (LMR) was significantly higher for the corrected images than for the uncorrected images, but the liver-to-spleen ratio (LSR) showed no significant differences. For corrected images, the LMR was significantly higher for DV25 and DV26 than for DV25.1, but the LSR showed no significant differences among the three versions. Conclusion: There were differences in the effects of PURE among the three software versions in 3T Gd-EOB-DTPA-enhanced MR imaging. Even if the non-uniformity correction method has the same brand name, correction effects may differ depending on the software version, and these differences may affect visual and quantitative evaluations.展开更多
To analyze a multibody system composed of non-uniform beam and spring-mass subsystems, the model discretization is carried on by utilizing the finite element method(FEM), the dynamic model of non-uniform beam is dev...To analyze a multibody system composed of non-uniform beam and spring-mass subsystems, the model discretization is carried on by utilizing the finite element method(FEM), the dynamic model of non-uniform beam is developed by using the transfer matrix method of multibody system(MS-TMM), the transfer matrix of non-u- niform beam is derived, and the natural frequencies are computed. Compared with the numerical assembly method (NAM), the results by MS-TMM have good agreement with the results by FEM, and are better than the results by NAM. When using the high precision method, the global dynamic equations of the complex multibody system are not needed and the orders of involved system matrices are decreased greatly. For the investigation on the re- verse problem of the physical parameter identification of multibody system, MS-TMM and the optimization tech- nology based on genetic algorithms(GAs) are combined and extended. The identification problem is exchanged for an optimization problem, and it is formulated as a global minimum solution of the objective function with respect to natural frequencies of multibody system. At last, the numerical example of non-uniform beam with attach- ments is discussed, and the identification results indicate the feasibility and the effectivity of the proposed aop- proach.展开更多
A novel approximation of the two-dimensional (2D) potential function perpendicular to the channel is proposed,and then an analytical threshold voltage model for a fully depleted SOI-MOSFET with a non-uniform Gaussia...A novel approximation of the two-dimensional (2D) potential function perpendicular to the channel is proposed,and then an analytical threshold voltage model for a fully depleted SOI-MOSFET with a non-uniform Gaussian distribution doping profile is given based on this approximation. The model agrees well with numerical simulation by MEDICI. The result represents a new way and some reference points in analyzing and controlling the threshold voltage of non-uniform fully depleted (FD) SOI devices in practice.展开更多
High-performance finite element research has always been a major focus of finite element method studies.This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric fini...High-performance finite element research has always been a major focus of finite element method studies.This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric finite element method.Firstly,the physical field is approximated by uniform B-spline interpolation,while geometry is represented by non-uniform rational B-spline interpolation.By introducing a transformation matrix,elements of types C^(0)and C^(1)are constructed in the isogeometric finite element method.Subsequently,the corresponding calculation formats for one-dimensional bars,beams,and two-dimensional linear elasticity in the isogeometric finite element method are derived through variational principles and parameter mapping.The proposed method combines element construction techniques of the finite element method with geometric construction techniques of isogeometric analysis,eliminating the need for mesh generation and maintaining flexibility in element construction.Two elements with interpolation characteristics are constructed in the method so that boundary conditions and connections between elements can be processed like the finite element method.Finally,the test results of several examples show that:(1)Under the same degree and element node numbers,the constructed elements are almost consistent with the results obtained by traditional finite element method;(2)For bar problems with large local field variations and beam problems with variable cross-sections,high-degree and multi-nodes elements constructed can achieve high computational accuracy with fewer degrees of freedom than finite element method;(3)The computational efficiency of isogeometric finite element method is higher than finite element method under similar degrees of freedom,while as degrees of freedom increase,the computational efficiency between the two is similar.展开更多
To reveal the principles of human thermal responses and find out the effects of body parts on whole-body thermal sensation,through a subjective survey,experimental investigations on human responses are carried out whe...To reveal the principles of human thermal responses and find out the effects of body parts on whole-body thermal sensation,through a subjective survey,experimental investigations on human responses are carried out when a single body part is thermally stimulated.Cooling airflow is sent to seven body parts,respectively.Totally 94 samples are tested.To eliminate the obvious multicollinearity of thermal sensation among different body parts,the principal component regression approach is adopted to obtain the principal components for the body parts under different experimental conditions.Through regression and analysis of principal components,the weighting factors of the seven body parts are obtained.A predictive model on whole-body thermal sensation is obtained based on the weighting factors.The results show that the different characteristics of trunk and limbs are clearly seen.The weighting factors of local thermal sensation are integrated values,and there is little difference among values of different body parts.展开更多
