We study the two-dimensional harmonic oscillator in commutative and noncommutative space within the framework of minimal length quantum mechanics for spin-l^2 particles. The energy spectra and the eigenfunction are ob...We study the two-dimensional harmonic oscillator in commutative and noncommutative space within the framework of minimal length quantum mechanics for spin-l^2 particles. The energy spectra and the eigenfunction are obtained in both cases. Special cases are also deduced.展开更多
The spin-one Duffin-Kemmer-Petiau (DKP) oscillator under a magnetic field in the presence of Ihe minimal length in the noncommutative coordinate space is studied by using the momentum space representation. The expli...The spin-one Duffin-Kemmer-Petiau (DKP) oscillator under a magnetic field in the presence of Ihe minimal length in the noncommutative coordinate space is studied by using the momentum space representation. The explicit form of energy eigenvalues is found, and the eigenfunctions are obtained in terms of the Jacobi polynomials. It shows that for the same azimuthal quantum number, the energy E increases monotonically with respect to the noncomnmtative parameter and the minimal length parameter. Additionally, we also report some special cases aiming to discuss the effect of the noncommutative coordinate space and the minimal length in the energy spectrum.展开更多
In this work, we study the relativistic oscillators in a noncommutative space and in a magnetic field. It is shown that the effect of the magnetic field may compete with that of the noncommutative space and that is ab...In this work, we study the relativistic oscillators in a noncommutative space and in a magnetic field. It is shown that the effect of the magnetic field may compete with that of the noncommutative space and that is able to vanish the effect of the noncommutative space.展开更多
We study the dynamics of a two-level trapped ion in a standing wave electromagnetic field in two-dimensional (2D) noncommutative spaces in the Lamb-Dicke regime under the rotating wave approximation. We obtain the ...We study the dynamics of a two-level trapped ion in a standing wave electromagnetic field in two-dimensional (2D) noncommutative spaces in the Lamb-Dicke regime under the rotating wave approximation. We obtain the explicit analytical expressions for the energy spectra, energy eigenstates, unitary time evolution operator, atomic inversion, and phonon number operators. The Rabi oscillations, the collapse, and revivals in the average atomic inversion and the average phonon number are explicitly shown to contain the information of the parameter of the space noncommutativity, which sheds light on proposing new schemes based on the dynamics of trapped ion to test the noncommutativity.展开更多
In this paper,we study the time-dependent Aharonov-Casher effect and its corrections due to spatial noncommutativity.Given that the charge of the infinite line in the Aharonov-Casher effect can adiabatically vary with...In this paper,we study the time-dependent Aharonov-Casher effect and its corrections due to spatial noncommutativity.Given that the charge of the infinite line in the Aharonov-Casher effect can adiabatically vary with time,we show that the original Aharonov-Casher phase receives an adiabatic correction,which is characterized by the time-dependent charge density.Based on Seiberg-Witten map,we show that noncommutative corrections to the time-dependent Aharonov-Casher phase contains not only an adiabatic term but also a constant contribution depending on the frequency of the varying electric field.展开更多
In this work,we develop a general framework in which Noncommutative Quantum Mechanics (NCQM), characterized by a space noncommutativity matrix parameter θ=∈_(ji)~kθ_k and a momentum noncommutativity matrix paramet...In this work,we develop a general framework in which Noncommutative Quantum Mechanics (NCQM), characterized by a space noncommutativity matrix parameter θ=∈_(ji)~kθ_k and a momentum noncommutativity matrix parameter β_(ij)=∈_(ij)~kβ_k,is shown to be equivalent to Quantum Mechanics (QM) on a suitable transformed Quantum Phase Space (QPS).Imposing some constraints on this particular transformation,we firstly find that the product of the two parameters θ and β possesses a lower bound in direct relation with Heisenberg incertitude relations,and secondly that the two parameters are equivalent but with opposite sign,up to a dimension factor depending on the physical system under study.This means that noncommutativity is represented by a unique parameter which may play the role of a fundamental constant characterizing the whole NCQPS.Within our framework,we treat some physical systems on NCQPS:free particle,harmonic oscillator,system of two-charged particles,Hydrogen atom.Among the obtained results, we discover a new phenomenon which consists of a free particle on NCQPS viewed as equivalent to a harmonic oscillator with Larmor frequency depending on β,representing the same particle in presence of a magnetic field=q~(-1).For the other examples,additional correction terms depending on β appear in the expression of the energy spectrum.Finally,in the two-particle system case,we emphasize the fact that for two opposite charges noncornmutativity is effectively feeled with opposite sign.展开更多
