期刊文献+
共找到275,772篇文章
< 1 2 250 >
每页显示 20 50 100
Climate warming is significantly influenced by rising summer maximum temperatures: insights from tree-ring evidence of the Western Tianshan Mountains, China
1
作者 Meng Ren Yu Liu +3 位作者 Qiufang Cai Qiang Li Huiming Song Changfeng Sun 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第4期47-59,共13页
As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is c... As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Moun-tains was used to reconstruct the summer(June-August)maximum temperature(T_(max6-8))variations from 1718 to 2017.The reconstruction explained 53.1% of the variance in the observed T_(max6-8).Over the past 300 years,the T_(max6-8)reconstruction showed clear interannual and decadal vari-abilities.There was a significant warming trend(0.18°C/decade)after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The T_(max6-8) variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the sum-mer North Atlantic Oscillation.This study reveals that cli-mate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mech-anisms of temperature variations in the Western Tianshan mountains which should aid climate predictions. 展开更多
关键词 Tree rings Western Tianshan mountains temperature change Climate warming
下载PDF
Climate warming is significantly influenced by rising summer maximum temperatures:insights from tree-ring evidence of the Western Tianshan Mountains,China
2
作者 Meng Ren Yu Liu +3 位作者 Qiufang Cai Qiang Li Huiming Song Changfeng Sun 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第5期142-154,共13页
As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is c... As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Moun-tains was used to reconstruct the summer(June–August)maximum temperature(T_(max6–8))variations from 1718 to 2017.The reconstruction explained 53.1%of the variance in the observed Tmax6–8.Over the past 300 years,the T_(max6–8)Project funding:This study was supported by the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0101);the China Desert Meteorological Science Research Foundation(Sqj2022012);the Natural Science Basic Research Program of Shaanxi Province(2023-JC-QN-0307);the National Natural Science Foundation of China(42361144712);the Chinese Academy of Sciences(XDB40010300);and the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS(SKLLQG2022).reconstruction showed clear interannual and decadal vari-abilities.There was a significant warming trend(0.18°C/decade)after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The Tmax6-8 variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the sum-mer North Atlantic Oscillation.This study reveals that cli-mate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mech-anisms of temperature variations in the Western Tianshan mountains which should aid climate predictions. 展开更多
关键词 Tree rings Western Tianshan mountains temperature change Climate warming
下载PDF
Using satellite-derived land surface temperatures to clarify the spatiotemporal warming trends of the Alborz Mountains in northern Iran
3
作者 ROSHAN Gholamreza SARLI Reza +2 位作者 GHANGHERMEH Abdolazim TAHERIZADEH Mehrnoosh NIKNAM Arman 《Journal of Mountain Science》 SCIE CSCD 2024年第2期449-469,共21页
The Alborz Mountains are some of the highest in Iran,and they play an important role in controlling the climate of the country’s northern regions.The land surface temperature(LST)is an important variable that affects... The Alborz Mountains are some of the highest in Iran,and they play an important role in controlling the climate of the country’s northern regions.The land surface temperature(LST)is an important variable that affects the ecosystem of this area.This study investigated the spatiotemporal changes and trends of the nighttime LST in the western region of the Central Alborz Mountains at elevations of 1500-4000 m above sea level.MODIS data were extracted for the period of 2000-2021,and the Mann-Kendall nonparametric test was applied to evaluating the changes in the LST.The results indicated a significant increasing trend for the monthly average LST in May-August along the southern aspect.Both the northern and southern aspects showed decreasing trends for the monthly average LST in October,November,and March and an increasing trend in other months.At all elevations,the average decadal change in the monthly average LST was more severe along the southern aspect(0.60°C)than along the northern aspect(0.37°C).The LST difference between the northern and southern aspects decreased in the cold months but increased in the hot months.At the same elevation,the difference in the lapse rate between the northern and southern aspects was greater in the hot months than in the cold months.With increasing elevation,the lapse rate between the northern and southern aspects disappeared.Climate change was concluded to greatly decrease the difference in LST at different elevations for April-July. 展开更多