The characteristics of the blue core phenomenon observed in a divergent magnetic field helicon plasma are investigated using two different helical antennas, namely right-handed and lefthanded helical antennas. The mod...The characteristics of the blue core phenomenon observed in a divergent magnetic field helicon plasma are investigated using two different helical antennas, namely right-handed and lefthanded helical antennas. The mode transition, discharge image, spatial profiles of plasma density and electron temperature are diagnosed using a Langmuir probe, a Nikon D90 camera,an intensified charge-coupled device camera and an optical emission spectrometer, respectively.The results demonstrated that the blue core phenomenon appeared in the upstream region of the discharge tube at a fixed magnetic field under both helical antennas. However, it is more likely to appear in a right-handed helical antenna, in which the plasma density and ionization rate of the helicon plasma are higher. The spatial profiles of the plasma density and electron temperature are also different in both axial and radial directions for these two kinds of helical antenna. The wavelength calculated based on the dispersion relation of the bounded whistler wave is consistent with the order of magnitude of plasma length. It is proved that the helicon plasma is part of the wave mode discharge mechanism.展开更多
Array configuration of multiple-input multiple-output (MIMO) radar with non-uniform linear array (NLA) is proposed. Unlike a standard phased-array radar where NLA is used to generate thinner beam patterns, in MIMO...Array configuration of multiple-input multiple-output (MIMO) radar with non-uniform linear array (NLA) is proposed. Unlike a standard phased-array radar where NLA is used to generate thinner beam patterns, in MIMO radar the property of NLA is exploited to get more distinct virtual array elements so as to improve pa- rameter identifiability, which means the maximum number of targets that can be uniquely identified by the radar. A class of NLA called minimum redundancy linear array (MRLA) is employed and a new method to construct large MRLAs is descrihed. The numerical results verify that compared to uniform linear array (ULA) MIMO radars, NLA MIMO radars can retain the same parameter identifiability with fewer physical antennas and achieve larger aperture length and lower Cramer-Rao bound with the same number of the physical antennas.展开更多
Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle frac...Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle fracture of concrete,the fracture phase field driven by the compressive-shear term is constructed and added to the traditional brittle fracture phase field model.The rationality of the proposed model is verified by a mixed fracture example under a shear displacement load.Then,the extended fracture phase model is applied to simulate the corrosion-induced cracking process of RC.The cracking patterns caused by non-uniform corrosion expansion are discussed for RC specimens with homogeneous macroscopically or heterogeneous with different polygonal aggregate distributions at the mesoscopic scale.Then,the effects of the protective layer on the crack propagation trajectory and cracking resistance are investigated,illustrating that the cracking angle and cracking resistance increase with the increase of the protective layer thickness,consistent with the experimental observation.Finally,the corrosion-induced cracking process of concrete specimens with large and small spacing rebars is simulated,and the interaction of multiple corrosion cracking is easily influenced by the reinforcement spacing,which increases with the decrease of the steel bar interval.These conclusions play an important role in the design of engineering anti-corrosion measures.The fracture phase field model can provide strong support for the life assessment of RC structures.展开更多
Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial t...Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial testing system was employed to conduct physical modeling tests on layered rock tunnels with bedding planes of varying dip angles.The influence of structural anisotropy in layered rocks on the micro displacement and strain field of surrounding rocks was analyzed using digital image correlation(DIC)technology.The spatiotemporal evolution of non-uniform deformation of surrounding rocks was investigated,and numerical simulation was performed to verify the experimental results.The findings indicate that the displacement and strain field of the surrounding layered rocks are all maximized at the horizontal bedding planes and decrease linearly with the increasing dip angle.The failure of the layered surrounding rock with different dip angles occurs and extends along the bedding planes.Compressive strain failure occurs after excavation under high horizontal stress.This study provides significant theoretical support for the analysis,prediction,and control of non-uniform deformation of tunnel surrounding rocks.展开更多
This study investigates the effects of displacement damage on the dark signal of a pinned photodiode CMOS image sensor(CIS)following irradiation with back-streaming white neutrons from white neutron sources at the Chi...This study investigates the effects of displacement damage on the dark signal of a pinned photodiode CMOS image sensor(CIS)following irradiation with back-streaming white neutrons from white neutron sources at the China spallation neutron source(CSNS)and Xi'an pulsed reactor(XAPR).The mean dark signal,dark signal non-uniformity(DSNU),dark signal distribution,and hot pixels of the CIS were compared between the CSNS back-n and XAPR neutron irradiations.The nonionizing energy loss and energy distribution of primary knock-on atoms in silicon,induced by neutrons,were calculated using the open-source package Geant4.An analysis combining experimental and simulation results showed a noticeable proportionality between the increase in the mean dark signal and the displacement damage dose(DDD).Additionally,neutron energies influence DSNU,dark signal distribution,and hot pixels.High neutron energies at the same DDD level may lead to pronounced dark signal non-uniformity and elevated hot pixel values.展开更多
