期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
On-the-Fly Nonadiabatic Dynamics of Caffeic Acid Sunscreen Compound
1
作者 Xu Kang Yifei Zhu +2 位作者 Juanjuan Zhang Chao Xu Zhenggang Lan 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2023年第5期561-572,I0002,共13页
As a widely-used sunscreen com-pound,the caffeic acid(CA)shows the strong UV absorption,while the photoinduced reaction mecha-nisms behind its photoprotection ability are not fully understood.We try to investigate the... As a widely-used sunscreen com-pound,the caffeic acid(CA)shows the strong UV absorption,while the photoinduced reaction mecha-nisms behind its photoprotection ability are not fully understood.We try to investigate the photoin-duced internal conversion dynam-ics of CA in order to explore the photoprotection mechanism.The most stable CA isomer is selected to examine its nonadiabatic dy-namics using the on-the-fly surface hopping simulations at the semi-empirical level of electronic-struc-ture theory.The dynamics starting from different electronic states are simulated to explore the dependence of the photoinduced reaction channels on the excitation wavelengths.Several S1/S0 conical intersections,driven by the H-atom detachments and the ring deformations,have been found to be responsible for the nonadiabatic decay of the CA.The simulation re-sults show that the branching ratios towards these intersections are modified by the light with different excitation energies.This provides the valuable information for the understanding of the photoprotection mechanism of the CA compound. 展开更多
关键词 Caffeic acid nonadiabatic dynamics Surface hopping
下载PDF
Understanding Photolysis of CH_(3)ONO_(2) with on-the-fly Nonadiabatic Dynamics Simulation at the ADC(2) Level
2
作者 Juanjuan Zhang Jiawei Peng +2 位作者 Deping Hu Chao Xu Zhenggang Lan 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2022年第3期451-460,I0002,共11页
The nonadiabatic dynamics of methyl nitrate(CH_(3)ONO_(2))is studied with the on-the-fy trajectory surface hopping dynamics at the ADC(2)level.The results confirmed the existence of the ultrafast nonadiabatic decay to... The nonadiabatic dynamics of methyl nitrate(CH_(3)ONO_(2))is studied with the on-the-fy trajectory surface hopping dynamics at the ADC(2)level.The results confirmed the existence of the ultrafast nonadiabatic decay to the electronic ground state.When the dynamics starts from S_(1) and S_(2),the photoproducts are CH_(3)O+NO_(2),consistent with previous results obtained from the experimental studies and theoretical dynamics simulations at more accurate XMS-CASPT2 level.The photolysis products are CH_(3)O+NO_(2) at the ADC(2)level when the dynamics starts from S3,while different photolysis products were obtained in previous experimental and theoretical works.These results demonstrate that the ADC(2)method may still be useful for treating the photolysis mechanism of CH_(3)ONO_(2) at the long-wavelength UV excitation,while great caution should be paid due to its inaccurate performance in the description of the photolysis dynamics at the short-wavelength UV excitation.This gives valuable information to access the accuracy when other alkyl nitrates are treated at the ADC(2)level. 展开更多
关键词 Alkyl nitrate nonadiabatic dynamics PHOTOLYSIS Conical intersection Volatile organic compound
下载PDF
GW/BSE Nonadiabatic Dynamics Simulations on Excited-State Relaxation Processes of Zinc Phthalocyanine-Fullerene Dyads:Roles of Bridging Chemical Bonds
3
作者 Wen-kai Chen Xin-wei Sun +2 位作者 Qiu Fang Xiang-yang Liu Gang-long Cui 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2021年第6期704-716,I0001,I0013-I0030,共32页
In this work,we employ electronic structure calculations and nonadiabatic dynamics simulations based on many-body Green function and BetheSalpeter equation(GW/BSE)methods to study excited-state properties of a zinc ph... In this work,we employ electronic structure calculations and nonadiabatic dynamics simulations based on many-body Green function and BetheSalpeter equation(GW/BSE)methods to study excited-state properties of a zinc phthalocyanine-fullerene(ZnPcC_(60))dyad with 6-6 and 5-6 configurations.In the former,the initially populated locally excited(LE)state of ZnPc is the lowest S1 state and thus,its subsequent charge separation is relatively slow.In contrast,in the latter,the S1 state is the LE state of C_(60)while the LE state of ZnPc is much higher in energy.There also exist several charge-transfer(CT)states between the LE states of ZnPc and C_(60).Thus,one can see apparent charge