A polynomial-rooting based fourth-order cumulant algorithm is presented for direction-of-arrival(DOA) estimation of second-order fully noncircular source signals, using a uniform linear array(ULA). This algorithm ...A polynomial-rooting based fourth-order cumulant algorithm is presented for direction-of-arrival(DOA) estimation of second-order fully noncircular source signals, using a uniform linear array(ULA). This algorithm inherits all merits of its spectralsearching counterpart except for the applicability to arbitrary array geometry, while reducing considerably the computation cost.Simulation results show that the proposed algorithm outperforms the previously developed closed-form second-order noncircular ESPRIT method, in terms of processing capacity and DOA estimation accuracy, especially in the presence of spatially colored noise.展开更多
When the noncircular gear pair is applied to the continuously variable transmission (CVT) with gear, the transmission ratio function is discontinuous. In accordance with this unique characteristic, a new approach to...When the noncircular gear pair is applied to the continuously variable transmission (CVT) with gear, the transmission ratio function is discontinuous. In accordance with this unique characteristic, a new approach to design and analyze noncircular gears with discontinuous pitch curve is proposed. The design courses of various noncircular gear pairs with discontinuous pitch curve are unified based on the numerical algorithm of spline fitting and "fairing boundary condition". According to the particularity of discontinuous pitch curve, the rules and procedures for teeth distribution are recommended. It is explained in detail why the undercut is formed and how to manage the undercut based on meshing principle.In addition, the calculation formulas for each tooth profile segment are also derived. If the tooth profile data are calculated, the measurement and the incision process for noncircular gear can be conducted and the CAD simulation can be achieved easily. To ensure the continuity of the transmission, the transmission interference of the tooth which is located at the pitch curve joint point is managed by utilizing Bezier curve with CAD software. And the contact ratio of gear pair is obtained. The case study shows that this approach is successful and opens up a new way for the design of noncircular gear.展开更多
The problem of two-dimensional(2 D)direction of arrival(DOA)estimation for double parallel uniform linear arrays is investigated in this paper.A real-valued DOA estimation algorithm of noncircular(NC)signal is propose...The problem of two-dimensional(2 D)direction of arrival(DOA)estimation for double parallel uniform linear arrays is investigated in this paper.A real-valued DOA estimation algorithm of noncircular(NC)signal is proposed,which combines the Euler transformation and rotational invariance(RI)property between subarrays.In this work,the effective array aperture is doubled by exploiting the noncircularity of signals.The complex arithmetic is converted to real arithmetic via Euler transformation.The main contribution of this work is not only extending the NC-Euler-ESPRIT algorithm from uniform linear array to double parallel uniform linear arrays,but also constructing a new 2 Drotational invariance property between subarrays,which is more complex than that in NCEuler-ESPRIT algorithm.The proposed 2 DNC-Euler-RI algorithm has much lower computational complexity than2 DNC-ESPRIT algorithm.The proposed algorithm has better angle estimation performance than 2 DESPRIT algorithm and 2 D NC-PM algorithm for double parallel uniform linear arrays,and is very close to that of 2 D NC-ESPRIT algorithm.The elevation angles and azimuth angles can be obtained with automatically pairing.The proposed algorithm can estimate up to 2(M-1)sources,which is two times that of 2 D ESPRIT algorithm.Cramer-Rao bound(CRB)of noncircular signal is derived for the proposed algorithm.Computational complexity comparison is also analyzed.Finally,simulation results are presented to illustrate the effectiveness and usefulness of the proposed algorithm.展开更多
Based on the constant modulus criterion, a new Widely Linear(WL) blind equalizer and a novel widely linear recursive least square constant modulus algorithm are proposed to improve the blind equalization performance f...Based on the constant modulus criterion, a new Widely Linear(WL) blind equalizer and a novel widely linear recursive least square constant modulus algorithm are proposed to improve the blind equalization performance for complex-valued noncircular signals. The new algorithm takes advantage of the WL filtering theory by taking full use of second-order statistical information of the complex-valued noncircular signals. Therefore, the weight vector contains the complete second-order information of the real and imaginary parts to decrease the residual inter-symbol interference effectively. Theoretical analysis and simulation results show that the proposed scheme can significantly improve the equalization performance for complex-valued noncircular signals compared with traditional blind equalization algorithms.展开更多