Based on ERA5 reanalysis data,the present study analyzed the thermal energy development mechanism and kinetic energy conversion characteristics of two extreme rainstorm processes in relation to the shallow southwest v...Based on ERA5 reanalysis data,the present study analyzed the thermal energy development mechanism and kinetic energy conversion characteristics of two extreme rainstorm processes in relation to the shallow southwest vortex in the warm-sector during a“rain-generated vortex”process and the deep southwest vortex in a“vortex-generated rain”process.The findings were as follows:(1)During the extreme rainstorm on August 11,2020(hereinafter referred to as the“8·11”process),intense surface heating and a high-energy unstable environment were observed.The mesoscale convergence system triggered convection to produce heavy rainfall,and the release of latent condensation heat generated by the rainfall promoted the formation of a southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy preceded the increase(decrease)in vorticity.By contrast,the extreme rainstorm on August 16,2020(hereinafter referred to as the“8·16”process)involved the generation of southwest vortex in a low-energy and highhumidity environment.The dynamic uplift of the southwest vortex triggered rainfall,and the release of condensation latent heat from rainfall further strengthened the development of the southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy exhibited a delayed progression compared to the increase(decrease)in vorticity.(2)The heating effect around the southwest vortex region was non-uniform,and the heating intensity varied in different stages.In the“8·11”process,the heating effect was the strongest in the initial stage,but weakened during the vortex's development.On the contrary,the heating effect was initially weak in the“8·16”process,and intensified during the development stage.(3)The available potential energy of the“8·11”process significantly increased in kinetic energy converted from rotational and divergent winds through baroclinic action,and the divergent wind energy continued to convert into rotational wind energy.By contrast,the“8·16”process involved the conversion of rotational wind energy into divergent wind energy,which in turn converted kinetic energy back into available potential energy,thereby impeding the further development and maintenance of the southwest vortex.展开更多
Finger vein extraction and recognition hold significance in various applications due to the unique and reliable nature of finger vein patterns. While recently finger vein recognition has gained popularity, there are s...Finger vein extraction and recognition hold significance in various applications due to the unique and reliable nature of finger vein patterns. While recently finger vein recognition has gained popularity, there are still challenges associated with extracting and processing finger vein patterns related to image quality, positioning and alignment, skin conditions, security concerns and processing techniques applied. In this paper, a method for robust segmentation of line patterns in strongly blurred images is presented and evaluated in vessel network extraction from infrared images of human fingers. In a four-step process: local normalization of brightness, image enhancement, segmentation and cleaning were involved. A novel image enhancement method was used to re-establish the line patterns from the brightness sum of the independent close-form solutions of the adopted optimization criterion derived in small windows. In the proposed method, the computational resources were reduced significantly compared to the solution derived when the whole image was processed. In the enhanced image, where the concave structures have been sufficiently emphasized, accurate detection of line patterns was obtained by local entropy thresholding. Typical segmentation errors appearing in the binary image were removed using morphological dilation with a line structuring element and morphological filtering with a majority filter to eliminate isolated blobs. The proposed method performs accurate detection of the vessel network in human finger infrared images, as the experimental results show, applied both in real and artificial images and can readily be applied in many image enhancement and segmentation applications.展开更多
In this study,an image binarization optimization algorithm,based on local threshold algorithms,is proposed because global and traditional local threshold segmentation algorithms cannot effectively address the problems...In this study,an image binarization optimization algorithm,based on local threshold algorithms,is proposed because global and traditional local threshold segmentation algorithms cannot effectively address the problems of nonuniform backgrounds of wood defect images.The proposed algorithm calculates the threshold by the mean,standard deviation and the extreme value of the window.The results indicate that this modified algorithm enhances the image segmentation for wood defect images on a complex background,which is much superior to the global threshold algorithm and the Bernsen algorithm,and slightly better than the Niblack algorithm and Sauvola algorithm.Compared with similar models,the algorithm proposed in this paper has higher segmentation accuracy,as high as 92.6%for wood defect images with a complex background.展开更多
