期刊文献+
共找到285篇文章
< 1 2 15 >
每页显示 20 50 100
Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades 被引量:27
1
作者 王珑 王同光 罗源 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期739-748,共10页
The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an exa... The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines. 展开更多
关键词 wind turbine multi-objective optimization Pareto-optimal solution non-dominated sorting genetic algorithm (nsga)-II
下载PDF
基于CatBoost-NSGA-Ⅲ算法的盾构姿态预测与优化
2
作者 吴贤国 刘俊 +3 位作者 曹源 雷宇 李士范 覃亚伟 《中国安全科学学报》 CAS CSCD 北大核心 2024年第8期69-77,共9页
为解决盾构掘进过程中因盾构前倾变形、蛇形、轴线偏离及纠偏等影响施工安全性与高效性的问题,提出一种将类别型特征梯度提升(CatBoost)与第三代非支配排序遗传算法(NSGA-Ⅲ)相结合的盾构姿态多目标优化方法;以贵阳地铁为例,选取22个影... 为解决盾构掘进过程中因盾构前倾变形、蛇形、轴线偏离及纠偏等影响施工安全性与高效性的问题,提出一种将类别型特征梯度提升(CatBoost)与第三代非支配排序遗传算法(NSGA-Ⅲ)相结合的盾构姿态多目标优化方法;以贵阳地铁为例,选取22个影响因素作为输入参数,利用CatBoost算法建立输入参数与盾构姿态之间的非线性映射函数关系,采用随机森林(RF)算法评价输入参数的重要性;以盾构姿态绝对值最小化为目标,构建CatBoost-NSGA-Ⅲ多目标优化模型,并通过案例分析验证所提方法的适用性和有效性。结果表明:采用CatBoost算法训练工程实测数据得到的预测模型具有较高的精度,5个盾构姿态目标的R^(2)范围为0.916~0.943;所研发的CatBoost-NSGA-Ⅲ盾构姿态多目标优化方法,可使盾构姿态得到显著优化,整体改进的平均值为53.34%。 展开更多
关键词 类别型特征梯度提升(CatBoost) 第三代非支配排序遗传算法(nsga-Ⅲ) 盾构姿态 多目标优化 重要性排序
下载PDF
基于NSGA-Ⅱ的滑油泵叶轮结构优化设计
3
作者 孙永国 金欣 +2 位作者 薛冬 单建平 石晓春 《中国机械工程》 EI CAS CSCD 北大核心 2024年第3期559-569,共11页
滑油泵常需要在高空、低压工况下稳定运转,常会出现供油不足、效率降低等问题。为了得到满足设计要求且具有最佳性能的滑油泵,以某直升机用滑油泵叶轮为研究对象,对其结构进行优化设计。选择高空两个典型工况的效率与扬程作为优化目标,... 滑油泵常需要在高空、低压工况下稳定运转,常会出现供油不足、效率降低等问题。为了得到满足设计要求且具有最佳性能的滑油泵,以某直升机用滑油泵叶轮为研究对象,对其结构进行优化设计。选择高空两个典型工况的效率与扬程作为优化目标,利用NSGA-Ⅱ算法对滑油泵叶轮几何参数进行寻优,对优化前后的滑油泵效率、扬程进行对比分析。采用CFD流体仿真及实验方法对优化结果进行对比验证。结果表明:所选优化参数对滑油泵性能有较大影响,优化后的滑油泵叶片位置附近流动更加平稳,高低压区域过渡平缓,能量损失更小,且降低了汽蚀发生的可能性;优化后的滑油泵设计点扬程提高2.6 m,效率提高2.86%。 展开更多
关键词 滑油泵叶轮 优化设计 非支配排序遗传算法nsga-Ⅱ 扬程 效率
下载PDF
基于CatBoost-NSGA-Ⅲ的盾构隧道施工参数分析及优化控制
4
作者 陈礼博 张明书 +2 位作者 陈海勇 吴贤国 曹源 《隧道建设(中英文)》 CSCD 北大核心 2024年第8期1587-1598,共12页
