A delayed n-species nonautonomous Lotka-Volterra type competitive system without dominating instantaneous negative feedback is investigated. By means of a suitable Lyapunov functional, sufficient conditions are derive...A delayed n-species nonautonomous Lotka-Volterra type competitive system without dominating instantaneous negative feedback is investigated. By means of a suitable Lyapunov functional, sufficient conditions are derived for the global asymptotic stability of the positive solutions of the system. As a corollary, it is shown that the global asymptotic stability of the positive solution is maintained provided that the delayed negative feedbacks dominate other interspecific interaction effects with delays and the delays are sufficiently small.展开更多
In this paper, the qualitative properties of general nonautonomous Lotka-Volterran-species competitive systems with impulsive e?ects are studied. Some new criteria on thepermanence, extinction and global attractivity...In this paper, the qualitative properties of general nonautonomous Lotka-Volterran-species competitive systems with impulsive e?ects are studied. Some new criteria on thepermanence, extinction and global attractivity of partial species are established by used themethods of inequalities estimate and Liapunov functions. As applications, nonautonomous twospecies Lotka-Volterra systems with impulses are discussed.展开更多
In this paper, lower bounds of the topological entropy for nonautonomous dynamical systems are given via the growths of topological complexity in fundamental group and in degree.
Based on the three-dimensional Liu chaotic system, this paper appends a feedback variable to construct a novel hyperchaotic Liu system. Then, a control signal is further added to construct a novel nonautonomous hyperc...Based on the three-dimensional Liu chaotic system, this paper appends a feedback variable to construct a novel hyperchaotic Liu system. Then, a control signal is further added to construct a novel nonautonomous hyperchaotic Liu system. Through adjusting the frequency of the control signal, the chaotic property of the system can be controlled to show some different dynamic behaviors such as periodic, quasi-periodic, chaotic and hyperchaotic dynamic behaviours. By numerical simulations, the Lyapunov exponent spectrums, bifurcation diagrams and phase diagrams of the two new systems are studied, respectively. Furthermore, the synchronizing circuits of the nonautonomous hyperchaotic Liu system are designed via the synchronization control method of single variable coupling feedback. Finally, the hardware circuits are implemented, and the corresponding waves of chaos are observed by an oscillograph.展开更多
To study controlled evolution of nonautonomous matter-wave breathers and rogue waves in spinor Bose–Einstein condensates with spatiotemporal modulation,we focus on a system of three coupled Gross–Pitaevskii equation...To study controlled evolution of nonautonomous matter-wave breathers and rogue waves in spinor Bose–Einstein condensates with spatiotemporal modulation,we focus on a system of three coupled Gross–Pitaevskii equations with spacetime-dependent external potentials and temporally modulated gain-loss distributions.With different external potentials and gain-loss distributions,various solutions for controlled nonautonomous matterwave breathers and rogue waves are derived by the Darboux transformation method,such as breathers and rogue waves on arched and constant backgrounds which have the periodic and parabolic trajectories.Effects of the gain-loss distribution and linear potential on the breathers and rogue waves are studied.Nonautonomous two-breathers on the arched and constant backgrounds are also derived.展开更多
This note discusses the long time behavior of solutions for nonautonomous weakly dissipative Klein-Gordon-Schrodinger equations with homogeneous Dirichlet boundary condition.The authors prove the existence of compact ...This note discusses the long time behavior of solutions for nonautonomous weakly dissipative Klein-Gordon-Schrodinger equations with homogeneous Dirichlet boundary condition.The authors prove the existence of compact kernel sections for the associated process by using a suitable decomposition of the equations.展开更多
By utilizing a fixed point theorem on cone, some new results on the existence ofpositive periodic solutions for nonautonomous differential equations with delay are derived.