基金Project(51925402) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(202303021211060) supported by the Natural Science Research General Program for Shanxi Provincial Basic Research Program,China+1 种基金Project(U22A20169) supported by the Joint Fund Project of National Natural Science Foundation of ChinaProjects(2021SX-TD001, 2021SX-TD002) supported by the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering,China。
文摘Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the stability of the backfill bodies is the primary prerequisite for maintaining the safety of the backfilling working face, and the loading characteristics of backfill are closely related to the deformation and subsidence of the roof. Elastic thin plate model was used to explore the non-uniform subsidence law of the roof, and then the non-uniform distribution characteristics of backfill bodies’ load were revealed. Through a self-developed non-uniform loading device combined with acoustic emission (AE) and digital image correlation (DIC) monitoring technology, the synergistic dynamic evolution law of the bearing capacity, apparent crack, and internal fracture of cemented coal gangue backfills (CCGBs) under loads with different degrees of non-uniformity was deeply explored. The results showed that: 1) The uniaxial compressive strength (UCS) of CCGB increased and then decreased with an increase in the degree of non-uniformity of load (DNL). About 40% of DNL was the inflection point of DNL-UCS curve and when DNL exceeded 40%, the strength decreased in a cliff-like manner;2) A positive correlation was observed between the AE ringing count and UCS during the loading process of the specimen, which was manifested by a higher AE ringing count of the high-strength specimen. 3) Shear cracks gradually increased and failure mode of specimens gradually changed from “X” type dominated by tension cracks to inverted “Y” type dominated by shear cracks with an increase in DNL, and the crack opening displacement at the peak stress decreased and then increased. The crack opening displacement at 40% of the DNL was the smallest. This was consistent with the judgment of crack size based on the AE b-value, i. e., it showed the typical characteristics of “small b-value-large crack and large b-value-small crack”. The research results are of significance for preventing the instability and failure of backfill.
基金the financial support provided by the National Natural Science Foundation of China(No.52104043)。
文摘During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it is oversimplified to a uniform flux distribution,which can result in inaccurate results for field applications.Therefore,this paper proposes a semi-analytical model of a directional well based on the assumption of non-uniform flux distribution.Specifically,the direction well is discretized into a carefully chosen series of linear sources,such that the complex well trajectory can be captured and the nonuniform flux distribution along the wellbore can be considered to model the three-dimensional flow behavior.By using the finite difference method,we can obtain the numerical solutions of the transient flow within the wellbore.With the aid of Green's function method,we can obtain the analytical solutions of the transient flow from the matrix to the wellbore.The complete flow behavior of a directional well is perfectly represented by coupling the above two types of transient flow.Subsequently,on the basis of the proposed model,we conduct a comprehensive analysis of the pressure transient behavior of a directional well.The computation results show that the flux variation along the direction well has a significant effect on pressure responses.In addition,the directional well in an infinite reservoir may exhibit the following flow regimes:wellbore afterflow,transition flow,inclined radial flow,elliptical flow,horizontal linear flow,and horizontal radial flow.The horizontal linear flow can be observed only if the formation thickness is much smaller than the well length.Furthermore,a dip region that appears on the pressure derivative curve indicates the three-dimensional flow behavior near the wellbore.
基金supported by the Australian Research Council(Grant No.DP200101293)supported by the UWA-China Joint Scholarships(201906430030).
文摘In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its internal structures and transient processes.However,both internal structures and transient processes can lead to the non-uniform swelling.In this study,we hypothesize that the non-uniform swelling is responsible for why coal permeability in experimental measurements is not only controlled by the effective stress but also is affected by the adsorption-induced swelling.We propose a concept of the swelling triangle composed of swelling paths to characterize the evolution of the non-uniform swelling and serve as a core link in coupled multiphysics.A swelling path is determined by a dimensionless volumetric ratio and a dimensionless swelling ratio.Different swelling paths have the same start and end point,and each swelling path represents a unique swelling case.The swelling path as the diagonal of the triangle represents the case of the uniform swelling while that as the two perpendicular boundaries represents the case of the localized swelling.The paths of all intermediate cases populate inside the triangle.The corresponding relations between the swelling path and the response of coal multiphysics are established by a non-uniform swelling coefficient.We define this method as the triangle approach and corresponding models as swelling path-based ones.The proposed concept and models are verified against a long-term experimental measurement of permeability and strains under constant effective stress.Our results demonstrate that during gas injection,coal multiphysics responses have a close dependence on the swelling path,and that in both future experiments and field predictions,this dependence must be considered.