This paper presents a low?complexity method for the direction?of?arrival(DOA)estimation of noncircular signals for coprime sensor arrays.The noncircular property is exploited to improve the performance of DOA estimati...This paper presents a low?complexity method for the direction?of?arrival(DOA)estimation of noncircular signals for coprime sensor arrays.The noncircular property is exploited to improve the performance of DOA estimation.To reduce the computational complexity,the rotational invariance propagator method(RIPM)is included in the algorithm.First,the extended array output is reconstructed by combining the array output and its conjugated counterpart.Then,the RIPM is utilized to obtain two sets of DOA estimates for two subarrays.Finally,the true DOAs are estimated by combining the consistent results of the two subarrays.This illustrates the potential gain that both noncircularity and coprime arrays provide when considered together.The proposed algorithm has a lower computational complexity and a better DOA estimation performance than the standard estimation of signal parameters by the rotational invariance technique and Capon algorithm.Numerical simulation results illustrate the effectiveness and superiority of the proposed algorithm.展开更多
In this paper, we experimentally investigate the near-field flow characteristics of turbulent free jets respectively issued from circular, triangular, diamond, rectangular, and notched-rectangular orifice plates into ...In this paper, we experimentally investigate the near-field flow characteristics of turbulent free jets respectively issued from circular, triangular, diamond, rectangular, and notched-rectangular orifice plates into air surroundings. All the orifice plates have identical opening areas or equivalent diameters(De) and their aspect ratios(AR) range from 1 to 6.5. Planar particle image velocimetry(PIV) is used to measure the velocity field at the same Reynolds number of Re = 5 × 10^4,where Re = Ue De/ν with Ue being the exit bulk velocity and ν the kinematic viscosity of fluid. The mean and turbulent velocity fields of all the five jets are compared in detail. Results show that the noncircular jets can enhance the entrainment rate, reflected by the higher acceleration rates of mean velocity decay and spread, shorten the length of the unmixed core,expedite the increase of turbulent intensity compared with the circular counterpart shortened unmixed core, and increase turbulent intensity comparing to the circular counterpart. Among the five jets, the rectangular jet(AR = 6.5) produces the greatest decay rate of the near-field mean velocity, postpones the position at which the 鈥榓xis-switching鈥檖henomenon occurs. This supports that axis switching phenomenon strongly depends on jet initial conditions. In addition, the hump in the centerline variation of the turbulence intensity is observed in the rectangular and triangular jets, but not in the circular jet, nor in diamond jet nor in notched-rectangular jet.展开更多
A gyrokinetic model with integral eigenmode equations is developed based on the local equilibrium of shaped tokamak plasmas. Effects of main geometric parameters (finite aspect ratio, elongation, triangularity, and S...A gyrokinetic model with integral eigenmode equations is developed based on the local equilibrium of shaped tokamak plasmas. Effects of main geometric parameters (finite aspect ratio, elongation, triangularity, and Shafranov shift gradient) on the electrostatic electron temper- ature gradient (ETG) driven modes are investigated numerically. It is found that the finite aspect ratio has a general stabilizing effect, while the elongation can be either stabilizing or destabilizing, depending on the poloidal wavelength of the mode and other parameters. It is shown that a low aspect ratio enhances the stabilizing effect of elongation, and weakens its destabilizing effect as well.展开更多
Turbulent jet flows with noncircular nozzle inlet are investigated by using a Reynolds Stress Model. In order to analyze the effects of noncircular inlet, the cross section of inlet are selected as circular, square, a...Turbulent jet flows with noncircular nozzle inlet are investigated by using a Reynolds Stress Model. In order to analyze the effects of noncircular inlet, the cross section of inlet are selected as circular, square, and equilateral triangular shape. The jet half-width, vorticity thickness, and developments of the secondary flow are presented. From the result, it is confirmed that the secondary flows of square and equilateral triangular nozzle are more vigorous than that of the circular jet. This development of secondary flows is closely related to the variations of vortical motions in axial and azimuthal directions.展开更多