In a polluted environment, considering the biological population infected with a kind of disease and hunted by human beings, we formulate a nonautonomous SIR population-epidemic model with time-varying impulsive relea...In a polluted environment, considering the biological population infected with a kind of disease and hunted by human beings, we formulate a nonautonomous SIR population-epidemic model with time-varying impulsive release and general nonlinear incidence rate and investigate dynamical behaviors of the model. Under the reasonable assumptions, the sufficient conditions which guarantee the globally attractive of the disease-free periodic solution and the permanence of the infected fish are established, that is, the infected fish dies out if , whereas the disease persists if . To substantiate our theoretical results, extensive numerical simulations are performed for a hypothetical set of parameter values.展开更多
We prove the existence and the orbital stability of standing waves for the nonau- tonomous Schrodinger system……under suitable conditions on the coefficient functions a and b. We follow the idea of analyzing the comp...We prove the existence and the orbital stability of standing waves for the nonau- tonomous Schrodinger system……under suitable conditions on the coefficient functions a and b. We follow the idea of analyzing the compactness of minimizing sequence of the constrained minimization problems.展开更多
The necessary and sufficient condition of the stability of linear nonautonomous system under the frequently-acting perturbation has been given and proved on the basis of[1] and [2], and the theorem of the equivalence ...The necessary and sufficient condition of the stability of linear nonautonomous system under the frequently-acting perturbation has been given and proved on the basis of[1] and [2], and the theorem of the equivalence on the uniform and asymptotical stability in the sense of Liapunov ami the stability under the frequently-acting perturbation of linear nonautonomous system has been given in this paper. Besides, the analysis of the dynamic stabilitv of robot has been presented by applying the theorem in this paper, which is closer to reality展开更多
We report the analytical nonantonomous soliton solutions (NSSs) for two-component Bose-Einstein condensates with the presence of a time-dependent potential. These solutions show that the time-dependent potential can...We report the analytical nonantonomous soliton solutions (NSSs) for two-component Bose-Einstein condensates with the presence of a time-dependent potential. These solutions show that the time-dependent potential can affect the velocity of NSS. The velocity shows the characteristic of both increasing and oscillation with time. A detailed analysis for the asymptotic behavior of NSSs demonstrates that the collision of two NSSs of each component is elastic.展开更多
We study exact single-soliton solutions of an attractive Bose-Einstein condensate governed by a one-dimensional nonautonomous Gross-Pitaevskii system. For several different forms of time-dependent atom-atom interactio...We study exact single-soliton solutions of an attractive Bose-Einstein condensate governed by a one-dimensional nonautonomous Gross-Pitaevskii system. For several different forms of time-dependent atom-atom interaction and external parabolic potential which satisfy the exact integrability scenario, we construct a set of new analytical nonautonomous deformed-soliton solutions, including the macroscopic wave function and the position of soliton's center of mass. The soliton characteristics are modulated by the external field parameters and deformation factors related to the number of the condensed atoms and the initial conditions. The results suggest a simple and effective method for experimentally generating matter-wave deformed solitons and manipulating their motions.展开更多
In this paper the stability of nonlinear nonautonomous systems under the frequently-acting perturbation is studied. This study is a forward development of the study of the stability in the Liapunov sense; furthermore,...In this paper the stability of nonlinear nonautonomous systems under the frequently-acting perturbation is studied. This study is a forward development of the study of the stability in the Liapunov sense; furthermore, it is of significance in practice since perturbations are often not single in the time domain. Malkin proved a general theorem about thesubject. To apply the theorem, however, the user has to construct a Liapunov function which satisfies specified conditions and it is difficult to find such a function for nonlinear nonautonomous systems. In the light of the principle of Liapunov's indirect method, which is an effective method to decide the stability of nonlinear systems in the Liapunov sense, the authors have achieved several important conclusions expressed in the form of theorems to determine the stability of nonlinear nonautonomous systems under the frequently-acting perturbation.展开更多
The long-time behaviour of a two-dimensional nonautonomous nonlinear Schrodinger equation is considered. The existence! of uniform attractor is proved and the upper bound of the uniform attractor's Housdorff dimen...The long-time behaviour of a two-dimensional nonautonomous nonlinear Schrodinger equation is considered. The existence! of uniform attractor is proved and the upper bound of the uniform attractor's Housdorff dimension is given.展开更多
In this paper, a nonautonomous eco-epidemiological model with disease in the predator is formulated and analyzed, in which saturated predation rate is taken into consideration. Under quite weak assumptions, sufficient...In this paper, a nonautonomous eco-epidemiological model with disease in the predator is formulated and analyzed, in which saturated predation rate is taken into consideration. Under quite weak assumptions, sufficient conditions for the permanence and extinction of the disease are obtained. Moreover, by constructing a Liapunov function, the global attractivity of the model is discussed. Finally, numerical simulations verified these results.展开更多
In this paper, the long time behavior of nonautonomous infinite dimensional dynamical systems is discussed Under the spectral gap condition, It is proved that there exist inertial manifolds for a class of nonautonomou...In this paper, the long time behavior of nonautonomous infinite dimensional dynamical systems is discussed Under the spectral gap condition, It is proved that there exist inertial manifolds for a class of nonautonomous evolution equations.展开更多
A nonautonomous schistosomiasis model with latent period and saturated incidence is investigated. Further, we study the long-time behavior of the epidemic model. The weaker sufficient conditions for the permanence and...A nonautonomous schistosomiasis model with latent period and saturated incidence is investigated. Further, we study the long-time behavior of the epidemic model. The weaker sufficient conditions for the permanence and extinction of infectious population of the model are obtained by constructing some auxiliary functions. Numerical simulations show agreement with the theoretical results.展开更多
In this paper, the long time behavior of nonautonomous infinite dimensional dynamical systems is studied. A family of convergent approximate inertial manifolds for a class of evolution equations has been constructed w...In this paper, the long time behavior of nonautonomous infinite dimensional dynamical systems is studied. A family of convergent approximate inertial manifolds for a class of evolution equations has been constructed when the spectral gap condition is satisfied.展开更多
In this paper, the existence of strictly positive solutions for N-species nonau- tonom ous Kolm ogorov com petition system s is studied. By applying the Schauder's fixed point theorem som e new sufficient condit...In this paper, the existence of strictly positive solutions for N-species nonau- tonom ous Kolm ogorov com petition system s is studied. By applying the Schauder's fixed point theorem som e new sufficient conditions are established. In particular, for the alm ost periodic system , the existence of strictly positive alm ostperiodic solutions is obtained. Som e previous results are im proved and generalized.展开更多
文摘A delayed n-species nonautonomous Lotka-Volterra type competitive system without dominating instantaneous negative feedback is investigated. By means of a suitable Lyapunov functional, sufficient conditions are derived for the global asymptotic stability of the positive solutions of the system. As a corollary, it is shown that the global asymptotic stability of the positive solution is maintained provided that the delayed negative feedbacks dominate other interspecific interaction effects with delays and the delays are sufficiently small.