关键词 Global warming Mountainous areas Lapse rate Surface air temperatures ALBORZ
下载PDF
Predictive modeling of critical temperatures in magnesium compounds using transfer learning
4
作者 Surjeet Kumar Russlan Jaafreh +4 位作者 Subhajit Dutta Jung Hyeon Yoo Santiago Pereznieto Kotiba Hamad Dae Ho Yoon 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1540-1553,共14页
This study presents a transfer learning approach for discovering potential Mg-based superconductors utilizing a comprehensive target dataset.Initially,a large source dataset(Bandgap dataset)comprising approximately∼7... This study presents a transfer learning approach for discovering potential Mg-based superconductors utilizing a comprehensive target dataset.Initially,a large source dataset(Bandgap dataset)comprising approximately∼75k compounds is utilized for pretraining,followed by fine-tuning with a smaller Critical Temperature(T_(c))dataset containing∼300 compounds.Comparatively,there is a significant improvement in the performance of the transfer learning model over the traditional deep learning(DL)model in predicting Tc.Subsequently,the transfer learning model is applied to predict the properties of approximately 150k compounds.Predictions are validated computationally using density functional theory(DFT)calculations based on lattice dynamics-related theory.Moreover,to demonstrate the extended predictive capability of the transfer learning model for new materials,a pool of virtual compounds derived from prototype crystal structures from the Materials Project(MP)database is generated.T_(c) predictions are obtained for∼3600 virtual compounds,which underwent screening for electroneutrality and thermodynamic stability.An Extra Trees-based model is trained to utilize E_(hull)values to obtain thermodynamically stable materials,employing a dataset containing Ehull values for approximately 150k materials for training.Materials with Ehull values exceeding 5 meV/atom were filtered out,resulting in a refined list of potential Mg-based superconductors.This study showcases the effectiveness of transfer learning in predicting superconducting properties and highlights its potential for accelerating the discovery of Mg-based materials in the field of superconductivity. 展开更多
关键词 SUPERCONDUCTIVITY Critical temperature Transfer learning Crystal structure features Thermodynamic stability
下载PDF
Dependence of impact regime boundaries on the initial temperatures of projectiles and targets
5
作者 Stefano Signetti Andreas Heine 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期49-57,共9页
Towards higher impact velocities,ballistic events are increasingly determined by the material temperatures.Related effects might range from moderate thermal softening to full phase transition.In particular,it is of gr... Towards higher impact velocities,ballistic events are increasingly determined by the material temperatures.Related effects might range from moderate thermal softening to full phase transition.In particular,it is of great interest to quantify the conditions for incipient or full melting of metals during impact interactions,which result in a transition from still strength-affected to hydrodynamic material behavior.In this work,we investigate to which extent the respective melting thresholds are also dependent on the initial,and generally elevated,temperatures of projectiles and targets before impact.This is studied through the application of a model developed recently by the authors to characterize the transition regime between high-velocity and hypervelocity impact,for which the melting thresholds of materials were used as the defining quantities.The obtained results are expected to be of general interest for ballistic application cases where projectiles or targets are preheated.Such conditions might result,for example,from aerodynamic forces acting onto a projectile during atmospheric flight,explosive shapedcharge-jet formation or armor exposure to environmental conditions.The performed analyses also broaden the scientific understanding of the relevance of temperature in penetration events,generally known since the 1960s,but often not considered thoroughly in impact studies. 展开更多