The current research on noncircular hobbing mainly focuses on the linkage model and motion realization.However,the intermittent cutting characteristics of hobbing would increase uncertainties in the manufacturing proc...The current research on noncircular hobbing mainly focuses on the linkage model and motion realization.However,the intermittent cutting characteristics of hobbing would increase uncertainties in the manufacturing process.In this paper,a hobbing machining model with tool-shifting characteristics was proposed to solve the problems of cutting force fluctuation and inconsistency of tooth profile envelope accuracy at different positions of the pitch curve in noncircular gear hobbing.Based on the unit cutting force coefficient method,the undeformed chip volume generated by interrupted cutting was used to characterize the fluctuation trend of the hobbing force.The fluctuation characteristics of the cutting force generated by different hobbing models were compared and analyzed.Using the equivalent gear tooth and hob slotting numbers,an analysis model of the tooth profile envelope error of the noncircular gear was constructed.Subsequently,the tooth profile envelope errors at different positions of the pitch curve were compared and analyzed based on the constructed model.The transmission structure of the electronic gearbox was constructed based on the proposed hobbing model,and the hobbing experiment was conducted based on the selfdeveloped noncircular gear CNC hobbing system.This paper proposes a hobbing method that can effectively suppress the fluctuation of the peak and whole circumference cutting force and reduce the maximum envelope error of the whole circumference gear teeth.展开更多
Continuously variable transmission(CVT)of noncircular gear has the technical advantages of large bearing capacity and high transmission efficiency.The key technology of CVT with noncircular gear has been broken throug...Continuously variable transmission(CVT)of noncircular gear has the technical advantages of large bearing capacity and high transmission efficiency.The key technology of CVT with noncircular gear has been broken through some countries,and is in the stage of deep application research.Although the characteristics and design methods of noncircular gear pairs have been continuously studied in China,the noncircular gear CVT is still in the preliminary exploration and research stage.The linear functional noncircular gear pair,whose transmission ratio is a linear function in the working section,to realize continuously variable transmission was the research object in this paper.According to the required transmission ratio in the working section,the transmission ratio function in the non-working section was constructed by using a polynomial.And then the influence of pitch curve parameters in the working section on which in the non-working section was also analyzed to obtain the pitch curve suitable for transmission of this gear pair.In addition,for improving the stability and bearing capacity of gear transmission,the noncircular gear pair transmission with high contact ratio was designed.Furthermore,the accurate value of the contact tooth length was calculated based on the gear principle and the characteristics of the involute tooth profile,from this the contact tooth length error was calculated by comparing the accurate value with its actual value obtained by the rolling experiment.Finally,an indirect method to verify the contact ratio by detecting the contact length error of the tooth profile was proposed.展开更多
An effective method via tensor decomposition is proposed to deal with the joint direction-of-departure(DOD)and direction-of-arrival(DOA)estimation of noncircular sources in colocated coprime MIMO radar.By decomposing ...An effective method via tensor decomposition is proposed to deal with the joint direction-of-departure(DOD)and direction-of-arrival(DOA)estimation of noncircular sources in colocated coprime MIMO radar.By decomposing the transmitter and receiver into two sparse subarrays,noncircular property of source can be used to construct new extended received signal model for two sparse subarrays.The new received model can double the virtual array aperture due to the elliptic covariance of imping sources is nonzero.To further exploit the multidimensional structure of the noncircular received model,we stack the subarray output and its conjugation according to mode-1 unfolding and mode-2 unfolding of a third-order tensor,respectively.Thus,the corresponding extended tensor model consisted of noncircular information for DOA and DOD can be obtained.Then,the higher-order singular value decomposition technique is utilized to estimate the accurate signal subspace and angular parameter can be automatically paired via the rotational invariance relationship.Specifically,the ambiguous angle can be eliminated and the true targets can be achieved with the aid of the coprime property.Furthermore,a closed-form expression for the deterministic CRB under the NC sources scenario is also derived.Simulation results verify the superiority of the proposed estimator.展开更多