We study the Dirac oscillator problem in the presence of the Aharonov-Bohm effect with the harmonic potential in commutative and noncommutative spaces in S-= V and S =-V symmetry limits. We calculate exact energy leve...We study the Dirac oscillator problem in the presence of the Aharonov-Bohm effect with the harmonic potential in commutative and noncommutative spaces in S-= V and S =-V symmetry limits. We calculate exact energy levels and the corresponding eigenfunctions by the Nikiforov-Uvarov (NU) method and report the impact of the spin and the magnetic flux on the problem. Helpful numerical data is included.展开更多
From the inspection of noncommutative quantum mechanics, we obtain an approximate equivalent relation for the energy dependence of the Planck constant in the noncommutative space, which means a minimal length of the s...From the inspection of noncommutative quantum mechanics, we obtain an approximate equivalent relation for the energy dependence of the Planck constant in the noncommutative space, which means a minimal length of the space. We find that this relation is reasonable and it can inherit the main properties of the noncommutative space.Based on this relation, we derive the modified Klein–Gordon equation and Dirac equation. We investigate the scalar field and φ4model and then quantum electrodynamics in our theory, and derive the corresponding Feynman rules. These results may be considered as reasonable approximations to those of noncommutative quantum field theory. Our theory also shows a connection between the space with a minimal length and the noncommutative space.展开更多
The structure of the state-vector space of identical bosons in noncommutative spaces is investigated. To maintain Bose-Einstein statistics the commutation relations of phase space variables should simultaneously inclu...The structure of the state-vector space of identical bosons in noncommutative spaces is investigated. To maintain Bose-Einstein statistics the commutation relations of phase space variables should simultaneously include coordinate-coordinate non-commutativity and momentum-momentum non-commutativity, which leads to a kind of deformed Heisenberg-Weyl algebra. Although there is no ordinary number representation in this state-vector space, several set of orthogonal and complete state-vectors can be derived which are common eigenvectors of corresponding pairs of commuting Hermitian operators. As a simple application of this state-vector space, an explicit form of two-dimensional canonical coherent state is constructed and its properties are discussed.展开更多
Let x (xn)≥1 be a martingale on a noncommutative probability space n (M, r) and (wn)n≥1 a sequence of positive numbers such that Wn = ∑ k=1^n wk →∞ as n →∞ We prove that x = (x.)n≥1 converges in E(M...Let x (xn)≥1 be a martingale on a noncommutative probability space n (M, r) and (wn)n≥1 a sequence of positive numbers such that Wn = ∑ k=1^n wk →∞ as n →∞ We prove that x = (x.)n≥1 converges in E(M) if and only if (σn(x)n≥1 converges in E(.hd), where E(A//) is a noncommutative rearrangement invariant Banach function space with the Fatou property and σn(x) is given by σn(x) = 1/Wn ∑k=1^n wkxk, n=1, 2, .If in addition, E(Ad) has absolutely continuous norm, then, (an(x))≥1 converges in E(.M) if and only if x = (Xn)n≥1 is uniformly integrable and its limit in measure topology x∞∈ E(M).展开更多
Let (Φ,Ψ) be a pair of complementary N-functions and HΦ(A) and HΨ(A) be the associated noncommutative Orlicz-Hardy spaces. We extend the Riesz, Szeg¨o and inner-outer type factorization theorems of Hp...Let (Φ,Ψ) be a pair of complementary N-functions and HΦ(A) and HΨ(A) be the associated noncommutative Orlicz-Hardy spaces. We extend the Riesz, Szeg¨o and inner-outer type factorization theorems of Hp(A) to this case.展开更多
We introduce the deformed boson operators which satisfy a deformed boson algebra in some special types of generalized noncommutative phase space. Based on the deformed boson algebra, we construct coherent state repres...We introduce the deformed boson operators which satisfy a deformed boson algebra in some special types of generalized noncommutative phase space. Based on the deformed boson algebra, we construct coherent state representations. We calculate the variances of the coordinate operators on the coherent states and investigate the corresponding Heisenberg uncertainty relations. It is found that there are some restriction relations of the noncommutative parameters in these special types of noncommutative phase space.展开更多