由于盾构在施工过程中受环境、设备和作业等不确定因素的影响,导致隧道开挖的安全性、效率和成本难以协调。针对这种情况,以武汉轨道交通某标段施工为依托,采用基于梯度增强(CatBoost)和非支配排序遗传算法(NSGA-Ⅲ)的混合算法,在全面... 由于盾构在施工过程中受环境、设备和作业等不确定因素的影响,导致隧道开挖的安全性、效率和成本难以协调。针对这种情况,以武汉轨道交通某标段施工为依托,采用基于梯度增强(CatBoost)和非支配排序遗传算法(NSGA-Ⅲ)的混合算法,在全面考虑掘进效率、成本、安全风险等因素的基础上,选择以推进速度、掘进比能、刀具磨损量为目标,构建施工参数智能控制决策系统。首先,通过CatBoost回归模型预测盾构隧道推进速度、掘进比能和刀具磨损量,得到控制目标的适应度函数;然后,基于CatBoost预测模型构建的适应度函数,利用CatBoost-NSGA-Ⅲ进行施工参数的多目标优化;最后,通过模糊决策法从多个Pareto最优解集中选出最佳的施工参数组合,为隧道盾构掘进参数智能预测与优化提供参考。结果表明:1)Catboost可以进行模型精准预测,拟合优度R2大于0.9,均方根误差RMSE和平均绝对误差MAE较小;2)Catboost-NSGA-Ⅲ多目标优化,模糊决策法确定最优方案。经过优化,相较于实测数据的平均值,掘进比能和刀具磨损量分别降低5.3%和13.5%、掘进速度提升6.3%,为盾构隧道的智能化掘进控制和管理决策提供依据。 展开更多
关键词 盾构施工 推进速度 掘进比能 刀具磨损量 施工参数 多目标优化 CatBoost-nsga-Ⅲ算法
下载PDF
基于NSGA-Ⅲ的机器人气囊抛光工具结构动力学多目标优化
5
作者 焦培俊 姜晨 +1 位作者 姜臻禹 周勇宇 《轻工机械》 CAS 2024年第3期37-45,53,共10页
为了提高机器人的加工质量,针对末端执行装置动刚度不足的问题,课题组开展了机器人气囊抛光工具结构动力学优化研究。分别进行了有限元模态分析和实验模态分析,对比验证仿真结果的准确性,找出抛光工具易发生振动的薄弱结构;基于模态分... 为了提高机器人的加工质量,针对末端执行装置动刚度不足的问题,课题组开展了机器人气囊抛光工具结构动力学优化研究。分别进行了有限元模态分析和实验模态分析,对比验证仿真结果的准确性,找出抛光工具易发生振动的薄弱结构;基于模态分析对薄弱结构进行谐波激励得到工况下的振动响应加速度;建立动力学近似模型,以提高基频、降低质量及加速度响应为目标,分别采用非支配排序遗传算法NSGA-Ⅲ(non-dominated sorting genetic algorithm-Ⅲ)和多目标粒子群算法(multi-objective particle swarm optimization, MOPSO)对薄弱结构进行多目标优化,获得最优动力响应的参数组合。结果表明:NSGA-Ⅲ具有更好的优化效果,基频提高了21.62%;4个薄弱部位的最大加速度响应分别下降了73.78%,69.06%,56.15%和28.28%;质量减少了3.32%。该方法有效提高了抛光工具的动态特性。 展开更多
关键词 机器人 气囊抛光 结构动力学 nsga-Ⅲ 近似模型 谐波激励
下载PDF
基于改进NSGA-Ⅱ算法的RV减速器参数多目标优化研究 被引量:1
6
作者 杨昊霖 王茹芸 +2 位作者 罗利敏 贡林欢 楼应侯 《机电工程》 CAS 北大核心 2024年第4期651-658,共8页
旋转矢量(RV)减速器是工业机器人核心部件,对于机器人的性能起到关键作用。针对提升RV减速器综合性能的问题,从优化传动压力角的相关参数出发,对其结构参数(摆线轮齿数、短幅系数、针径系数、摆线轮宽度等)的多目标优化设计进行了研究... 旋转矢量(RV)减速器是工业机器人核心部件,对于机器人的性能起到关键作用。针对提升RV减速器综合性能的问题,从优化传动压力角的相关参数出发,对其结构参数(摆线轮齿数、短幅系数、针径系数、摆线轮宽度等)的多目标优化设计进行了研究。首先,研究了摆线轮平均压力角、传动效率和传动机构体积三者的相关参数之间的关系;然后,以此为优化目标,在摆线轮标准齿廓方程的基础上建立了多目标优化数学模型(该模型采用了基于非支配占优排序遗传学算法(NSGA-Ⅱ)改进了交叉算子系数生成的改进NSGA-Ⅱ算法);通过模型求解得到了帕累托最优解集,根据模糊集合理论的相关方法选取了最优解;最后,以某公司220-BX型RV减速器为例,进行了优化设计,建立了3D模型后进行了有限元分析,并加工出实验样机,进行了传动效率对比实验。实验结果表明:摆线轮平均压力角减小了7.19%,体积减小了11.1%,传动效率提高了4.9%。研究结果表明:该模型交互性强,能提高设计效率并节省设计开销,可为实际RV减速器工程优化设计提供参考。 展开更多