The noncircular synchronous belt drive mechanism has demonstrated certain achievements and has been used in special fields.Research regarding noncircular synchronous belt drive mechanisms has focused on optimization d...The noncircular synchronous belt drive mechanism has demonstrated certain achievements and has been used in special fields.Research regarding noncircular synchronous belt drive mechanisms has focused on optimization design and kinematic analysis in China,whereas two pulley noncircular synchronous belt transmissions have been developed overseas.However,owing to the noncircular characteristics of the belt pulley,the real-time variation in the belt length slack during the transmission of the noncircular synchronous belt is significant,resulting in high probabilities of skipping and vibration.In this study,a noncircular tensioning pulley is added to create a stable three-pulley noncircular synchronous belt driving mechanism and a good synchronous belt tensioning,with no skipping;hence,the non-uniform output characteristic of the driven pulley is consistent with the theoretical value.In the circular noncircular noncircular three-pulley noncircular synchronous belt mechanism,the pitch curve of the driving synchronous belt pulley is circular,whereas those of the driven synchronous belt and tensioning pulleys are noncircular.To minimize the slack of the belt length of the synchronous belt and the constraint of the concavity and circumference of the tensioning pulley,an automatic optimization model of the tensioning pulley pitch curve is established.The motion simulation,analysis,and optimization code for a three-belt-pulley noncircular synchronous belt drive mechanism is written,and the variation in belt length slack under different speed ratios is analyzed based on several examples.The testbed for a circular-noncircular-noncircular three-pulley noncircular synchronous belt transmission mechanism is developed.The test shows that the three-pulley noncircular synchronous belt drives well.This study proposes an automatic optimization algorithm for the tensioning pulley pitch curve of a noncircular synchronous belt transmission mechanism;it yields a stable transmission of the noncircular synchronous belt transmission mechanism as well as non-uniform output characteristics.展开更多
Heat transfer experiments were conducted to investigate the thermal performance of air cooling through mini-channel heat sink with various configurations. Two types of channels have been used, one has a rectangular cr...Heat transfer experiments were conducted to investigate the thermal performance of air cooling through mini-channel heat sink with various configurations. Two types of channels have been used, one has a rectangular cross section area of 5 × 18 mm2 and the other is triangular with dimension of 5 × 9 mm2. Four channels of each configuration have been etched on copper block of 40 mm width,30 mm height, and 200 mm length. The measurements were performed in steady state with air flow rates of 0.002 - 0.005 m3/s, heating powers of 80 - 200 W and channel base temperatures of 48°C, 51°C, 55°C and 60°C. The results showed that the heat transfer to air stream is increased with increasing both of air mass flow rate and channel base temperature. The rectangular channels have better thermal performance than trian- gular ones at the same conditions. Analytical fin approach of 1-D and 2-D model were used to predict the heat transfer rate and outlet air temperature from channels heat sink. Theoretical results have been compared with experimental data. The predicted values for outlet air temperatures using the two models agree well with a deviation less than ±10%. But for the heat transfer data, the deviation is about +30% to –60% for 1-D model, and –5% to –80% for 2-D model. The global Nusselt number of the present experimental data is empirically correlated as with accuracy of ±20% for and compared with other literature correlations.展开更多
基金supported by the National Natural Science Foundation of China(617020986170209961331019)
文摘A polynomial-rooting based fourth-order cumulant algorithm is presented for direction-of-arrival(DOA) estimation of second-order fully noncircular source signals, using a uniform linear array(ULA). This algorithm inherits all merits of its spectralsearching counterpart except for the applicability to arbitrary array geometry, while reducing considerably the computation cost.Simulation results show that the proposed algorithm outperforms the previously developed closed-form second-order noncircular ESPRIT method, in terms of processing capacity and DOA estimation accuracy, especially in the presence of spatially colored noise.
文摘When the noncircular gear pair is applied to the continuously variable transmission (CVT) with gear, the transmission ratio function is discontinuous. In accordance with this unique characteristic, a new approach to design and analyze noncircular gears with discontinuous pitch curve is proposed. The design courses of various noncircular gear pairs with discontinuous pitch curve are unified based on the numerical algorithm of spline fitting and "fairing boundary condition". According to the particularity of discontinuous pitch curve, the rules and procedures for teeth distribution are recommended. It is explained in detail why the undercut is formed and how to manage the undercut based on meshing principle.In addition, the calculation formulas for each tooth profile segment are also derived. If the tooth profile data are calculated, the measurement and the incision process for noncircular gear can be conducted and the CAD simulation can be achieved easily. To ensure the continuity of the transmission, the transmission interference of the tooth which is located at the pitch curve joint point is managed by utilizing Bezier curve with CAD software. And the contact ratio of gear pair is obtained. The case study shows that this approach is successful and opens up a new way for the design of noncircular gear.