The quantum Euclidean space is a kind of noncommutative space that is obtained from ordinary Euclidean space by deformation with parameter q. When N is odd, the structure of this space is similar to . Motivated by r...The quantum Euclidean space is a kind of noncommutative space that is obtained from ordinary Euclidean space by deformation with parameter q. When N is odd, the structure of this space is similar to . Motivated by realization of by differential operators in , we give such realization for and cases and generalize our results to (N odd) in this paper, that is, we show that the algebra of can be realized by differential operators acting on C<SUP>∞</SUP> functions on undeformed space .展开更多
We study the Klein-Gordon oscillator in commutative, noncommutative space, and phase space with psudoharmonic potential under magnetic field hence the other choice is studying the Klein-Gordon equation oscillator in t...We study the Klein-Gordon oscillator in commutative, noncommutative space, and phase space with psudoharmonic potential under magnetic field hence the other choice is studying the Klein-Gordon equation oscillator in the absence of magnetic field. In this work, we obtain energy spectrum and wave function in different situations by NU method so we show our results in tables.展开更多
First we calculate the Wigner phase-space distribution function for the Klein-Gordan Landau problem ona commmutative space.Then we study the modifications introduced by the coordinate-coordinate noncommuting andmoment...First we calculate the Wigner phase-space distribution function for the Klein-Gordan Landau problem ona commmutative space.Then we study the modifications introduced by the coordinate-coordinate noncommuting andmomentum-momentum noncommuting, namely, by using a generalized Bopp’s shift method we construct the Wignerfunction for the Klein-Gordan Landau problem both on a noncommutative space (NCS) and a noncommutative phasespace (NCPS).展开更多
We study the Klein-Gordon oscillators in non-commutative (NC) phase space. We find that the Klein-Gordon oscillators in NC space and NC phase-space have a similar behaviour to the dynamics of a particle in commutati...We study the Klein-Gordon oscillators in non-commutative (NC) phase space. We find that the Klein-Gordon oscillators in NC space and NC phase-space have a similar behaviour to the dynamics of a particle in commutative space moving in a uniform magnetic field. By solving the Klein-Gordon equation in NC phase space, we obtain the energy levels of the Klein-Gordon oscillators, where the additional terms related to the space-space and momentum-momentum non-commutativity are given explicitly.展开更多
Let H^2(M) be a noncommutative Hardy space associated with semifinite von Neumann algebra M, we get the connection between numerical spectrum and the spectrum of Toeplitz operator Tt acting on H^2(M), and the norm...Let H^2(M) be a noncommutative Hardy space associated with semifinite von Neumann algebra M, we get the connection between numerical spectrum and the spectrum of Toeplitz operator Tt acting on H^2(M), and the norm of Toeplitz operator Tt is equivalent to ||t|| when t is hyponormal operator in M.展开更多
Deformation quantization is a powerful tool to deal with systems in noncommutative space to get their energy spectra and corresponding Wigner functions, especially for the ease of both coordinates and momenta being no...Deformation quantization is a powerful tool to deal with systems in noncommutative space to get their energy spectra and corresponding Wigner functions, especially for the ease of both coordinates and momenta being noneommutative. In order to simplify solutions of the relevant .-genvalue equation, we introduce a new kind of Seiberg Witten-like map to change the variables of the noncommutative phase space into ones of a commutative phase space, and demonstrate its role via an example of two-dimensional oscillator with both kinetic and elastic couplings in the noneommutative phase space.展开更多
文摘We study the two-dimensional harmonic oscillator in commutative and noncommutative space within the framework of minimal length quantum mechanics for spin-l^2 particles. The energy spectra and the eigenfunction are obtained in both cases. Special cases are also deduced.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11465006 and 11565009)the Project of Research Foundation for Graduate Students in Guizhou Province,China(Grant No.(2017)11108)
文摘The spin-one Duffin-Kemmer-Petiau (DKP) oscillator under a magnetic field in the presence of Ihe minimal length in the noncommutative coordinate space is studied by using the momentum space representation. The explicit form of energy eigenvalues is found, and the eigenfunctions are obtained in terms of the Jacobi polynomials. It shows that for the same azimuthal quantum number, the energy E increases monotonically with respect to the noncomnmtative parameter and the minimal length parameter. Additionally, we also report some special cases aiming to discuss the effect of the noncommutative coordinate space and the minimal length in the energy spectrum.