separation dynamics during excited-state relaxation dynamics from the LE state of ZnPc to that of C_(60).These points are verified in dynamics simulations.In the first 200 fs,there is a rapid excitation energy transfer from ZnPc to C_(60),followed by an ultrafast charge separation to form a CT intermediate state.This process is mainly driven by hole transfer from C_(60)to ZnPc.The present work demonstrates that different bonding patterns(i.e.5-6 and 6-6)of the C−N linker can be used to tune excited-state properties and thereto optoelectronic properties of covalently bonded ZnPc-C_(60)dyads.Methodologically,it is proven that combined GW/BSE nonadiabatic dynamics method is a practical and reliable tool for exploring photoinduced dynamics of nonperiodic dyads,organometallic molecules,quantum dots,nanoclusters,etc. 展开更多
关键词 GW/BSE ZnPc-Fullerene dyads nonadiabatic dynamics simulations Excited states Charge separation Photoinduced energy transfer
下载PDF
Ab Initio Nonadiabatic Dynamics of Semiconductor Materials via Surface Hopping Method
4
作者 Yuli Lei Haibo Ma Luis Vasquez 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2022年第1期16-37,I0062,共23页
Photoinduced carrier dynamic processes are without doubt the main driving force responsible for the efficient performance of semiconductor nanomaterials in applications like photoconversion and photonics.Nevertheless,... Photoinduced carrier dynamic processes are without doubt the main driving force responsible for the efficient performance of semiconductor nanomaterials in applications like photoconversion and photonics.Nevertheless,establishing theoretical insights into these processes is computationally challenging owing to the multiple factors involved in the processes,namely reaction rate,material surface area,material composition etc.Modelling of photoinduced carrier dynamic processes can be performed via nonadiabatic molecular dynamics(NA-MD)methods,which are methods specifically designed to solve the time-dependent Schrodinger equation with the inclusion of nonadiabatic couplings.Among NA-MD methods,surface hopping methods have been proven to be a mighty tool to mimic the competitive nonadiabatic processes in semiconductor nanomaterials,a worth noticing feature is its exceptional balance between accuracy and computational cost.Consequently,surface hopping is the method of choice for modelling ultrafast dynamics and more complex phenomena like charge separation in Janus transition metal dichalcogenides-based van der Waals heterojunction materials.Covering latest stateof-the-art numerical simulations along with experimental results in the field,this review aims to provide a basic understanding of the tight relation between semiconductor nanomaterials and the proper simulation of their properties via surface hopping methods.Special stress is put on emerging state-ot-the-art techniques.By highlighting the challenge imposed by new materials,we depict emerging creative approaches,including high-level electronic structure methods and NA-MD methods to model nonadiabatic systems with high complexity. 展开更多
关键词 Surface hopping nonadiabatic dynamics Semiconductor nanomaterials Condense matter systems Classical path approximation
下载PDF
Nonadiabatic dynamics of electron injection into organic molecules
5
作者 朱丽萍 邱宇 童国平 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第7期470-477,共8页
We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su Schrieffer Heeger (SSH) model with a nonadiabatic dynamics method... We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su Schrieffer Heeger (SSH) model with a nonadiabatic dynamics method. It is found that a match between the Fermi level of electrodes and the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO) of organic molecules can be greatly affected by the length of the organic chains, which has a great impact on electron injection. The correlation between oligomers and electrodes is found to open more efficient channels for electron injection as compared with that in polymer/electrode structures. For oligomer/electrode structures, we show that the Schottky barrier essentially does not affect the electron injection as the electrode work function is smaller than a critical value work-function electrode. For polymer/electrode structures This means that the Schottky barrier is pinned for a small we find that it is possible for the Fermi level of electrodes to be pinned to the polaronic level. The condition under which the Fermi level of electrodes exceeds the polaronic level of polymers is shown to not always lead to spontneous electron transfer from electrodes to polymers. 展开更多