基金supported by the National Science Foundation of China (No.61371169)the Aeronautical Science Foundation of China(No.20120152001)
文摘The problem of two-dimensional(2 D)direction of arrival(DOA)estimation for double parallel uniform linear arrays is investigated in this paper.A real-valued DOA estimation algorithm of noncircular(NC)signal is proposed,which combines the Euler transformation and rotational invariance(RI)property between subarrays.In this work,the effective array aperture is doubled by exploiting the noncircularity of signals.The complex arithmetic is converted to real arithmetic via Euler transformation.The main contribution of this work is not only extending the NC-Euler-ESPRIT algorithm from uniform linear array to double parallel uniform linear arrays,but also constructing a new 2 Drotational invariance property between subarrays,which is more complex than that in NCEuler-ESPRIT algorithm.The proposed 2 DNC-Euler-RI algorithm has much lower computational complexity than2 DNC-ESPRIT algorithm.The proposed algorithm has better angle estimation performance than 2 DESPRIT algorithm and 2 D NC-PM algorithm for double parallel uniform linear arrays,and is very close to that of 2 D NC-ESPRIT algorithm.The elevation angles and azimuth angles can be obtained with automatically pairing.The proposed algorithm can estimate up to 2(M-1)sources,which is two times that of 2 D ESPRIT algorithm.Cramer-Rao bound(CRB)of noncircular signal is derived for the proposed algorithm.Computational complexity comparison is also analyzed.Finally,simulation results are presented to illustrate the effectiveness and usefulness of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China(No.61072046)the Basic Scientific and Technological Frontier Project of Henan Province(No.1123004100322)
文摘Based on the constant modulus criterion, a new Widely Linear(WL) blind equalizer and a novel widely linear recursive least square constant modulus algorithm are proposed to improve the blind equalization performance for complex-valued noncircular signals. The new algorithm takes advantage of the WL filtering theory by taking full use of second-order statistical information of the complex-valued noncircular signals. Therefore, the weight vector contains the complete second-order information of the real and imaginary parts to decrease the residual inter-symbol interference effectively. Theoretical analysis and simulation results show that the proposed scheme can significantly improve the equalization performance for complex-valued noncircular signals compared with traditional blind equalization algorithms.
基金supported by the National Natural Science Foundations of China (Nos.61371169,61601167, 61601504)the Natural Science Foundation of Jiangsu Province (No.BK20161489)+1 种基金the Open Research Fund of State Key Laboratory of Millimeter Waves, Southeast University (No. K201826)the Fundamental Research Funds for the Central Universities (No. NE2017103)
文摘This paper presents a low?complexity method for the direction?of?arrival(DOA)estimation of noncircular signals for coprime sensor arrays.The noncircular property is exploited to improve the performance of DOA estimation.To reduce the computational complexity,the rotational invariance propagator method(RIPM)is included in the algorithm.First,the extended array output is reconstructed by combining the array output and its conjugated counterpart.Then,the RIPM is utilized to obtain two sets of DOA estimates for two subarrays.Finally,the true DOAs are estimated by combining the consistent results of the two subarrays.This illustrates the potential gain that both noncircularity and coprime arrays provide when considered together.The proposed algorithm has a lower computational complexity and a better DOA estimation performance than the standard estimation of signal parameters by the rotational invariance technique and Capon algorithm.Numerical simulation results illustrate the effectiveness and superiority of the proposed algorithm.
基金Project supported by the Fundamental Research Funds for the Central Universities,China(Grant No.3132014050)the General Science Research Project of the Education Department of Liaoning Province,China(Grant No.L2013198)+1 种基金the Natural Science Foundation of Liaoning Province,China(Grant No.L2014025012)the National Natural Science Foundation of China(Grant Nos.10921202 and 11072005)
文摘In this paper, we experimentally investigate the near-field flow characteristics of turbulent free jets respectively issued from circular, triangular, diamond, rectangular, and notched-rectangular orifice plates into air surroundings. All the orifice plates have identical opening areas or equivalent diameters(De) and their aspect ratios(AR) range from 1 to 6.5. Planar particle image velocimetry(PIV) is used to measure the velocity field at the same Reynolds number of Re = 5 × 10^4,where Re = Ue De/ν with Ue being the exit bulk velocity and ν the kinematic viscosity of fluid. The mean and turbulent velocity fields of all the five jets are compared in detail. Results show that the noncircular jets can enhance the entrainment rate, reflected by the higher acceleration rates of mean velocity decay and spread, shorten the length of the unmixed core,expedite the increase of turbulent intensity compared with the circular counterpart shortened unmixed core, and increase turbulent intensity comparing to the circular counterpart. Among the five jets, the rectangular jet(AR = 6.5) produces the greatest decay rate of the near-field mean velocity, postpones the position at which the 鈥榓xis-switching鈥檖henomenon occurs. This supports that axis switching phenomenon strongly depends on jet initial conditions. In addition, the hump in the centerline variation of the turbulence intensity is observed in the rectangular and triangular jets, but not in the circular jet, nor in diamond jet nor in notched-rectangular jet.