关键词 Ballistic impact Thermal effects Metallic targets Energy partitioning Homologous temperature
下载PDF
Higher Grain-Filling Rate in Inferior Spikelets of Tolerant Rice Genotype Offset Grain Yield Loss under Post-Anthesis High Night Temperatures
6
作者 Nitin SHARMA Bhupinder SINGH +6 位作者 Subbaiyan Gopala KRISHNAN Haritha BOLLINEDI Pranab Kumar MANDAL Milan Kumar LAL Prakash Kumar JHA P.V.Vara PRASAD Anjali ANAND 《Rice science》 SCIE CSCD 2024年第5期572-586,I0059-I0061,共18页
Increased nighttime respiratory losses decrease the amount of photoassimilates available for plant growth and yield. We hypothesized that the increased respiratory carbon loss under high night temperatures(HNT) could ... Increased nighttime respiratory losses decrease the amount of photoassimilates available for plant growth and yield. We hypothesized that the increased respiratory carbon loss under high night temperatures(HNT) could be compensated for by increased photosynthesis during the day following HNT exposure. Two rice genotypes, Vandana(HNT-sensitive) and Nagina 22(HNT-tolerant), were exposed to HNT(4 ℃ above the control) from flowering to physiological maturity. They were assessed for alterations in the carbon balance of the source(flag leaf) and its subsequent impact on grain filling dynamics and the quality of spatially differentiated sinks(superior and inferior spikelets). Both genotypes exhibited significantly higher night respiration rates. However, only Nagina 22 compensated for the high respiration rates with an increased photosynthetic rate, resulting in a steady production of total dry matter under HNT. Nagina 22 also recorded a higher grain-filling rate, particularly at 5 and 10 d after flowering, with 1.5- and 4.0-fold increases in the translocation of ^(14)C sugars to the superior and inferior spikelets, respectively. The ratio of photosynthetic rate to respiratory rate on a leaf area basis was negatively correlated with spikelet sterility, resulting in a higher filled spikelet number and grain weight per plant, particularly for inferior grains in Nagina 22. Grain quality parameters such as head rice recovery, high-density grains, and gelatinization temperature were maintained in Nagina 22. An increase in the rheological properties of rice flour starch in Nagina 22 under HNT indicated the stability of starch and its ability to reorganize during the cooling process of product formation. Thus, our study showed that sink adjustments between superior and inferior spikelets favored the growth of inferior spikelets, which helped to offset the reduction in grain weight under HNT in the tolerant genotype Nagina 22. 展开更多
关键词 high night temperature inferior grain pasting property radiolabeled sugar superior grain
下载PDF
Development of a RBFNN prediction model for carrot quality based on meteorological temperatures at vegetable stations
7
作者 Yu-Tong Yan Zeng-Tao Ji Ce Shi 《Food and Health》 2024年第2期49-57,共9页
To evaluate and predict the quality of carrots during logistics process in North China under extreme temperature conditions,quality indicator changes of carrots were investigated,and temperature-coupled quality predic... To evaluate and predict the quality of carrots during logistics process in North China under extreme temperature conditions,quality indicator changes of carrots were investigated,and temperature-coupled quality prediction models were developed.Seven temperatures were selected from meteorological temperature data by cluster analysis to simulate the changes in extreme temperatures during the short-term transportation of carrots.No carrots rotted during the 48h storage period.Under both isothermal and nonisothermal conditions,weight loss andΔE increased while the firmness and sensory evaluation(SE)decreased.The RBFNN performed better than the Arrhenius model in predicting weight loss andΔE,with R^(2)>0.97,MSE<0.009 and relative errors within±18%.The results of the predictive confidence level and standardized residual indicated the good performance of the RBFNN model.The temperature-coupled prediction models of RBFNN were promising candidates for predicting the quality of vegetable products and therefore reducing economic loss of vegetable industry. 展开更多