基金Supported by The National Natural Science Foundation of P.R. China [60764003]The Scientific Research Programmes of Colleges in Xinjiang [XJEDU2007G01, XJEDU2006I05]+1 种基金The National Key Technologies R & D Program of China [2008BAI68B01]The Natural Science Foundation of Jiangxi Province [2008GZS0027]
文摘In this paper, the qualitative properties of general nonautonomous Lotka-Volterran-species competitive systems with impulsive e?ects are studied. Some new criteria on thepermanence, extinction and global attractivity of partial species are established by used themethods of inequalities estimate and Liapunov functions. As applications, nonautonomous twospecies Lotka-Volterra systems with impulses are discussed.
基金Supported by the National Natural Science Foundation of China (10701032)Natural Science Foundation of Hebei Province (A2008000132)the Doctoral Foundation of Hebei Normal University (L2005B02)
文摘In this paper, lower bounds of the topological entropy for nonautonomous dynamical systems are given via the growths of topological complexity in fundamental group and in degree.
基金Project supported by the National Natural Science Foundation of China (Grant No 60572089)the Natural Science Foundation of Chongqing (Grant No CSTC,2008BB2087)
文摘Based on the three-dimensional Liu chaotic system, this paper appends a feedback variable to construct a novel hyperchaotic Liu system. Then, a control signal is further added to construct a novel nonautonomous hyperchaotic Liu system. Through adjusting the frequency of the control signal, the chaotic property of the system can be controlled to show some different dynamic behaviors such as periodic, quasi-periodic, chaotic and hyperchaotic dynamic behaviours. By numerical simulations, the Lyapunov exponent spectrums, bifurcation diagrams and phase diagrams of the two new systems are studied, respectively. Furthermore, the synchronizing circuits of the nonautonomous hyperchaotic Liu system are designed via the synchronization control method of single variable coupling feedback. Finally, the hardware circuits are implemented, and the corresponding waves of chaos are observed by an oscillograph.
基金supported by the National Natural Science Foundation of China (Grant Nos.11975172 and 12261131495)。
文摘To study controlled evolution of nonautonomous matter-wave breathers and rogue waves in spinor Bose–Einstein condensates with spatiotemporal modulation,we focus on a system of three coupled Gross–Pitaevskii equations with spacetime-dependent external potentials and temporally modulated gain-loss distributions.With different external potentials and gain-loss distributions,various solutions for controlled nonautonomous matterwave breathers and rogue waves are derived by the Darboux transformation method,such as breathers and rogue waves on arched and constant backgrounds which have the periodic and parabolic trajectories.Effects of the gain-loss distribution and linear potential on the breathers and rogue waves are studied.Nonautonomous two-breathers on the arched and constant backgrounds are also derived.
基金the NNSFC(10771139 and 10771074)NSF of Wenzhou University(2007L024)NSF of Guangdong Province(004020077)
文摘This note discusses the long time behavior of solutions for nonautonomous weakly dissipative Klein-Gordon-Schrodinger equations with homogeneous Dirichlet boundary condition.The authors prove the existence of compact kernel sections for the associated process by using a suitable decomposition of the equations.
基金Supported by the Natural Science Foundation of Guangdong Province(032469)
文摘By utilizing a fixed point theorem on cone, some new results on the existence ofpositive periodic solutions for nonautonomous differential equations with delay are derived.