基金National Natural Science Foundation of China(No.10405014)
文摘A gyrokinetic model with integral eigenmode equations is developed based on the local equilibrium of shaped tokamak plasmas. Effects of main geometric parameters (finite aspect ratio, elongation, triangularity, and Shafranov shift gradient) on the electrostatic electron temper- ature gradient (ETG) driven modes are investigated numerically. It is found that the finite aspect ratio has a general stabilizing effect, while the elongation can be either stabilizing or destabilizing, depending on the poloidal wavelength of the mode and other parameters. It is shown that a low aspect ratio enhances the stabilizing effect of elongation, and weakens its destabilizing effect as well.
文摘Turbulent jet flows with noncircular nozzle inlet are investigated by using a Reynolds Stress Model. In order to analyze the effects of noncircular inlet, the cross section of inlet are selected as circular, square, and equilateral triangular shape. The jet half-width, vorticity thickness, and developments of the secondary flow are presented. From the result, it is confirmed that the secondary flows of square and equilateral triangular nozzle are more vigorous than that of the circular jet. This development of secondary flows is closely related to the variations of vortical motions in axial and azimuthal directions.
基金Supported by National Natural Science Foundation of China(Grant Nos.52075142 and U22B2084).
文摘The current research on noncircular hobbing mainly focuses on the linkage model and motion realization.However,the intermittent cutting characteristics of hobbing would increase uncertainties in the manufacturing process.In this paper,a hobbing machining model with tool-shifting characteristics was proposed to solve the problems of cutting force fluctuation and inconsistency of tooth profile envelope accuracy at different positions of the pitch curve in noncircular gear hobbing.Based on the unit cutting force coefficient method,the undeformed chip volume generated by interrupted cutting was used to characterize the fluctuation trend of the hobbing force.The fluctuation characteristics of the cutting force generated by different hobbing models were compared and analyzed.Using the equivalent gear tooth and hob slotting numbers,an analysis model of the tooth profile envelope error of the noncircular gear was constructed.Subsequently,the tooth profile envelope errors at different positions of the pitch curve were compared and analyzed based on the constructed model.The transmission structure of the electronic gearbox was constructed based on the proposed hobbing model,and the hobbing experiment was conducted based on the selfdeveloped noncircular gear CNC hobbing system.This paper proposes a hobbing method that can effectively suppress the fluctuation of the peak and whole circumference cutting force and reduce the maximum envelope error of the whole circumference gear teeth.
基金Supported by National Natural Science Foundation of China(Grant No.51675060)Equipment Pre-Research Project(Grant No.3010519404)+2 种基金Chongqing University Graduate Student Research Innovation Project(Grant No.CYB19011)National Natural Science Foundation of China(Grant No.U1864210)Scientific Research Foundation of Binzhou University(Grant No.2022Y2).
文摘Continuously variable transmission(CVT)of noncircular gear has the technical advantages of large bearing capacity and high transmission efficiency.The key technology of CVT with noncircular gear has been broken through some countries,and is in the stage of deep application research.Although the characteristics and design methods of noncircular gear pairs have been continuously studied in China,the noncircular gear CVT is still in the preliminary exploration and research stage.The linear functional noncircular gear pair,whose transmission ratio is a linear function in the working section,to realize continuously variable transmission was the research object in this paper.According to the required transmission ratio in the working section,the transmission ratio function in the non-working section was constructed by using a polynomial.And then the influence of pitch curve parameters in the working section on which in the non-working section was also analyzed to obtain the pitch curve suitable for transmission of this gear pair.In addition,for improving the stability and bearing capacity of gear transmission,the noncircular gear pair transmission with high contact ratio was designed.Furthermore,the accurate value of the contact tooth length was calculated based on the gear principle and the characteristics of the involute tooth profile,from this the contact tooth length error was calculated by comparing the accurate value with its actual value obtained by the rolling experiment.Finally,an indirect method to verify the contact ratio by detecting the contact length error of the tooth profile was proposed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61701507,61890542,and 61890540).