关键词 CARROT Extreme temperatures temperature coupled ARRHENIUS Radial basis function neural network
下载PDF
Mesopause temperatures and relative densities at midlatitudes observed by the Mengcheng meteor radar 被引量:2
8
作者 Wen Yi XiangHui Xue +5 位作者 MaoLin Lu Jie Zeng HaiLun Ye JianFei Wu Chong Wang TingDi Chen 《Earth and Planetary Physics》 CAS CSCD 2023年第6期665-674,共10页
The atmospheric temperatures and densities in the mesosphere and lower thermosphere(MLT)region are essential for studying the dynamics and climate of the middle and upper atmosphere.In this study,we present more than ... The atmospheric temperatures and densities in the mesosphere and lower thermosphere(MLT)region are essential for studying the dynamics and climate of the middle and upper atmosphere.In this study,we present more than 9 years of mesopause temperatures and relative densities estimated by using ambipolar diffusion coefficient measurements observed by the Mengcheng meteor radar(33.4°N,116.5°E).The intercomparison between the meteor radar and Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Sounding of the Atmosphere by Broadband Emission Radiometry(TIMED/SABER)and Earth Observing System(EOS)Aura/Microwave Limb Sounder(MLS)observations indicates that the meteor radar temperatures and densities agree well with the simultaneous satellite measurements.Annual variations dominate the mesopause temperatures,with the maximum during winter and the minimum during summer.The mesopause relative densities also show annual variations,with strong maxima near the spring equinox and weak maxima before the winter solstice,and with a minimum during summer.In addition,the mesopause density exhibits a structure similar to that of the zonal wind:as the zonal wind flows eastward(westward),the mesopause density decreases(increases).At the same time,the meridional wind shows a structure similar to that of the mesopause temperature:as the meridional wind shows northward(southward)enhancements,the mesopause temperature increases(decreases).Simultaneous horizontal wind,temperature,and density observations provide multiple mesospheric parameters for investigating mesospheric dynamics and thermodynamic processes and have the potential to improve widely used empirical atmospheric models. 展开更多
关键词 meteor radar MESOPAUSE horizontal wind temperature density
下载PDF
Physiological Responses of Clam(Ruditapes philippinarum)to Transport Modes with Different Temperatures 被引量:1
9
作者 BI Shijie XUE Changhu +4 位作者 XU Lili WEN Yunqi WANG Lihao LI Zhaojie LIU Hongying 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第2期517-526,共10页
Given the increased circulation time after fishing,a series of changes take place in live clams,leading to a deterioration in quality even after death.Thus,in this study,we aimed to explore the optimal mode of transpo... Given the increased circulation time after fishing,a series of changes take place in live clams,leading to a deterioration in quality even after death.Thus,in this study,we aimed to explore the optimal mode of transportation of clams.The container for holding clams was reformed,and a water circulation temperature control system was established.The physiological responses of clams during anhydrous and watery transportation at two temperatures(4 and 15℃)were investigated based on the aforementioned system.When comparing the transportation patterns after 3 d of transport,a higher survival rate was observed at 4℃(97%)than at 15℃(63%)in the anhydrous transportation groups and a lower survival rate was observed at 4℃(93%)than at 15℃(99%)in the watery transportation groups.In addition,the glycogen content,condition index(CI),and adenylate energy charge(A.E.C)value were higher at4℃((40.87±0.99)mg g^(-1),13.71%±0.50%and 57.45%±1.60%)than at 15℃((30.54±0.81)mg g^(-1),9.09%±0.30%and 43.12%±1.65%)in the anhydrous transportation groups.In the watery transportation groups,a lower glycogen content,CI,and A.E.C.value were observed at 4℃((33.78±0.84)mg g^(-1),9.78%±0.50%and 64.65%±1.25%)than at 15℃((41.53±0.93)mg g^(-1),12.72%±0.83%and 71.58%±1.27%).Results from this study show that anhydrous transportation(4℃)is the optimal transport condition for clams to maintain a high quality and good physiological conditions.Thus,this study will be particularly useful for establishing shellfish transportation systems. 展开更多