关键词 机械传动 旋转矢量(RV)减速器 改进非支配占优排序遗传学算法(nsga-Ⅱ) 多目标优化 平均传动压力角 传动效率
下载PDF
基于改进NSGA-Ⅲ的微电网储能多目标优化配置 被引量:1
7
作者 亚夏尔·吐尔洪 王小云 +3 位作者 常清 亢朋朋 郑云平 李明 《电工电气》 2024年第3期21-28,共8页
为提升微电网中储能配置的可靠性与经济性,提出一种基于改进NSGA-Ⅲ算法的微电网储能系统容量多目标优化配置方法。构建了微电网储能容量配置双层优化模型,外层以储能一次投资成本最小为优化目标,内层以微电网综合运行成本最小、负荷缺... 为提升微电网中储能配置的可靠性与经济性,提出一种基于改进NSGA-Ⅲ算法的微电网储能系统容量多目标优化配置方法。构建了微电网储能容量配置双层优化模型,外层以储能一次投资成本最小为优化目标,内层以微电网综合运行成本最小、负荷缺电率最小和可再生能源利用率最大为优化目标;在传统NSGA-Ⅲ算法中嵌入Levy理论和一个区域角度量化机制,使其更加适用于所提直流微电网储能容量双层优化配置模型的寻优迭代求解,并结合典型日数据,仿真验证了所提模型及算法的有效性。 展开更多
关键词 微电网 储能系统 改进非支配排序遗传算法 多目标优化 优化配置
下载PDF
基于NSGA-Ⅱ的智能化电铲多目标最优挖掘轨迹规划
8
作者 陈广玲 张天赐 +2 位作者 付涛 王林涛 宋学官 《现代制造工程》 CSCD 北大核心 2024年第2期142-149,共8页
为实现智能化电铲实时节能的挖掘,提出了一种基于非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm-II,NSGA-Ⅱ)的智能化电铲多目标最优挖掘轨迹规划方法。首先,通过拉格朗日方程建立智能化电铲工作装置动力学模型;然后,使... 为实现智能化电铲实时节能的挖掘,提出了一种基于非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm-II,NSGA-Ⅱ)的智能化电铲多目标最优挖掘轨迹规划方法。首先,通过拉格朗日方程建立智能化电铲工作装置动力学模型;然后,使用高次多项式对挖掘轨迹进行插值,将挖掘轨迹寻优问题转化为多项式系数寻优问题,最后,以挖掘时间最短及单位体积物料的挖掘能耗最小作为优化目标,以电机性能与挖掘过程中几何条件等作为约束,利用多目标优化平台PlatEMO,将NSGA-Ⅱ作为多目标优化算法,指定待优化问题的目标函数及约束函数,获取到多目标优化Pareto最优解集,基于决策偏好设置权重并根据TOPSIS法获取最优解,得到多目标最优挖掘轨迹规划结果。结果表明,优化后挖掘轨迹满足实时节能的挖掘要求。 展开更多
关键词 智能化电铲 动力学模型 非支配排序遗传算法 挖掘轨迹规划 多目标优化
下载PDF
基于NSGA-Ⅲ算法的低影响开发措施规划设计
9
作者 张慧颖 任亚铮 +6 位作者 胡朝仲 毛谨 张淼 马自飞 程阳 李雪龙 范俊楠 《扬州大学学报(自然科学版)》 CAS 2024年第3期1-9,共9页
为完善海绵城市建设的整体规划设计,基于东南亚某经济开发区,结合雨洪管理模型(storm water management model,SWMM)和第三代非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅲ,NSGA-Ⅲ)建立了一个四目标优化模型,以地表... 为完善海绵城市建设的整体规划设计,基于东南亚某经济开发区,结合雨洪管理模型(storm water management model,SWMM)和第三代非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅲ,NSGA-Ⅲ)建立了一个四目标优化模型,以地表径流系数、管道过载时间、节点溢流量等3个城市内涝指标和总投资成本作为优化目标进行求解.结果表明:该优化模型可实现多目标同步优化,获得效益较高的低影响开发(low impact development,LID)措施的设计方案,优化后地表径流系数为0.309~0.355,管道过载时间为23.834~27.967 h,节点溢流量为10477~21802 m^(3),工程总投资成本为7.479亿~9.593亿元.研究结果可为未来海绵城市内涝控制设计提供技术参考. 展开更多