文摘In this work, we study the relativistic oscillators in a noncommutative space and in a magnetic field. It is shown that the effect of the magnetic field may compete with that of the noncommutative space and that is able to vanish the effect of the noncommutative space.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10575040, 90503010, 60478029, and 10634060, and the State Key Basic Research Program of China under Grant No. 2005CB724508
文摘We study the dynamics of a two-level trapped ion in a standing wave electromagnetic field in two-dimensional (2D) noncommutative spaces in the Lamb-Dicke regime under the rotating wave approximation. We obtain the explicit analytical expressions for the energy spectra, energy eigenstates, unitary time evolution operator, atomic inversion, and phonon number operators. The Rabi oscillations, the collapse, and revivals in the average atomic inversion and the average phonon number are explicitly shown to contain the information of the parameter of the space noncommutativity, which sheds light on proposing new schemes based on the dynamics of trapped ion to test the noncommutativity.
基金supported by the Innovation Capability Support Program of Shaanxi Province(Program No.2021KJXX-47)
文摘In this paper,we study the time-dependent Aharonov-Casher effect and its corrections due to spatial noncommutativity.Given that the charge of the infinite line in the Aharonov-Casher effect can adiabatically vary with time,we show that the original Aharonov-Casher phase receives an adiabatic correction,which is characterized by the time-dependent charge density.Based on Seiberg-Witten map,we show that noncommutative corrections to the time-dependent Aharonov-Casher phase contains not only an adiabatic term but also a constant contribution depending on the frequency of the varying electric field.
文摘In this work,we develop a general framework in which Noncommutative Quantum Mechanics (NCQM), characterized by a space noncommutativity matrix parameter θ=∈_(ji)~kθ_k and a momentum noncommutativity matrix parameter β_(ij)=∈_(ij)~kβ_k,is shown to be equivalent to Quantum Mechanics (QM) on a suitable transformed Quantum Phase Space (QPS).Imposing some constraints on this particular transformation,we firstly find that the product of the two parameters θ and β possesses a lower bound in direct relation with Heisenberg incertitude relations,and secondly that the two parameters are equivalent but with opposite sign,up to a dimension factor depending on the physical system under study.This means that noncommutativity is represented by a unique parameter which may play the role of a fundamental constant characterizing the whole NCQPS.Within our framework,we treat some physical systems on NCQPS:free particle,harmonic oscillator,system of two-charged particles,Hydrogen atom.Among the obtained results, we discover a new phenomenon which consists of a free particle on NCQPS viewed as equivalent to a harmonic oscillator with Larmor frequency depending on β,representing the same particle in presence of a magnetic field=q~(-1).For the other examples,additional correction terms depending on β appear in the expression of the energy spectrum.Finally,in the two-particle system case,we emphasize the fact that for two opposite charges noncornmutativity is effectively feeled with opposite sign.
文摘We study the Dirac oscillator problem in the presence of the Aharonov-Bohm effect with the harmonic potential in commutative and noncommutative spaces in S-= V and S =-V symmetry limits. We calculate exact energy levels and the corresponding eigenfunctions by the Nikiforov-Uvarov (NU) method and report the impact of the spin and the magnetic flux on the problem. Helpful numerical data is included.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No.2013ZM0109
文摘From the inspection of noncommutative quantum mechanics, we obtain an approximate equivalent relation for the energy dependence of the Planck constant in the noncommutative space, which means a minimal length of the space. We find that this relation is reasonable and it can inherit the main properties of the noncommutative space.Based on this relation, we derive the modified Klein–Gordon equation and Dirac equation. We investigate the scalar field and φ4model and then quantum electrodynamics in our theory, and derive the corresponding Feynman rules. These results may be considered as reasonable approximations to those of noncommutative quantum field theory. Our theory also shows a connection between the space with a minimal length and the noncommutative space.
基金The project Supported by National Natural Science Foundation of China under Grant Nos. 10375056 and 90203002
文摘The structure of the state-vector space of identical bosons in noncommutative spaces is investigated. To maintain Bose-Einstein statistics the commutation relations of phase space variables should simultaneously include coordinate-coordinate non-commutativity and momentum-momentum non-commutativity, which leads to a kind of deformed Heisenberg-Weyl algebra. Although there is no ordinary number representation in this state-vector space, several set of orthogonal and complete state-vectors can be derived which are common eigenvectors of corresponding pairs of commuting Hermitian operators. As a simple application of this state-vector space, an explicit form of two-dimensional canonical coherent state is constructed and its properties are discussed.