关键词 watery transportation anhydrous transportation CLAM physiological response temperaturE
下载PDF
Microstructural characteristics and low-cycle fatigue properties of AZ91 and AZ91-Ca-Y alloys extruded at different temperatures 被引量:2
10
作者 Ye Jin Kim Young Min Kim +2 位作者 Jun Ho Bae Soo-Hyun Joo Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期892-902,共11页
The commercial AZ91 alloy and nonflammable SEN9(AZ91-0.3Ca-0.2Y,wt%)alloy are extruded at 300°C and 400°C.Their microstructure,tensile and compressive properties,and low-cycle fatigue(LCF)properties are inve... The commercial AZ91 alloy and nonflammable SEN9(AZ91-0.3Ca-0.2Y,wt%)alloy are extruded at 300°C and 400°C.Their microstructure,tensile and compressive properties,and low-cycle fatigue(LCF)properties are investigated,with particular focus on the influence of the extrusion temperature.In the AZ91 and SEN9 materials extruded at 300°C(300-materials),numerous fine Mg_(17)Al_(12)particles are inhomogeneously distributed owing to localized dynamic precipitation during extrusion,unlike those extruded at 400°C(400-materials).These fine particles suppress the coarsening of recrystallized grains,decreasing the average grain size of 300-materials.Although the four extruded materials have considerably different microstructures,the difference in their tensile yield strengths is insignificant because strong grain-boundary hardening and precipitation hardening effects in 300-materials are offset almost completely by a strong texture hardening effect in 400-materials.However,owing to their finer grains and weaker texture,300-materials have higher compressive yield strengths than400-materials.During the LCF tests,{10-12}twinning is activated at lower stresses in 400-materials than in 300-materials.Because the fatigue damage accumulated per cycle is smaller in 400-materials,they have longer fatigue lives than those of 300-materials.A fatigue life prediction model for the investigated materials is established on the basis of the relationship between the total strain energy density(ΔW_(t))and the number of cycles to fatigue failure(N_(f)),and it is expressed through a simple equation(ΔW_(t)=10·N_(f)-0.59).This model enables fatigue life prediction of both the investigated alloys regardless of the extrusion temperature and strain amplitude. 展开更多
关键词 AZ91-Ca-Y Extrusion temperature MICROSTRUCTURE Low-cycle fatigue Fatigue life prediction model
下载PDF
An investigation on failure behavior of semi-flexible composite mixture at different temperatures 被引量:2
11
作者 Zijia Xiong Minghui Gong +1 位作者 Jinxiang Hong Lei Zhang 《Journal of Road Engineering》 2023年第2期186-202,共17页
Semi-flexible composite mixture(SFCM)is a kind of pavement material formed by pouring cement-based grout material into a porous asphalt mixture with air voids from 20%to 30%.SFCM is widely used for its outstanding ant... Semi-flexible composite mixture(SFCM)is a kind of pavement material formed by pouring cement-based grout material into a porous asphalt mixture with air voids from 20%to 30%.SFCM is widely used for its outstanding anti-rutting performance.Its mechanical performance is complicated due to its heterogeneity and interlocking structure.According to the present study,asphalt deforms at different temperatures,whereas cement-based grout has no similar characteristics.Rare research focuses on the temperature-based performance of SFCM.Therefore,the study was on the thermal performance of SFCM by seven open-graded asphalt mixture skeletons with different porosities and two types of grouts with early strength(ES)and high strength(HS).The test temperatures ranged from 10℃to 60℃.The mechanical investigation was performed using the semi-circular-bending(SCB)and beam bending tests.The strain sensor was used for analyzing the thermal performance of SFCM.The results show that the temperature significantly affected the SFCM's performance.The porosity was selected for three sections based on the trend of fracture energy(Gf)curves at 25℃.The turning points were the porosity values of 20%and 26%.The initiation slope during elastic deformation increases with the porosity increase.This trend was more evident at intermediate temperature.The shrink strain of SFCM was lower than that of the usual asphalt mixture(AC).The thermal stress of the SFCM filled with HS(HS-SFCM)was higher than that of the SFCM filled with ES(ES-SFCM)at 10℃.Moreover,the thermal failure characteristics of SFCM were influenced by porosity. 展开更多