关键词 城市内涝 低影响开发 第三代非支配排序遗传算法 雨洪管理模型 优化设计
下载PDF
Satellite constellation design with genetic algorithms based on system performance
10
作者 Xueying Wang Jun Li +2 位作者 Tiebing Wang Wei An Weidong Sheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期379-385,共7页
Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optic... Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods. 展开更多
关键词 space optical system non-dominated sorting genetic algorithm(nsga Pareto optimal set satellite constellation design surveillance performance
下载PDF
基于NSGA-Ⅱ多目标优化的C2组织设计 被引量:7
11
作者 乔士东 黄金才 +1 位作者 修保新 张维明 《国防科技大学学报》 EI CAS CSCD 北大核心 2009年第5期64-69,共6页
把NSGA-Ⅱ算法用于求解C2组织设计问题。分析了C2组织设计常见处理算法在优化目标处理和算法流程两方面存在的问题,给出用NSGA-Ⅱ算法求解C2组织设计问题的算法设置。把NSGA-Ⅱ这样一种多目标优化算法引入C2组织设计问题,改变了以往研... 把NSGA-Ⅱ算法用于求解C2组织设计问题。分析了C2组织设计常见处理算法在优化目标处理和算法流程两方面存在的问题,给出用NSGA-Ⅱ算法求解C2组织设计问题的算法设置。把NSGA-Ⅱ这样一种多目标优化算法引入C2组织设计问题,改变了以往研究此类问题时只能定义单个指标的情况,使领域专家能定义和研究新的优化目标。针对C2组织设计问题的特性做了调整后,实验结果数据表明NSGA-Ⅱ可以迅速地同时得到高质量和富有启发性的一群优化结果。 展开更多
关键词 C2组织设计 遗传算法 多目标优化算法 nsga-Ⅱ
下载PDF
基于改进NSGA-Ⅱ的铁路项目进度计划多目标优化 被引量:2
12
作者 周国华 马依婷 《工业工程》 北大核心 2023年第4期85-95,共11页
以总工期最短和总费用最低为目标,针对包含线性活动、条状活动、块状活动等多种施工场景的铁路工程项目,基于RSM方法构建铁路项目多目标优化模型,并提出一种改进的NSGA-Ⅱ算法对模型进行求解.算法设计一种分层次选取种群个体的均匀进化... 以总工期最短和总费用最低为目标,针对包含线性活动、条状活动、块状活动等多种施工场景的铁路工程项目,基于RSM方法构建铁路项目多目标优化模型,并提出一种改进的NSGA-Ⅱ算法对模型进行求解.算法设计一种分层次选取种群个体的均匀进化精英选择策略,以提高种群多样性和收敛性;同时引入差分进化算法的变异、交叉算子,构造分层多策略自适应变异、交叉算子,以平衡整个种群的局部搜索能力和全局搜索能力.结果表明,增加对特殊活动和施工方向的考虑,可增强模型对铁路项目的适用性;改进后的算法收敛速度快,运行稳定,得到的结果更优,能够满足较大规模铁路项目进度计划优化. 展开更多
关键词 重复性项目调度 nsga-Ⅱ算法 工期-费用 多目标优化
下载PDF
基于NSGA-Ⅱ的自适应多尺度特征通道分组优化算法
13