关键词 nonadiabatic dynamics electron injection organic molecule
下载PDF
Nonadiabatic dynamics of electron injection into organic molecules
6
作者 朱丽萍 邱宇 童国平 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第7期474-481,共8页
We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su–Schrieffer–Heeger (SSH) model with a nonadiabatic dynamics method... We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su–Schrieffer–Heeger (SSH) model with a nonadiabatic dynamics method. It is found that a match between the Fermi level of electrodes and the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO) of organic molecules can be greatly affected by the length of the organic chains, which has a great impact on electron injection. The correlation between oligomers and electrodes is found to open more efficient channels for electron injection as compared with that in polymer/electrode structures. For oligomer/electrode structures, we show that the Schottky barrier essentially does not affect the electron injection as the electrode work function is smaller than a critical value. This means that the Schottky barrier is pinned for a small work-function electrode. For polymer/electrode structures, we find that it is possible for the Fermi level of electrodes to be pinned to the polaronic level. The condition under which the Fermi level of electrodes exceeds the polaronic level of polymers is shown to not always lead to spontaneous electron transfer from electrodes to polymers. 展开更多
关键词 nonadiabatic dynamics electron injection organic molecule
全文增补中
Ab initio nonadiabatic molecular dynamics study on spin–orbit coupling induced spin dynamics in ferromagnetic metals
7
作者 朱万松 郑镇法 +1 位作者 郑奇靖 赵瑾 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期156-163,共8页
Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics... Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics simulation,we have studied the spin dynamics induced by spin–orbit coupling(SOC)in Co and Fe using both spin-diabatic and spin-adiabatic representations.In Co system,it is found that the Fermi surface(E_(F))is predominantly contributed by the spin-minority states.The SOC induced spin flip will occur for the photo-excited spin-majority electrons as they relax to the E_(F),and the spin-minority electrons tend to relax to the EFwith the same spin through the electron–phonon coupling(EPC).The reduction of spin-majority electrons and the increase of spin-minority electrons lead to demagnetization of Co within100 fs.By contrast,in Fe system,the E_(F) is dominated by the spin-majority states.In this case,the SOC induced spin flip occurs for the photo-excited spin-minority electrons,which leads to a magnetization enhancement.If we move the E_(F) of Fe to higher energy by 0.6eV,the E_(F) will be contributed by the spin-minority states and the demagnetization will be observed again.This work provides a new perspective for understanding the SOC induced spin dynamics mechanism in magnetic metal systems. 展开更多
关键词 nonadiabatic molecular dynamics spin dynamics spin–orbit coupling ferromagnetic metal
下载PDF
Polaron-assisted nonadiabatic dynamics in protonated TiO_(2) with surface water molecule
8
作者 Zhongfei Xu Chuanjia Tong +2 位作者 Rutong Si Gilberto Teobaldi Limin Liu 《ChemPhysMater》 2023年第4期331-336,共6页
We investigated the polaron-assisted nonadiabatic dynamics in protonated TiO_(2),as well as the polaron-H_(2)O coupling and its effects on the relaxation of photogenerated electrons.We observed that different polaron ... We investigated the polaron-assisted nonadiabatic dynamics in protonated TiO_(2),as well as the polaron-H_(2)O coupling and its effects on the relaxation of photogenerated electrons.We observed that different polaron hopping regimes result in varied nonadiabatic couplings and relaxations of excited electrons from the conduction band minimum to the gap states of protonated TiO_(2),with a weak dependence on the actual trapping site of the polaron.Surface-adsorbed H_(2)O molecules can attract polarons toward the adsorbed Ti sites,with the coupling between H_(2)O and the polaron being inversely proportional to their distance.Our findings suggest that the lifetime of the photogenerated charge carriers can be extended by reducing the polaron-H_(2)O distances,with expected benefits to the efficiency of the reduced TiO 2 samples for photocatalytic applications. 展开更多
关键词 PROTONATED Polaron-H_(2)O coupling nonadiabatic molecule dynamics Lifetime ANATASE