关键词 Semi-flexible composite mixture temperaturE SCB Strain sensor
下载PDF
El Niño and the AMO Sparked the Astonishingly Large Margin of Warming in the Global Mean Surface Temperature in 2023 被引量:2
12
作者 Kexin LI Fei ZHENG +1 位作者 Jiang ZHU Qing-Cun ZENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1017-1022,共6页
In 2023,the majority of the Earth witnessed its warmest boreal summer and autumn since 1850.Whether 2023 will indeed turn out to be the warmest year on record and what caused the astonishingly large margin of warming ... In 2023,the majority of the Earth witnessed its warmest boreal summer and autumn since 1850.Whether 2023 will indeed turn out to be the warmest year on record and what caused the astonishingly large margin of warming has become one of the hottest topics in the scientific community and is closely connected to the future development of human society.We analyzed the monthly varying global mean surface temperature(GMST)in 2023 and found that the globe,the land,and the oceans in 2023 all exhibit extraordinary warming,which is distinct from any previous year in recorded history.Based on the GMST statistical ensemble prediction model developed at the Institute of Atmospheric Physics,the GMST in 2023 is predicted to be 1.41℃±0.07℃,which will certainly surpass that in 2016 as the warmest year since 1850,and is approaching the 1.5℃ global warming threshold.Compared to 2022,the GMST in 2023 will increase by 0.24℃,with 88%of the increment contributed by the annual variability as mostly affected by El Niño.Moreover,the multidecadal variability related to the Atlantic Multidecadal Oscillation(AMO)in 2023 also provided an important warming background for sparking the GMST rise.As a result,the GMST in 2023 is projected to be 1.15℃±0.07℃,with only a 0.02℃ increment,if the effects of natural variability—including El Niño and the AMO—are eliminated and only the global warming trend is considered. 展开更多
关键词 record-breaking temperature global mean surface temperature El Niño AMO global warming
下载PDF
Record-breaking High-temperature Outlook for 2023: An Assessment Based on the China Global Merged Temperature(CMST) Dataset 被引量:2
13
作者 Zichen LI Qingxiang LI Tianyi CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期369-376,共8页
According to the latest version(version 2.0) of the China global Merged Surface Temperature(CMST2.0) dataset, the global mean surface temperature(GMST) in the first half of 2023 reached its third warmest value since t... According to the latest version(version 2.0) of the China global Merged Surface Temperature(CMST2.0) dataset, the global mean surface temperature(GMST) in the first half of 2023 reached its third warmest value since the period of instrumental observation began, being only slightly lower than the values recorded in 2016 and 2020, and historically record-breaking GMST emerged from May to July 2023. Further analysis also indicates that if the surface temperature in the last five months of 2023 approaches the average level of the past five years, the annual average surface temperature anomaly in 2023 of approximately 1.26°C will break the previous highest surface temperature, which was recorded in 2016of approximately 1.25°C(both values relative to the global pre-industrialization period, i.e., the average value from 1850 to1900). With El Ni?o triggering a record-breaking hottest July, record-breaking average annual temperatures will most likely become a reality in 2023. 展开更多
关键词 CMST2.0 global mean surface temperature record-breaking temperature El Ni?o
下载PDF
Normalized fatigue properties of asphalt mixture at various temperatures 被引量:2
14
作者 Dongdong Ge Zihao Ju +3 位作者 Defeng Duan Songtao Lyu Weiwei Lu Chaochao Liu 《Journal of Road Engineering》 2023年第3期279-287,共9页