基金This work is supported by the National Natural Science Foundation of China(No.52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(No.BYESS2023262)Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC004).
文摘Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.
基金supported by the grants of National Natural Science Foundation of China(42374219,42127804)the Qilu Young Researcher Project of Shandong University.
文摘Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.
基金supported by Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2022-0-00518,Blockchain privacy preserving techniques based on data encryption).
文摘Afuzzy extractor can extract an almost uniformrandom string from a noisy source with enough entropy such as biometric data.To reproduce an identical key from repeated readings of biometric data,the fuzzy extractor generates a helper data and a random string from biometric data and uses the helper data to reproduce the random string from the second reading.In 2013,Fuller et al.proposed a computational fuzzy extractor based on the learning with errors problem.Their construction,however,can tolerate a sub-linear fraction of errors and has an inefficient decoding algorithm,which causes the reproducing time to increase significantly.In 2016,Canetti et al.proposed a fuzzy extractor with inputs from low-entropy distributions based on a strong primitive,which is called digital locker.However,their construction necessitates an excessive amount of storage space for the helper data,which is stored in authentication server.Based on these observations,we propose a new efficient computational fuzzy extractorwith small size of helper data.Our scheme supports reusability and robustness,which are security notions that must be satisfied in order to use a fuzzy extractor as a secure authentication method in real life.Also,it conceals no information about the biometric data and thanks to the new decoding algorithm can tolerate linear errors.Based on the non-uniform learning with errors problem,we present a formal security proof for the proposed fuzzy extractor.Furthermore,we analyze the performance of our fuzzy extractor scheme and provide parameter sets that meet the security requirements.As a result of our implementation and analysis,we show that our scheme outperforms previous fuzzy extractor schemes in terms of the efficiency of the generation and reproduction algorithms,as well as the size of helper data.
基金This research is financially supported by the Deanship of Scientific Research at King Khalid University under research grant number(R.G.P 2/157/43).
文摘An image can be degraded due to many environmental factors like foggy or hazy weather,low light conditions,extra light conditions etc.Image captured under the poor light conditions is generally known as non-uniform illumination image.Non-uniform illumination hides some important information present in an image during the image capture Also,it degrades the visual quality of image which generates the need for enhancement of such images.Various techniques have been present in literature for the enhancement of such type of images.In this paper,a novel architecture has been proposed for enhancement of poor illumination images which uses radial basis approximations based BEMD(Bi-dimensional Empirical Mode Decomposition).The enhancement algorithm is applied on intensity and saturation components of image.Firstly,intensity component has been decomposed into various bi-dimensional intrinsic mode function and residue by using sifting algorithm.Secondly,some linear transformations techniques have been applied on various bidimensional intrinsic modes obtained and residue and further on joining the transformed modes with residue,enhanced intensity component is obtained.Saturation part of an image is then enhanced in accordance to the enhanced intensity component.Final enhanced image can be obtained by joining the hue,enhanced intensity and enhanced saturation parts of the given image.The proposed algorithm will not only give the visual pleasant image but maintains the naturalness of image also.
文摘Background: Non-uniformity in signal intensity occurs commonly in magnetic resonance (MR) imaging, which may pose substantial problems when using a 3T scanner. Therefore, image non-uniformity correction is usually applied. Purpose: To compare the correction effects of the phased-array uniformity enhancement (PURE), a calibration-based image non-uniformity correction method, among three different software versions in 3T Gd-EOB-DTPA-enhanced MR imaging. Material and Methods: Hepatobiliary-phase images of a total of 120 patients who underwent Gd-EOB-DTPA-enhanced MR imaging on the same 3T scanner were analyzed retrospectively. Forty patients each were examined using three software versions (DV25, DV25.1, and DV26). The effects of PURE were compared by visual assessment, histogram analysis of liver signal intensity, evaluation of the spatial distribution of correction effects, and evaluation of quantitative indices of liver parenchymal enhancement. Results: The visual assessment indicated the highest uniformity of PURE-corrected images for DV26, followed by DV25 and DV25.1. Histogram analysis of corrected images demonstrated significantly larger variations in liver signal for DV25.1 than for the other two versions. Although PURE caused a relative increase in pixel values for central and lateral regions, such effects were weaker for DV25.1 than for the other two versions. In the evaluation of quantitative indices of liver parenchymal enhancement, the liver-to-muscle ratio (LMR) was significantly higher for the corrected images than for the uncorrected images, but the liver-to-spleen ratio (LSR) showed no significant differences. For corrected images, the LMR was significantly higher for DV25 and DV26 than for DV25.1, but the LSR showed no significant differences among the three versions. Conclusion: There were differences in the effects of PURE among the three software versions in 3T Gd-EOB-DTPA-enhanced MR imaging. Even if the non-uniformity correction method has the same brand name, correction effects may differ depending on the software version, and these differences may affect visual and quantitative evaluations.