原文传递
Ultrafast Electron Transfer with Symmetrical Quasi-classical Dynamics based on Mapping Hamiltonian and Quantum Dynamics based on ML-MCTDH
9
作者 郑杰 谢宇 +3 位作者 江圣世 龙云泽 宁新 兰峥岗 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第6期800-810,I0003,共12页
Symmetrical quasi-classical (SQC) method based on mapping Hamiltonian is an efficient approach that is potentially useful to treat the nonadiabatic dynamics of very large systems. We try to evaluate the performance ... Symmetrical quasi-classical (SQC) method based on mapping Hamiltonian is an efficient approach that is potentially useful to treat the nonadiabatic dynamics of very large systems. We try to evaluate the performance of this method in the ultrafast electron transfer processes involving a few of electronic states and a large number of vibrational modes. The multilayer multiconfigurational time-dependent Hartree (ML-MCTDH) method was used to get the accurate dynamical results for benchmark. Although the population dynamics in the long- time limit show differences in the ML-MCTDH and SQC calculations, the SQC method gives acceptable results. 展开更多
关键词 Mapping Hamiltonian Semiclassical dynamics nonadiabatic dynamics
下载PDF
Photodynamics of Methyl-Vinyl Criegee Intermediate:Different Conical Intersections Govern the Fates of Syn/Anti Configurations
10
作者 Ya-zhen Li Jia-wei Yang +2 位作者 Lily Makroni Wen-liang Wang Feng-yi Liu 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第5期595-602,I0039-I0056,I0079,共27页
Methyl vinyl ketone oxide,an unsaturated four-carbon Criegee intermediate produced from the ozonolysis of isoprene has been recognized to play a key role in determining the tropospheric OH concentration.It exists in f... Methyl vinyl ketone oxide,an unsaturated four-carbon Criegee intermediate produced from the ozonolysis of isoprene has been recognized to play a key role in determining the tropospheric OH concentration.It exists in four configurations(anti-anti,anti-syn,synanti,and syn-syn)due to two different substituents of saturated methyl and unsaturated vinyl groups.In this study,we have carried out the electronic structure calculation at the multi-configurational CASSCF and multi-state MS-CASPT2 levels,as well as the trajectory surface-hopping nonadiabatic dynamics simulation at the CASSCF level to reveal the different fates of syn/anti configurations in photochemical process.Our results show that the dominant channel for the S1-state decay is a ring closure,isomerization to dioxirane,during which,the syn(C-O)configuration with an intramolecular hydrogen bond shows slower nonadiabatic photoisomerization.More importantly,it has been found for the first time in photochemistry of Criegee intermediate that the cooperation of two heavy groups(methyl and vinyl)leads to an evident pyramidalization of C3 atom in methyl-vinyl Criegee intermediate,which then results in two structurally-independent minimal-energy crossing points(CIs)towards the syn(C-O)and anti(C-O)sides,respectively.The preference of surface hopping for a certain CI is responsible for the different dynamics of each configuration. 展开更多
关键词 Trajectory surface hopping nonadiabatic dynamics Criegee intermediate Dioxirane PHOTOISOMERIZATION Minimal-energy crossing point
下载PDF
Effect of conical intersection of benzene on non-adiabatic dynamics
11
作者 Duo-Duo Li Song Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第8期367-371,共5页
The effect of conical intersection on the excited dynamics of benzene is studied by ab initio theory of electronic structure,which provides an important insight into photophysical and photochemical reactions.Based on ... The effect of conical intersection on the excited dynamics of benzene is studied by ab initio theory of electronic structure,which provides an important insight into photophysical and photochemical reactions.Based on the CASSCF(6,6)/6-31+G(d,p)method,the topological structures of conical intersections S_(1)/S and S_(2)/S_(1)of benzene,as well as the optimal structures of the ground state(S)and excited states(S_(1),S_(2)),are determined.The energy minima of the S_(1)state and S_(2)state are estimated at 4.608 e V and 6.889 e V,respectively.In addition,the energy values of the conical intersections of S_(1)/S and S_(2)/S_(1)are predicted to be 5.600 e V and 6.774 e V.According to the topological structures and energy values of the S_(2)/S_(1)and S_(1)/S conical intersections,the photophysical behavior of benzene excited to the S_(2)state and the effects of the S_(2)/S_(1)and S_(1)/S conical intersections are discussed in detail. 展开更多