This study normalized the mixture's fatigue behavior at various temperatures,and the strength and fatigue tests of the mixture were conducted.The stress state of the asphalt mixture includes direct tensile,uniaxia... This study normalized the mixture's fatigue behavior at various temperatures,and the strength and fatigue tests of the mixture were conducted.The stress state of the asphalt mixture includes direct tensile,uniaxial compression,and indirect tensile.The Desai yield surface and fatigue path were proposed.And a normalized fatigue characteristics model of the mixture was established.The following conclusions were obtained.With the increases in the loading rate,the strength of the asphalt mixture increased.As the temperature increases,the strength of the mixture is reduced.At various temperatures and rates,the strength forms a closed curved surface.The Desai strength yield surface was established,which forms a closed curved surface.When the loading rate and temperature are below a certain critical line,the asphalt mixture will not undergo strength damage.At a fixed stress state,the fatigue damage path of the mixture was determined.The stress ratio was determined considering the influence of the loading rate.In this way,a normalized model can be described to express the asphalt mixture fatigue properties at various temperatures and stress levels.For the asphalt mixture in an indirect tensile state,the normalized fatigue equation parameter is 4.09.This model is more suitable for reflecting the viscous-elastic behavior of the mixtures than the fatigue equation determined by the notional stress ratio. 展开更多
关键词 Asphalt mixture Normalization equation Load rates Test temperature Stress level Desai yield surface
下载PDF
Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature 被引量:3
15
作者 Hui Xu Shufeng Yang +4 位作者 Enhui Wang Yunsong Liu Chunyu Guo Xinmei Hou Yanling Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期138-145,共8页
A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isotherm... A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200℃, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding,the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900-1100℃ was predicted. 展开更多
关键词 Ni-based superalloy GH4738 extreme temperature competitive oxidation oxidation mechanism oxidation kinetics
下载PDF
A bHLH transcription factor,CsSPT,regulates high-temperature resistance in cucumber 被引量:1
16
作者 Yonggui Liang Chenyu Yang +7 位作者 Fangyan Ming Bingwei Yu Zhihua Cheng Yixi Wang Zhengkun Qiu Xiaolan Zhang Bihao Cao Shuangshuang Yan 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期503-514,共12页
High-temperature stress threatens the growth and yield of crops. Basic helix-loop-helix(bHLH) transcription factors(TFs) have been shown to play important roles in regulating high-temperature resistance in plants. How... High-temperature stress threatens the growth and yield of crops. Basic helix-loop-helix(bHLH) transcription factors(TFs) have been shown to play important roles in regulating high-temperature resistance in plants. However, the bHLH TFs responsible for high-temperature tolerance in cucumbers have not been identified. We used transcriptome profiling to screen the high temperature-responsive candidate bHLH TFs in cucumber. Here, we found that the expression of 75 CsbHLH genes was altered under high-temperature stress. The expression of the CsSPT gene was induced by high temperatures in TT(Thermotolerant) cucumber plants. However, the Csspt mutant plants obtained by the CRISPR-Cas9 system showed severe thermosensitive symptoms, including wilted leaves with brown margins and reduced root density and cell activity.The Csspt mutant plants also exhibited elevated H_(2)O_(2) levels and down-regulated photosystem-related genes under normal conditions.Furthermore, there were high relative electrolytic leakage(REC), malondialdehyde(MDA), glutathione(GSH), and superoxide radical(O_(2)^(·-)) levels in the Csspt mutant plants, with decreased Proline content after the high-temperature treatment. Transcriptome analysis showed that the photosystem and chloroplast activities in Csspt mutant plants were extremely disrupted by the high-temperature stress compared with wildtype(WT) plants. Moreover, the plant hormone signal transduction, as well as MAPK and calcium signaling pathways were activated in Csspt mutant plants under high-temperature stress. The HSF and HSP family genes shared the same upregulated expression patterns in Csspt and WT plants under high-temperature conditions. However, most bHLH, NAC, and bZIP family genes were significantly down-regulated by heat in Csspt mutant plants. Thus, these results demonstrated that CsSPT regulated the high-temperature response by recruiting photosynthesis components, signaling pathway molecules, and transcription factors. Our results provide important insights into the heat response mechanism of CsSPT in cucumber and its potential as a target for breeding heat-resistant crops. 展开更多