基金supported by the National Natural Science Foundation of China (11071190)
文摘Let x (xn)≥1 be a martingale on a noncommutative probability space n (M, r) and (wn)n≥1 a sequence of positive numbers such that Wn = ∑ k=1^n wk →∞ as n →∞ We prove that x = (x.)n≥1 converges in E(M) if and only if (σn(x)n≥1 converges in E(.hd), where E(A//) is a noncommutative rearrangement invariant Banach function space with the Fatou property and σn(x) is given by σn(x) = 1/Wn ∑k=1^n wkxk, n=1, 2, .If in addition, E(Ad) has absolutely continuous norm, then, (an(x))≥1 converges in E(.M) if and only if x = (Xn)n≥1 is uniformly integrable and its limit in measure topology x∞∈ E(M).
文摘Let (Φ,Ψ) be a pair of complementary N-functions and HΦ(A) and HΨ(A) be the associated noncommutative Orlicz-Hardy spaces. We extend the Riesz, Szeg&#168;o and inner-outer type factorization theorems of Hp(A) to this case.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11405060 and 11571119
文摘We introduce the deformed boson operators which satisfy a deformed boson algebra in some special types of generalized noncommutative phase space. Based on the deformed boson algebra, we construct coherent state representations. We calculate the variances of the coordinate operators on the coherent states and investigate the corresponding Heisenberg uncertainty relations. It is found that there are some restriction relations of the noncommutative parameters in these special types of noncommutative phase space.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10075042 and 10375056
文摘The quantum Euclidean space is a kind of noncommutative space that is obtained from ordinary Euclidean space by deformation with parameter q. When N is odd, the structure of this space is similar to . Motivated by realization of by differential operators in , we give such realization for and cases and generalize our results to (N odd) in this paper, that is, we show that the algebra of can be realized by differential operators acting on C<SUP>∞</SUP> functions on undeformed space .
文摘We study the Klein-Gordon oscillator in commutative, noncommutative space, and phase space with psudoharmonic potential under magnetic field hence the other choice is studying the Klein-Gordon equation oscillator in the absence of magnetic field. In this work, we obtain energy spectrum and wave function in different situations by NU method so we show our results in tables.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10965006 and 10875035
文摘First we calculate the Wigner phase-space distribution function for the Klein-Gordan Landau problem ona commmutative space.Then we study the modifications introduced by the coordinate-coordinate noncommuting andmomentum-momentum noncommuting, namely, by using a generalized Bopp’s shift method we construct the Wignerfunction for the Klein-Gordan Landau problem both on a noncommutative space (NCS) and a noncommutative phasespace (NCPS).
基金National Natural Science Foundation of China (10575026, 10665001, 10447005)Natural Science Foundation of Zhejiang Province, China (Y607437)Natural Science Foundation of Education Bureau of Shaanxi Province, China (07JK207,06JK326)
文摘We study the Klein-Gordon oscillators in non-commutative (NC) phase space. We find that the Klein-Gordon oscillators in NC space and NC phase-space have a similar behaviour to the dynamics of a particle in commutative space moving in a uniform magnetic field. By solving the Klein-Gordon equation in NC phase space, we obtain the energy levels of the Klein-Gordon oscillators, where the additional terms related to the space-space and momentum-momentum non-commutativity are given explicitly.
基金partly supported by Natural Science Foundation of the Xinjiang Uygur Autonomous Region(2013211A001)
文摘Let H^2(M) be a noncommutative Hardy space associated with semifinite von Neumann algebra M, we get the connection between numerical spectrum and the spectrum of Toeplitz operator Tt acting on H^2(M), and the norm of Toeplitz operator Tt is equivalent to ||t|| when t is hyponormal operator in M.
基金supported by National Natural Science Foundation of China under Grant No.10675106
文摘Deformation quantization is a powerful tool to deal with systems in noncommutative space to get their energy spectra and corresponding Wigner functions, especially for the ease of both coordinates and momenta being noneommutative. In order to simplify solutions of the relevant .-genvalue equation, we introduce a new kind of Seiberg Witten-like map to change the variables of the noncommutative phase space into ones of a commutative phase space, and demonstrate its role via an example of two-dimensional oscillator with both kinetic and elastic couplings in the noneommutative phase space.