基金Supported by the National Natural Science Foundation of China(10902051)the Natural Science Foundation of Jiangsu Province(BK2008046)~~
文摘To analyze a multibody system composed of non-uniform beam and spring-mass subsystems, the model discretization is carried on by utilizing the finite element method(FEM), the dynamic model of non-uniform beam is developed by using the transfer matrix method of multibody system(MS-TMM), the transfer matrix of non-u- niform beam is derived, and the natural frequencies are computed. Compared with the numerical assembly method (NAM), the results by MS-TMM have good agreement with the results by FEM, and are better than the results by NAM. When using the high precision method, the global dynamic equations of the complex multibody system are not needed and the orders of involved system matrices are decreased greatly. For the investigation on the re- verse problem of the physical parameter identification of multibody system, MS-TMM and the optimization tech- nology based on genetic algorithms(GAs) are combined and extended. The identification problem is exchanged for an optimization problem, and it is formulated as a global minimum solution of the objective function with respect to natural frequencies of multibody system. At last, the numerical example of non-uniform beam with attach- ments is discussed, and the identification results indicate the feasibility and the effectivity of the proposed aop- proach.
文摘A novel approximation of the two-dimensional (2D) potential function perpendicular to the channel is proposed,and then an analytical threshold voltage model for a fully depleted SOI-MOSFET with a non-uniform Gaussian distribution doping profile is given based on this approximation. The model agrees well with numerical simulation by MEDICI. The result represents a new way and some reference points in analyzing and controlling the threshold voltage of non-uniform fully depleted (FD) SOI devices in practice.
基金funded by the Zhejiang Province Science and Technology Plan Project under grant number 2023C01069the Hebei Provincial Program on Key Basic Research Project under grant number 23311808Dthe Wenzhou Major Science and Technology Innovation Project of China under grant number ZG2022004。
文摘High-performance finite element research has always been a major focus of finite element method studies.This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric finite element method.Firstly,the physical field is approximated by uniform B-spline interpolation,while geometry is represented by non-uniform rational B-spline interpolation.By introducing a transformation matrix,elements of types C^(0)and C^(1)are constructed in the isogeometric finite element method.Subsequently,the corresponding calculation formats for one-dimensional bars,beams,and two-dimensional linear elasticity in the isogeometric finite element method are derived through variational principles and parameter mapping.The proposed method combines element construction techniques of the finite element method with geometric construction techniques of isogeometric analysis,eliminating the need for mesh generation and maintaining flexibility in element construction.Two elements with interpolation characteristics are constructed in the method so that boundary conditions and connections between elements can be processed like the finite element method.Finally,the test results of several examples show that:(1)Under the same degree and element node numbers,the constructed elements are almost consistent with the results obtained by traditional finite element method;(2)For bar problems with large local field variations and beam problems with variable cross-sections,high-degree and multi-nodes elements constructed can achieve high computational accuracy with fewer degrees of freedom than finite element method;(3)The computational efficiency of isogeometric finite element method is higher than finite element method under similar degrees of freedom,while as degrees of freedom increase,the computational efficiency between the two is similar.
基金The National Natural Science Foundation of China(No.50678030)
文摘To reveal the principles of human thermal responses and find out the effects of body parts on whole-body thermal sensation,through a subjective survey,experimental investigations on human responses are carried out when a single body part is thermally stimulated.Cooling airflow is sent to seven body parts,respectively.Totally 94 samples are tested.To eliminate the obvious multicollinearity of thermal sensation among different body parts,the principal component regression approach is adopted to obtain the principal components for the body parts under different experimental conditions.Through regression and analysis of principal components,the weighting factors of the seven body parts are obtained.A predictive model on whole-body thermal sensation is obtained based on the weighting factors.The results show that the different characteristics of trunk and limbs are clearly seen.The weighting factors of local thermal sensation are integrated values,and there is little difference among values of different body parts.