关键词 conical intersection nonadiabatic dynamics ultrafast relaxation quantum chemical calculations
下载PDF
New Energy-Based Decoherence Correction Approaches for Trajectory Surface Hopping
12
作者 Bing-yang Xiao Jia-bo Xu Lin-jun Wang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第5期603-612,I0079,共11页
Inspired by the branching corrected surface hopping(BCSH)method[J.Xu and L.Wang,J.Chem.Phys.150,164101(2019)],we present two new decoherence time formulas for trajectory surface hopping.Both the proposed linear and ex... Inspired by the branching corrected surface hopping(BCSH)method[J.Xu and L.Wang,J.Chem.Phys.150,164101(2019)],we present two new decoherence time formulas for trajectory surface hopping.Both the proposed linear and exponential formulas characterize the decoherence time as functions of the energy difference between adiabatic states and correctly capture the decoherence effect due to wave packet reflection as predicted by BCSH.The relevant parameters are trained in a series of 200 diverse models with different initial nuclear momenta,and the exact quantum solutions are utilized as references.As demonstrated in the three standard Tully models,the two new approaches exhibit significantly higher reliability than the widely used counterpart algorithm while holding the appealing efficiency,thus promising for nonadiabatic dynamics simulations of general systems. 展开更多
关键词 Trajectory surface hopping DECOHERENCE nonadiabatic dynamics
下载PDF
Quantum Mechanics Rate Constant for the N-I-ND Reaction
13
作者 张爱杰 何国钟 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第5期547-550,I0003,共5页
We present nonadiabatic quantum dynamical calculations on the two coupled potential energy surfaces (12A' and 22A') [J. Theor. Comput. Chem. 8, 849 (2009)] for the reaction. Initial state-resolved reaction proba... We present nonadiabatic quantum dynamical calculations on the two coupled potential energy surfaces (12A' and 22A') [J. Theor. Comput. Chem. 8, 849 (2009)] for the reaction. Initial state-resolved reaction probabilities and cross sections for the N+ND→N2+D reaction and N'+ND→N+N'D reaction for collision energies of 5 meV to 1.0 eV are determined, respectively. It is found that the N+ND→N2+D reaction is dominated in the N+ND reaction. In addition, we obtained the rate constants for the N+ND→N2+D reaction which demand further experimental investigations. 展开更多
关键词 nonadiabatic quantum dynamical calculation N+ND→N2+D reaction Rateconstant
下载PDF
Computational Characterization of Nanosystems
14
作者 Xiongzhi Zeng Wei Hu +3 位作者 Xiao Zheng Jin Zhao Zhenyu Li Jinlong Yang 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2022年第1期1-15,I0062,共16页
Nanosystems play an important role in many applications.Due to their complexity,it is challenging to accurately characterize their structure and properties.An important means to reach such a goal is computational simu... Nanosystems play an important role in many applications.Due to their complexity,it is challenging to accurately characterize their structure and properties.An important means to reach such a goal is computational simulation,which is grounded on ab initio electronic structure calculations.Low scaling and accurate electronic-structure algorithms have been developed in recent years.Especially,the efficiency of hybrid density functional calculations for periodic systems has been significantly improved.With electronic structure information,simulation methods can be developed to directly obtain experimentally comparable data.For example,scanning tunneling microscopy images can be effectively simulated with advanced algorithms.When the system we are interested in is strongly coupled to environment,such as the Kondo effect,solving the hierarchical equations of motion turns out to be an effective way of computational characterization.Furthermore,the first principles simulation on the excited state dynamics rapidly emerges in recent years,and nonadiabatic molecular dynamics method plays an important role.For nanosystem involved chemical processes,such as graphene growth,multiscale simulation methods should be developed to characterize their atomic details.In this review,we review some recent progresses in methodology development for computational characterization of nanosystems.Advanced algorithms and software are essential for us to better understand of the nanoworld. 展开更多
关键词 Density functional theory Linear-scaling algorithms Open system nonadiabatic molecular dynamics Multiscale methods
下载PDF