作者 王彬 向甜 +1 位作者 吕艺东 王晓帆 《计算机应用》 CSCD 北大核心 2023年第5期1401-1408,共8页
针对轻量型卷积神经网络(LCNN)的精确度和复杂度均衡优化问题,提出基于快速非支配排序遗传算法(NSGA-Ⅱ)的自适应多尺度特征通道分组优化算法对LCNN特征通道分组结构进行优化。首先,将LCNN中的特征融合层结构的复杂度最小化和精确度最... 针对轻量型卷积神经网络(LCNN)的精确度和复杂度均衡优化问题,提出基于快速非支配排序遗传算法(NSGA-Ⅱ)的自适应多尺度特征通道分组优化算法对LCNN特征通道分组结构进行优化。首先,将LCNN中的特征融合层结构的复杂度最小化和精确度最大化作为两个优化目标,进行双目标函数建模及理论分析;然后,设计基于NSGA-Ⅱ的LCNN结构优化框架,并在原始LCNN结构的深度卷积层之上增加基于NSGA-Ⅱ的自适应分组层,构建基于NSGA-Ⅱ的自适应多尺度的特征融合网络NSGA2-AMFFNetwork。在图像分类数据集上的实验结果显示,与手工设计的网络结构M_blockNet_v1相比,NSGA2-AMFFNetwork的平均精确度提升了1.2202个百分点,运行时间降低了41.07%。这表明所提优化算法能较好平衡LCNN的复杂度和精确度,同时还可为领域知识不足的普通用户提供更多性能表现均衡的网络结构选择方案。 展开更多
关键词 轻量型卷积神经网络 特征提取通道分组优化 双目标函数建模 快速非支配排序遗传算法 图像分类 进化算法
下载PDF
基于强化学习的改进NSGA-Ⅱ算法的城市快速路入口匝道控制
14
作者 陈娟 郭琦 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第4期666-680,共15页
为了缓解城市快速路拥堵和尾气排放问题,提出了基于竞争结构和深度循环Q网络的改进非支配排序遗传算法(non-dominated sorting genetic algorithm Ⅱ based on dueling deep recurrent Q network, DRQN-NSGA-Ⅱ).该算法结合了基于竞争... 为了缓解城市快速路拥堵和尾气排放问题,提出了基于竞争结构和深度循环Q网络的改进非支配排序遗传算法(non-dominated sorting genetic algorithm Ⅱ based on dueling deep recurrent Q network, DRQN-NSGA-Ⅱ).该算法结合了基于竞争结构的深度Q网络(dueling deep Q network, Dueling DQN)、深度循环Q网络(deep recurrent Q network, DRQN)和NSGA-Ⅱ算法,将Dueling DRQN-NSGA-Ⅱ算法用于匝道控制问题.除了考虑匝道车辆汇入以提高快速路通行效率外,还考虑了环境和能源指标,将尾气排放和燃油消耗作为评价指标.除了与无控制情况及其他算法进行比较之外, Dueling DRQN-NSGA-Ⅱ还与NSGA-Ⅱ算法进行了比较.实验结果表明:与无控制情况相比,本算法能有效改善路网通行效率、缓解环境污染、减少能源损耗;相对于无控制情况,总花费时间(total time spent, TTS)减少了16.14%,总尾气排放(total emissions, TE)减少了9.56%,总燃油消耗(total fuel consumption, TF)得到了43.49%的改善. 展开更多
关键词 匝道控制 基于竞争结构的深度Q网络 深度循环Q网络 非支配排序遗传算法
下载PDF
基于改进NSGA-Ⅲ的多目标联邦学习进化算法 被引量:3
15
作者 钟佳淋 吴亚辉 +2 位作者 邓苏 周浩浩 马武彬 《计算机科学》 CSCD 北大核心 2023年第4期333-342,共10页