基金supported by the Beijing Municipal Natural Science Foundation (No. 1242015)Discipline Construction of Material Science and Engineering (Nos. 21090122014 and 21090123007)。
文摘The characteristics of the blue core phenomenon observed in a divergent magnetic field helicon plasma are investigated using two different helical antennas, namely right-handed and lefthanded helical antennas. The mode transition, discharge image, spatial profiles of plasma density and electron temperature are diagnosed using a Langmuir probe, a Nikon D90 camera,an intensified charge-coupled device camera and an optical emission spectrometer, respectively.The results demonstrated that the blue core phenomenon appeared in the upstream region of the discharge tube at a fixed magnetic field under both helical antennas. However, it is more likely to appear in a right-handed helical antenna, in which the plasma density and ionization rate of the helicon plasma are higher. The spatial profiles of the plasma density and electron temperature are also different in both axial and radial directions for these two kinds of helical antenna. The wavelength calculated based on the dispersion relation of the bounded whistler wave is consistent with the order of magnitude of plasma length. It is proved that the helicon plasma is part of the wave mode discharge mechanism.
基金Supported by the Aeronautic Science Foundation of China(2008ZC52026)the Innovation Foundation of Nanjing University of Aeronautics and Astronautics~~
文摘Array configuration of multiple-input multiple-output (MIMO) radar with non-uniform linear array (NLA) is proposed. Unlike a standard phased-array radar where NLA is used to generate thinner beam patterns, in MIMO radar the property of NLA is exploited to get more distinct virtual array elements so as to improve pa- rameter identifiability, which means the maximum number of targets that can be uniquely identified by the radar. A class of NLA called minimum redundancy linear array (MRLA) is employed and a new method to construct large MRLAs is descrihed. The numerical results verify that compared to uniform linear array (ULA) MIMO radars, NLA MIMO radars can retain the same parameter identifiability with fewer physical antennas and achieve larger aperture length and lower Cramer-Rao bound with the same number of the physical antennas.
基金the National Natural Science Foundation of China(Qing Zhang,Nos.11932006,U1934206,12172121)the Fundamental Research Funds for the Central Universities(Xin Gu,No.B210201031).
文摘Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle fracture of concrete,the fracture phase field driven by the compressive-shear term is constructed and added to the traditional brittle fracture phase field model.The rationality of the proposed model is verified by a mixed fracture example under a shear displacement load.Then,the extended fracture phase model is applied to simulate the corrosion-induced cracking process of RC.The cracking patterns caused by non-uniform corrosion expansion are discussed for RC specimens with homogeneous macroscopically or heterogeneous with different polygonal aggregate distributions at the mesoscopic scale.Then,the effects of the protective layer on the crack propagation trajectory and cracking resistance are investigated,illustrating that the cracking angle and cracking resistance increase with the increase of the protective layer thickness,consistent with the experimental observation.Finally,the corrosion-induced cracking process of concrete specimens with large and small spacing rebars is simulated,and the interaction of multiple corrosion cracking is easily influenced by the reinforcement spacing,which increases with the decrease of the steel bar interval.These conclusions play an important role in the design of engineering anti-corrosion measures.The fracture phase field model can provide strong support for the life assessment of RC structures.
基金support from the National Natural Science Foundation of China (Grant No.42207199)Zhejiang Provincial Postdoctoral Science Foundation (Grant Nos.ZJ2022155 and ZJ2022156).
文摘Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial testing system was employed to conduct physical modeling tests on layered rock tunnels with bedding planes of varying dip angles.The influence of structural anisotropy in layered rocks on the micro displacement and strain field of surrounding rocks was analyzed using digital image correlation(DIC)technology.The spatiotemporal evolution of non-uniform deformation of surrounding rocks was investigated,and numerical simulation was performed to verify the experimental results.The findings indicate that the displacement and strain field of the surrounding layered rocks are all maximized at the horizontal bedding planes and decrease linearly with the increasing dip angle.The failure of the layered surrounding rock with different dip angles occurs and extends along the bedding planes.Compressive strain failure occurs after excavation under high horizontal stress.This study provides significant theoretical support for the analysis,prediction,and control of non-uniform deformation of tunnel surrounding rocks.