文摘In a polluted environment, considering the biological population infected with a kind of disease and hunted by human beings, we formulate a nonautonomous SIR population-epidemic model with time-varying impulsive release and general nonlinear incidence rate and investigate dynamical behaviors of the model. Under the reasonable assumptions, the sufficient conditions which guarantee the globally attractive of the disease-free periodic solution and the permanence of the infected fish are established, that is, the infected fish dies out if , whereas the disease persists if . To substantiate our theoretical results, extensive numerical simulations are performed for a hypothetical set of parameter values.
文摘We prove the existence and the orbital stability of standing waves for the nonau- tonomous Schrodinger system……under suitable conditions on the coefficient functions a and b. We follow the idea of analyzing the compactness of minimizing sequence of the constrained minimization problems.
文摘The necessary and sufficient condition of the stability of linear nonautonomous system under the frequently-acting perturbation has been given and proved on the basis of[1] and [2], and the theorem of the equivalence on the uniform and asymptotical stability in the sense of Liapunov ami the stability under the frequently-acting perturbation of linear nonautonomous system has been given in this paper. Besides, the analysis of the dynamic stabilitv of robot has been presented by applying the theorem in this paper, which is closer to reality
基金supported by the Key Project of the Chinese Ministry of Education(Grant No.2011015)the Natural Science Foundation of Hebei Province of China(Grant No.A2012202023)
文摘We report the analytical nonantonomous soliton solutions (NSSs) for two-component Bose-Einstein condensates with the presence of a time-dependent potential. These solutions show that the time-dependent potential can affect the velocity of NSS. The velocity shows the characteristic of both increasing and oscillation with time. A detailed analysis for the asymptotic behavior of NSSs demonstrates that the collision of two NSSs of each component is elastic.
基金supported by the National Natural Science Foundation of China (Grant No. 11175064)
文摘We study exact single-soliton solutions of an attractive Bose-Einstein condensate governed by a one-dimensional nonautonomous Gross-Pitaevskii system. For several different forms of time-dependent atom-atom interaction and external parabolic potential which satisfy the exact integrability scenario, we construct a set of new analytical nonautonomous deformed-soliton solutions, including the macroscopic wave function and the position of soliton's center of mass. The soliton characteristics are modulated by the external field parameters and deformation factors related to the number of the condensed atoms and the initial conditions. The results suggest a simple and effective method for experimentally generating matter-wave deformed solitons and manipulating their motions.
文摘In this paper the stability of nonlinear nonautonomous systems under the frequently-acting perturbation is studied. This study is a forward development of the study of the stability in the Liapunov sense; furthermore, it is of significance in practice since perturbations are often not single in the time domain. Malkin proved a general theorem about thesubject. To apply the theorem, however, the user has to construct a Liapunov function which satisfies specified conditions and it is difficult to find such a function for nonlinear nonautonomous systems. In the light of the principle of Liapunov's indirect method, which is an effective method to decide the stability of nonlinear systems in the Liapunov sense, the authors have achieved several important conclusions expressed in the form of theorems to determine the stability of nonlinear nonautonomous systems under the frequently-acting perturbation.
文摘The long-time behaviour of a two-dimensional nonautonomous nonlinear Schrodinger equation is considered. The existence! of uniform attractor is proved and the upper bound of the uniform attractor's Housdorff dimension is given.
文摘In this paper, a nonautonomous eco-epidemiological model with disease in the predator is formulated and analyzed, in which saturated predation rate is taken into consideration. Under quite weak assumptions, sufficient conditions for the permanence and extinction of the disease are obtained. Moreover, by constructing a Liapunov function, the global attractivity of the model is discussed. Finally, numerical simulations verified these results.
文摘In this paper, the long time behavior of nonautonomous infinite dimensional dynamical systems is discussed Under the spectral gap condition, It is proved that there exist inertial manifolds for a class of nonautonomous evolution equations.
文摘A nonautonomous schistosomiasis model with latent period and saturated incidence is investigated. Further, we study the long-time behavior of the epidemic model. The weaker sufficient conditions for the permanence and extinction of infectious population of the model are obtained by constructing some auxiliary functions. Numerical simulations show agreement with the theoretical results.
文摘In this paper, the long time behavior of nonautonomous infinite dimensional dynamical systems is studied. A family of convergent approximate inertial manifolds for a class of evolution equations has been constructed when the spectral gap condition is satisfied.
文摘In this paper, the existence of strictly positive solutions for N-species nonau- tonom ous Kolm ogorov com petition system s is studied. By applying the Schauder's fixed point theorem som e new sufficient conditions are established. In particular, for the alm ost periodic system , the existence of strictly positive alm ostperiodic solutions is obtained. Som e previous results are im proved and generalized.