文摘An effective method via tensor decomposition is proposed to deal with the joint direction-of-departure(DOD)and direction-of-arrival(DOA)estimation of noncircular sources in colocated coprime MIMO radar.By decomposing the transmitter and receiver into two sparse subarrays,noncircular property of source can be used to construct new extended received signal model for two sparse subarrays.The new received model can double the virtual array aperture due to the elliptic covariance of imping sources is nonzero.To further exploit the multidimensional structure of the noncircular received model,we stack the subarray output and its conjugation according to mode-1 unfolding and mode-2 unfolding of a third-order tensor,respectively.Thus,the corresponding extended tensor model consisted of noncircular information for DOA and DOD can be obtained.Then,the higher-order singular value decomposition technique is utilized to estimate the accurate signal subspace and angular parameter can be automatically paired via the rotational invariance relationship.Specifically,the ambiguous angle can be eliminated and the true targets can be achieved with the aid of the coprime property.Furthermore,a closed-form expression for the deterministic CRB under the NC sources scenario is also derived.Simulation results verify the superiority of the proposed estimator.
基金Supported by National Natural Science Foundation of China(Grant Nos.51675486,51805487).
文摘The noncircular synchronous belt drive mechanism has demonstrated certain achievements and has been used in special fields.Research regarding noncircular synchronous belt drive mechanisms has focused on optimization design and kinematic analysis in China,whereas two pulley noncircular synchronous belt transmissions have been developed overseas.However,owing to the noncircular characteristics of the belt pulley,the real-time variation in the belt length slack during the transmission of the noncircular synchronous belt is significant,resulting in high probabilities of skipping and vibration.In this study,a noncircular tensioning pulley is added to create a stable three-pulley noncircular synchronous belt driving mechanism and a good synchronous belt tensioning,with no skipping;hence,the non-uniform output characteristic of the driven pulley is consistent with the theoretical value.In the circular noncircular noncircular three-pulley noncircular synchronous belt mechanism,the pitch curve of the driving synchronous belt pulley is circular,whereas those of the driven synchronous belt and tensioning pulleys are noncircular.To minimize the slack of the belt length of the synchronous belt and the constraint of the concavity and circumference of the tensioning pulley,an automatic optimization model of the tensioning pulley pitch curve is established.The motion simulation,analysis,and optimization code for a three-belt-pulley noncircular synchronous belt drive mechanism is written,and the variation in belt length slack under different speed ratios is analyzed based on several examples.The testbed for a circular-noncircular-noncircular three-pulley noncircular synchronous belt transmission mechanism is developed.The test shows that the three-pulley noncircular synchronous belt drives well.This study proposes an automatic optimization algorithm for the tensioning pulley pitch curve of a noncircular synchronous belt transmission mechanism;it yields a stable transmission of the noncircular synchronous belt transmission mechanism as well as non-uniform output characteristics.
文摘Heat transfer experiments were conducted to investigate the thermal performance of air cooling through mini-channel heat sink with various configurations. Two types of channels have been used, one has a rectangular cross section area of 5 × 18 mm2 and the other is triangular with dimension of 5 × 9 mm2. Four channels of each configuration have been etched on copper block of 40 mm width,30 mm height, and 200 mm length. The measurements were performed in steady state with air flow rates of 0.002 - 0.005 m3/s, heating powers of 80 - 200 W and channel base temperatures of 48°C, 51°C, 55°C and 60°C. The results showed that the heat transfer to air stream is increased with increasing both of air mass flow rate and channel base temperature. The rectangular channels have better thermal performance than trian- gular ones at the same conditions. Analytical fin approach of 1-D and 2-D model were used to predict the heat transfer rate and outlet air temperature from channels heat sink. Theoretical results have been compared with experimental data. The predicted values for outlet air temperatures using the two models agree well with a deviation less than ±10%. But for the heat transfer data, the deviation is about +30% to –60% for 1-D model, and –5% to –80% for 2-D model. The global Nusselt number of the present experimental data is empirically correlated as with accuracy of ±20% for and compared with other literature correlations.