基金supported by the Young Elite Scientists Sponsorship Program by CAST(No.YESS20210441)the National Natural Science Foundation of China(Nos.U2167208,11875223)。
文摘This study investigates the effects of displacement damage on the dark signal of a pinned photodiode CMOS image sensor(CIS)following irradiation with back-streaming white neutrons from white neutron sources at the China spallation neutron source(CSNS)and Xi'an pulsed reactor(XAPR).The mean dark signal,dark signal non-uniformity(DSNU),dark signal distribution,and hot pixels of the CIS were compared between the CSNS back-n and XAPR neutron irradiations.The nonionizing energy loss and energy distribution of primary knock-on atoms in silicon,induced by neutrons,were calculated using the open-source package Geant4.An analysis combining experimental and simulation results showed a noticeable proportionality between the increase in the mean dark signal and the displacement damage dose(DDD).Additionally,neutron energies influence DSNU,dark signal distribution,and hot pixels.High neutron energies at the same DDD level may lead to pronounced dark signal non-uniformity and elevated hot pixel values.
基金Key Project of Joint Meteorological Fund of the National Natural Science Foundation of China (U2242202)Key Project of the National Natural Science Foundation of China (42030611)+1 种基金Innovative Development Special Project of China Meteorological Administration (CXFZ2023J016)Innovation Team Fund of Sichuan Provincial Meteorological Service (SCQXCX7D-202201)。
文摘Based on ERA5 reanalysis data,the present study analyzed the thermal energy development mechanism and kinetic energy conversion characteristics of two extreme rainstorm processes in relation to the shallow southwest vortex in the warm-sector during a“rain-generated vortex”process and the deep southwest vortex in a“vortex-generated rain”process.The findings were as follows:(1)During the extreme rainstorm on August 11,2020(hereinafter referred to as the“8·11”process),intense surface heating and a high-energy unstable environment were observed.The mesoscale convergence system triggered convection to produce heavy rainfall,and the release of latent condensation heat generated by the rainfall promoted the formation of a southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy preceded the increase(decrease)in vorticity.By contrast,the extreme rainstorm on August 16,2020(hereinafter referred to as the“8·16”process)involved the generation of southwest vortex in a low-energy and highhumidity environment.The dynamic uplift of the southwest vortex triggered rainfall,and the release of condensation latent heat from rainfall further strengthened the development of the southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy exhibited a delayed progression compared to the increase(decrease)in vorticity.(2)The heating effect around the southwest vortex region was non-uniform,and the heating intensity varied in different stages.In the“8·11”process,the heating effect was the strongest in the initial stage,but weakened during the vortex's development.On the contrary,the heating effect was initially weak in the“8·16”process,and intensified during the development stage.(3)The available potential energy of the“8·11”process significantly increased in kinetic energy converted from rotational and divergent winds through baroclinic action,and the divergent wind energy continued to convert into rotational wind energy.By contrast,the“8·16”process involved the conversion of rotational wind energy into divergent wind energy,which in turn converted kinetic energy back into available potential energy,thereby impeding the further development and maintenance of the southwest vortex.
文摘Finger vein extraction and recognition hold significance in various applications due to the unique and reliable nature of finger vein patterns. While recently finger vein recognition has gained popularity, there are still challenges associated with extracting and processing finger vein patterns related to image quality, positioning and alignment, skin conditions, security concerns and processing techniques applied. In this paper, a method for robust segmentation of line patterns in strongly blurred images is presented and evaluated in vessel network extraction from infrared images of human fingers. In a four-step process: local normalization of brightness, image enhancement, segmentation and cleaning were involved. A novel image enhancement method was used to re-establish the line patterns from the brightness sum of the independent close-form solutions of the adopted optimization criterion derived in small windows. In the proposed method, the computational resources were reduced significantly compared to the solution derived when the whole image was processed. In the enhanced image, where the concave structures have been sufficiently emphasized, accurate detection of line patterns was obtained by local entropy thresholding. Typical segmentation errors appearing in the binary image were removed using morphological dilation with a line structuring element and morphological filtering with a majority filter to eliminate isolated blobs. The proposed method performs accurate detection of the vessel network in human finger infrared images, as the experimental results show, applied both in real and artificial images and can readily be applied in many image enhancement and segmentation applications.
基金supported by National Forestry Public Welfare Industry Scientific Research Special Subsidy Project(201304502)
文摘In this study,an image binarization optimization algorithm,based on local threshold algorithms,is proposed because global and traditional local threshold segmentation algorithms cannot effectively address the problems of nonuniform backgrounds of wood defect images.The proposed algorithm calculates the threshold by the mean,standard deviation and the extreme value of the window.The results indicate that this modified algorithm enhances the image segmentation for wood defect images on a complex background,which is much superior to the global threshold algorithm and the Bernsen algorithm,and slightly better than the Niblack algorithm and Sauvola algorithm.Compared with similar models,the algorithm proposed in this paper has higher segmentation accuracy,as high as 92.6%for wood defect images with a complex background.