关键词 CUCUMBER BHLH CsSPT PHOTOSYNTHESIS High temperature
下载PDF
Lithium-Sulfur Batteries at Extreme Temperatures:Challenges,Strategies and Prospects
17
作者 Wenjia Qu Jingyi Xia +4 位作者 Chong Luo Chen Zhang Renjie Chen Wei Lv Quanhong Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期297-311,共15页
High-energy-density-batteries working at a wide-temperature range are urgently required in many performance-critical areas.Lithium-sulfur batteries(LSB)are promising high-energy-density batteries that have the potenti... High-energy-density-batteries working at a wide-temperature range are urgently required in many performance-critical areas.Lithium-sulfur batteries(LSB)are promising high-energy-density batteries that have the potential to maintain high performance at extreme temperatures.However,some problems like severe shuttling and safety issues at high temperatures or sluggish reaction kinetics and charge-transfer process at low temperatures decrease the performance and hinder their practical uses in extreme temperature conditions.Therefore,broadening the working temperature of LSB with stable electrochemical performance becomes a crucial topic.In this paper,the key stumbling blocks for high and low-temperature LSB are comprehensively discussed.The solutions from the aspects of electrolyte and electrode materials are discussed to solve the aggravating shuttle effect and thermal safety issues under high temperature and the sluggish reaction kinetics under low temperature.Moreover,some specific promising solutions to extend the operating temperature range of LSB are also proposed and highlighted,which provide potential research directions on the practical LSB application in future. 展开更多
关键词 high temperature lithium-sulfur batteries low temperature safety issue shuttle effect
下载PDF
Alkyl dimethyl betaine activates the low-temperature collection capacity of sodium oleate for scheelite 被引量:1
18
作者 Xu Wang Zhengquan Zhang +5 位作者 Yanfang Cui Wei Li Congren Yang Hao Song Wenqing Qin Fen Jiao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期71-80,共10页
The impact of alkyl dimethyl betaine (ADB) on the collection capacity of sodium oleate (NaOl) at low temperatures was evaluated using flotation tests at various scales. The low-temperature synergistic mechanism of ADB... The impact of alkyl dimethyl betaine (ADB) on the collection capacity of sodium oleate (NaOl) at low temperatures was evaluated using flotation tests at various scales. The low-temperature synergistic mechanism of ADB and NaOl was explored by infrared spectroscopy, X-ray photoelectron spectroscopy, surface tension measurement, foam performance test, and flotation reagent size measurement.The flotation tests revealed that the collector mixed with octadecyl dimethyl betaine (ODB) and NaOl in a mass ratio of 4:96 exhibited the highest collection capacity. The combined collector could increase the scheelite recovery by 3.48% at low temperatures of 8–12℃. This is particularly relevant in the Luanchuan area, which has the largest scheelite concentrate output in China. The results confirmed that ODB enhanced the collection capability of NaOl by improving the dispersion and foaming performance. Betaine can be introduced as an additive to NaOl to improve the recovery of scheelite at low temperatures. 展开更多
关键词 SCHEELITE BETAINE low temperature synergistic effect dispersion FOAMABILITY
下载PDF
Revealing the key role of non-solvating diluents for fast-charging and low temperature Li-ion batteries 被引量:1
19
作者 Yuping Zhang Siyin Li +8 位作者 Junkai Shi Jiawei Lai Ziyue Zhuang Jingwen Liu Wenming Yang Liang Ma Yue-Peng Cai Jijian Xu Qifeng Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期171-180,共10页
Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to t... Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs. 展开更多
关键词 Li-ion battery Fast-charging Low temperature Non-solvating diluent Shielding effect
下载PDF
Electrolyte Design for Low‑Temperature Li‑Metal Batteries:Challenges and Prospects 被引量:1
20
作者 Siyu Sun Kehan Wang +3 位作者 Zhanglian Hong Mingjia Zhi Kai Zhang Jijian Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期365-382,共18页
Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements ... Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries. 展开更多
关键词 Solid electrolyte interphase Li metal Low temperature Electrolyte design BATTERIES
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部