Charge Localization Induced by Reorientation of FA Cations Greatly Suppresses Nonradiative Electron-Hole Recombination in FAPbI3 Perovskites:a Time-Domain Ab Initio Study
15
作者 Jin-lu He Yong-hao Zhu Run Long 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第5期642-648,I0079,共8页
Recent experiments report the rotation of FA(FA=HC[NH2]2+)cations significantly influence the excited-state lifetime of FAPbI3.However,the underlying mechanism remains unclear.Using ab initio nonadiabatic(NA)molecular... Recent experiments report the rotation of FA(FA=HC[NH2]2+)cations significantly influence the excited-state lifetime of FAPbI3.However,the underlying mechanism remains unclear.Using ab initio nonadiabatic(NA)molecular dynamics combined with time-domain density functional simulations,we have demonstrated that reorientation of partial FA cations significantly inhibits nonradiative electron-hole recombination with respect to the pristine FAPbI3 due to the decreased NA coupling by localizing electron and hole in different positions and the suppressed atomic motions.Slow nuclear motions simultaneously increase the decoherence time,which is overcome by the reduced NA coupling,extending electron-hole recombination time scales to several nanoseconds and being about 3.9 times longer than that in pristine FAPbI3,which occurs within sub-nanosecond and agrees with experiment.Our study established the mechanism for the experimentally reported prolonged excited-state lifetime,providing a rational strategy for design of high performance of perovskite solar cells and optoelectronic devices. 展开更多
关键词 Hybrid organic-inorganic perovskite Localized charge Non-radiative electronhole recombination nonadiabatic molecular dynamics Time-dependent density functional theory
下载PDF
Efficient passivation of DY center in CH_(3)NH_(3)PbBr_(3) by chlorine:Quantum molecular dynamics
16
作者 Ran Shi Wei-Hai Fang +2 位作者 Andrey S.Vasenko Run Long Oleg V.Prezhdo 《Nano Research》 SCIE EI CSCD 2022年第3期2112-2122,共11页
MAPbBr_(3)(MA=CH_(3)NH_(3)^(+))doping with bismuth increases electric conductivity,charge carrier density and photostability,reduces toxicity,and expands light absorption.However,Bi doping shortens excited-state lifet... MAPbBr_(3)(MA=CH_(3)NH_(3)^(+))doping with bismuth increases electric conductivity,charge carrier density and photostability,reduces toxicity,and expands light absorption.However,Bi doping shortens excited-state lifetimes due to formation of DY−charge recombination centers.Using nonadiabatic molecular dynamics and time-domain density functional theory,we demonstrate that the DY−center forms a deep,highly localized hole trap,which accelerates nonradiative relaxation ten-fold and is responsible for 90%of carrier losses.Hole trapping occurs by coupling between the valence band and the trap state,facilitated by the Br atoms surrounding the Bi dopant.Passivation of the DY−center with chlorines heals the local geometry distortion,eliminates the trap state,and makes the carrier lifetimes longer than even in pristine MAPbBr_(3).The decreased charge recombination arises from reduced nonadiabatic coupling and shortened coherence time,due to diminished electron–hole overlap around the passivated defect.Our study demonstrates accelerated nonradiative recombination in Bi-doped MAPbBr_(3),suggests a strategy for defect passivation and reduction of nonradiative energy losses,and provides atomistic insights into unusual defect properties of metal halide perovskites needed for rational design of high-performance perovskite solar cells and optoelectronic devices. 展开更多
关键词 Hybrid organic-inorganic perovskite DY−center and Cl passivation charge trapping and recombination nonadiabatic molecular dynamics time-domain density functional theory.
原文传递
具有直接Z型光催化机制的非金属BC4N/aza-CMP异质双层的光催化固氮性能 被引量:1
17
作者 范英才 张志华 +2 位作者 王娟 马西奎 赵明文 《Science China Materials》 SCIE EI CAS CSCD 2023年第11期4377-4386,共10页
我们设计了一种不含金属的二维双层异质结构BC_(4)N/aza-CMP,该体系可在水溶液中将N2分子通过光催化作用还原为氨.通过密度泛函理论和非绝热分子动力学方法,我们发现该异质结构中的光生载流子遵循直接Z型迁移机制.这将有效分离光生电荷... 我们设计了一种不含金属的二维双层异质结构BC_(4)N/aza-CMP,该体系可在水溶液中将N2分子通过光催化作用还原为氨.通过密度泛函理论和非绝热分子动力学方法,我们发现该异质结构中的光生载流子遵循直接Z型迁移机制.这将有效分离光生电荷并使氮还原反应和氧发生反应分别在BC_(4)N层和aza-CMP层上进行,实现反应位点的空间分离.值得一提的是,BC_(4)N上的B原子可以有效吸附N2分子并激活N≡N键,这将降低氮还原反应的过电势并促进随后的质子化进程,且该异质双层具有适宜的带隙和带边位置,能够有效吸收太阳光并提供充足的驱动力来触发氧化还原反应,实现无任何牺牲剂辅助的光催化氨合成.本工作将为直接Z型固氮光催化剂的设计提供重要借鉴,并促进太阳能驱动的氨合成的发展. 展开更多
关键词 photocatalytic NH3 synthesis direct Z-scheme pho-tocatalyst energy conversion efficiency nonadiabatic molecular dynamics calculations
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部