联邦学习技术能在一定程度上解决数据孤岛和隐私泄露的问题,但存在通信成本高、通信不稳定、参与者性能分布不均衡等缺点。为了改进这些缺点并实现模型有效性、公平性和通信成本的均衡,提出了一种面向联邦学习多目标优化的改进NSGA-Ⅲ... 联邦学习技术能在一定程度上解决数据孤岛和隐私泄露的问题,但存在通信成本高、通信不稳定、参与者性能分布不均衡等缺点。为了改进这些缺点并实现模型有效性、公平性和通信成本的均衡,提出了一种面向联邦学习多目标优化的改进NSGA-Ⅲ算法。首先构建联邦学习多目标优化模型,以最大化全局模型准确率、最小化全局模型准确率分布方差和通信成本为目标,提出了基于快速贪婪初始化的改进NSGA-Ⅲ算法,提高了NSGA-Ⅲ对于联邦学习多目标优化的效率。实验结果表明,相比经典多目标进化算法,提出的优化方法能得到较优Pareto解;与标准的联邦模型相比,优化的模型能在保证全局模型准确率的情况下,有效降低通信成本和全局模型准确率分布方差。 展开更多
关键词 联邦学习 多目标均衡 nsga-Ⅲ算法 多目标进化 参数优化
下载PDF
基于NSGA-Ⅱ与方案优选的机场航站楼大跨度钢结构多目标优化研究 被引量:5
16
作者 王星星 于竞宇 +3 位作者 毛江峰 丁文轩 周文武 黄松 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2023年第7期941-949,共9页
为优选出机场航站楼大跨度钢结构最佳施工方案,实现施工工期短、成本低和质量高的综合优化目标,文章以非支配排序遗传算法(non-dominated sorting genetic algorithm Ⅱ,NSGA-Ⅱ)与方案优选为基础,结合建筑信息模型(building informatio... 为优选出机场航站楼大跨度钢结构最佳施工方案,实现施工工期短、成本低和质量高的综合优化目标,文章以非支配排序遗传算法(non-dominated sorting genetic algorithm Ⅱ,NSGA-Ⅱ)与方案优选为基础,结合建筑信息模型(building information modeling,BIM)技术和工作分解结构(work breakdown structure,WBS)技术,构建兼具优化与施工仿真模拟的大跨度钢结构多目标优化体系;以某军民合用机场为例,应用该体系确定该工程航站楼大跨度网架结构安装采用分块安装法,优选出的施工方案较优化前不仅质量水平保持在较高的0.95,而且工期缩短22 d、成本减少57625元,进一步验证了该体系具有很好的可行性与有效性。研究结果可为科学合理地确定大跨度钢结构施工方案提供依据,并有助于提高机场航站楼施工管理水平,为类似工程提供参考。 展开更多
关键词 大跨度钢结构 多目标优化 非支配排序遗传算法(nsga-Ⅱ) 建筑信息模型(BIM) 工作分解结构(WBS)
下载PDF
基于超平面NSGA-Ⅱ的双输入双降压逆变器系统参数优化设计 被引量:1
17
作者 李煌 葛红娟 +1 位作者 马莹 王永帅 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第3期606-615,共10页
针对第二代非支配排序遗传算法(NSGA-Ⅱ)计算过程中存在种群分布不均匀、收敛性速度较慢的问题,提出超平面NSGA-Ⅱ(HP-NSGA-Ⅱ).该算法通过连接反映种群边缘分布的极值点构造超平面,以其法向量为进化趋势,对临界层个体在超平面进行投影... 针对第二代非支配排序遗传算法(NSGA-Ⅱ)计算过程中存在种群分布不均匀、收敛性速度较慢的问题,提出超平面NSGA-Ⅱ(HP-NSGA-Ⅱ).该算法通过连接反映种群边缘分布的极值点构造超平面,以其法向量为进化趋势,对临界层个体在超平面进行投影,促使种群朝着分布均匀且收敛良好的最优解进化.以双输入双降压型逆变器(DIDBI)为多目标优化对象,开关损耗、输出电压总谐波失真和滤波元件体积为优化目标,依据谐振频率、电感电流纹波和功率因数的要求,推导出滤波电容、滤波电感和开关频率的约束条件,比较分析HP-NSGA-Ⅱ与NSGA-Ⅱ、考虑各目标重要度的γ-NSGA-Ⅱ的应用场合和价值.以某型逆变器样机为例,开展参数优化设计实验研究,结果表明了设计的有效性与正确性. 展开更多
关键词 双输入双降压型逆变器(DIDBI) 超平面第二代非支配排序遗传算法(HP-nsga-Ⅱ) 多目标 系统参数
下载PDF
Models for Location Inventory Routing Problem of Cold Chain Logistics with NSGA-Ⅱ Algorithm 被引量:1
18
作者 郑建国 李康 伍大清 《Journal of Donghua University(English Edition)》 EI CAS 2017年第4期533-539,共7页
In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location... In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location,inventory and transportation.Due to the complex of LIR problem( LIRP), a multi-objective genetic algorithm(GA), non-dominated sorting in genetic algorithm Ⅱ( NSGA-Ⅱ) has been introduced. Its performance is tested over a real case for the proposed problems. Results indicate that NSGA-Ⅱ provides a competitive performance than GA,which demonstrates that the proposed model and multi-objective GA are considerably efficient to solve the problem. 展开更多
关键词 cold chain logistics MULTI-OBJECTIVE location inventory routing problem(LIRP) non-dominated sorting in genetic algorithm Ⅱ(nsga-Ⅱ)
下载PDF
基于NSGA2算法的混合流水车间多目标调度问题研究 被引量:4
19
作者 刘烽 游海 +2 位作者 丁一钧 杨涛 聂电开 《电脑编程技巧与维护》 2012年第24期86-87,共2页
针对混合流水车间多目标调度问题,以最大流程时间和生产中所消耗的总能量最小为目标函数,建立了混合整数数学规划模型;将具有解决复杂组合优化问题的非劣排序遗传算法2(NSGA2)应用于求解多目标混合流水车间调度问题,详细描述了NSGA2算... 针对混合流水车间多目标调度问题,以最大流程时间和生产中所消耗的总能量最小为目标函数,建立了混合整数数学规划模型;将具有解决复杂组合优化问题的非劣排序遗传算法2(NSGA2)应用于求解多目标混合流水车间调度问题,详细描述了NSGA2算法求解HFSP问题的步骤。利用Matlab仿真,结果表明,NSGA2算法求解多目标HFMSP问题可行性和有效性。 展开更多
关键词 混合流水车间 调度 非劣排序遗传算法2 多目标
下载PDF
基于NSGA-Ⅱ的电力信息物理系统骨干网络辨识 被引量:3
20
作者 蔡晔 汤丽 +2 位作者 唐夏菲 陈洋 曹一家 《电力系统自动化》 EI CSCD 北大核心 2023年第12期38-46,共9页
针对实际存在一一对应的电力信息物理系统,辨识其抗灾型骨干网架并进行加固,可提高电力信息物理系统在面对自然灾害或网络攻击下的可靠性。文中提出骨干网络辨识多目标优化模型,所提模型综合考虑整个系统的经济性、抗毁性和恢复性,并满... 针对实际存在一一对应的电力信息物理系统,辨识其抗灾型骨干网架并进行加固,可提高电力信息物理系统在面对自然灾害或网络攻击下的可靠性。文中提出骨干网络辨识多目标优化模型,所提模型综合考虑整个系统的经济性、抗毁性和恢复性,并满足重要负荷约束、网络连通性约束、网络规模约束和潮流约束。首先,使用改进的非支配排序遗传算法(NSGA-Ⅱ)求解多目标优化模型,并利用多目标决策中的熵权法给各个目标函数赋权重。然后,使用逼近理想解排序法筛选出帕累托解集中的最优解。最后,以IEEE 39节点系统和中国某地区500 kV实际电网为例,验证了所提的电力信息物理系统骨干网络辨识算法的有效性。 展开更多
关键词 电力信息物理系统 骨干网络 改进的非支配排序遗传算法 多目标优化 熵权-TOPSIS
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部