Aim To study the Lie symmetries and the consered quantities of the holonomic systems with remainder coordinates. Methods Using the invariance of the ordinary differential equations under the infinitesimal transformati...Aim To study the Lie symmetries and the consered quantities of the holonomic systems with remainder coordinates. Methods Using the invariance of the ordinary differential equations under the infinitesimal transformations to establish the determining equations and the restriction equations of the Lie symmetries of the systems. Results and Conclusion the structure equation and the form of conserved quantities were obtained. An example was given to illustrate the application of the result.展开更多
Aerospace relay is one kind of electronic components which is used widely in national defense system and aerospace system. The existence of remainder particles induces the reliability declining, which has become a sev...Aerospace relay is one kind of electronic components which is used widely in national defense system and aerospace system. The existence of remainder particles induces the reliability declining, which has become a severe problem in the development of aerospace relay. Traditional particle impact noise detection (PIND) method for remainder detection is ineffective for small particles, due to its low precision and involvement of subjective factors. An auto-detection method for PIND output signals is proposed in this paper, which is based on direct wavelet de-noising (DWD), cross-correlation analysis (CCA) and homo-filtering (HF), the method enhances the affectivity of PIND test about the small particles. In the end, some practical PIND output signals are analysed, and the validity of this new method is proved.展开更多
In this paper, firstly, the p order and pz order of Dirichlet series which converges in the whole plane are studied. Secondly, the equivalence relation between remainder logarithm In En-1 (f, α), In Rn(f, α) and...In this paper, firstly, the p order and pz order of Dirichlet series which converges in the whole plane are studied. Secondly, the equivalence relation between remainder logarithm In En-1 (f, α), In Rn(f, α) and coefficients logarithm In |an| is discussed respectively. Finally, the theory of applying remainder to estimate ρorder and ρβ order can be obtained by using the equivalence relation.展开更多
A novel quantum secret sharing (QSS) scheme is proposed on the basis of Chinese Remainder Theorem (CRT). In the scheme, the classical messages are mapped to secret sequences according to CRT equations, and distrib...A novel quantum secret sharing (QSS) scheme is proposed on the basis of Chinese Remainder Theorem (CRT). In the scheme, the classical messages are mapped to secret sequences according to CRT equations, and distributed to different receivers by different dimensional superdense-coding respectively. CRT's secret sharing function, together with high-dimensional superdense-eoding, provide convenience, security, and large capability quantum channel for secret distribution and recovering. Analysis shows the security of the scheme.展开更多
This paper focuses on studying the relation between a velocity-dependent symmetry and a generalized Lutzky conserved quantity for a holonomic system with remainder coordinates subjected to unilateral constraints. The ...This paper focuses on studying the relation between a velocity-dependent symmetry and a generalized Lutzky conserved quantity for a holonomic system with remainder coordinates subjected to unilateral constraints. The differential equations of motion of the system are established, and the definition of Lie symmetry for the system is given. The conditions under which a Lie symmetry can directly lead up to a generalized Lutzky conserved quantity and the form of the new conserved quantity are obtained, and an example is given to illustrate the application of the results.展开更多
Chinese Remainder Codes are constructed by applying weak block designs and Chinese Remainder Theorem of ring theory. The new type of linear codes take the congruence class in the congruence class ring R/I 1∩I 2∩.....Chinese Remainder Codes are constructed by applying weak block designs and Chinese Remainder Theorem of ring theory. The new type of linear codes take the congruence class in the congruence class ring R/I 1∩I 2∩...∩I n for the information bit, embed R/J i into R/I 1∩I 2∩...∩I n, and asssign the cosets of R/J i as the subring of R/I 1∩I 2∩...∩I n and the cosets of R/J i in R/I 1∩I 2∩...∩I n as check lines. There exist many code classes in Chinese Remainder Codes, which have high code rates. Chinese Remainder Codes are the essential generalization of Sun Zi Codes.展开更多
In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubi...In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.展开更多
This paper takes further insight into the sparse geometry which offers a larger array aperture than uniform linear array(ULA)with the same number of physical sensors.An efficient method based on closed-form robust Chi...This paper takes further insight into the sparse geometry which offers a larger array aperture than uniform linear array(ULA)with the same number of physical sensors.An efficient method based on closed-form robust Chinese remainder theorem(CFRCRT)is presented to estimate the direction of arrival(DOA)from their wrapped phase with permissible errors.The proposed algorithm has significantly less computational complexity than the searching method while maintaining similar estimation precision.Furthermore,we combine all phase discrete Fourier transfer(APDFT)and the CFRCRT algorithm to achieve a considerably high DOA estimation precision.Both the theoretical analysis and simulation results demonstrate that the proposed algorithm has a higher estimation precision as well as lower computation complexity.展开更多
In this paper,some issues concerning the Chinese remaindering representation are discussed.A new converting method is described. An efficient refinement of the division algorithm of Chiu,Davida and Litow is given.
A novel quantum group signature scheme is proposed based on Chinese Remainder Theorem (CRT), in order to improve the security of quantum signature. The generation and verification of the signature can be successfully ...A novel quantum group signature scheme is proposed based on Chinese Remainder Theorem (CRT), in order to improve the security of quantum signature. The generation and verification of the signature can be successfully conducted only if all the participants cooperate with each other and with the message owner's and the arbitrator's help. The quantum parallel algorithm is applied to efficiently compare the restored quantum message to the original quantum message. All the operations in signing and verifying phase can be executed in quantum circuits. It has a wide application to E-payment system, Online contract, Online notarization and etc.展开更多
In the present paper two contents are enclosed .First ,the Fourier analysis approach of the dispersion relation and group velocity effect of finite difference schemes is discussed.the defects of the approach is pointe...In the present paper two contents are enclosed .First ,the Fourier analysis approach of the dispersion relation and group velocity effect of finite difference schemes is discussed.the defects of the approach is pointed out and the correction is made;Second,a new systematic analysis method -remaider -effect analysis (abbr.REAM)is proposed by means of the modified partial differential equations (abbr MPDE)of finite difference schemes.The analysis is based on the synthetical study of the rational dispersion-and dissipation relations of finite difference schemes.And the method clearly possesses constructivity展开更多
We propose an unbounded fully homomorphic encryption scheme, i.e. a scheme that allows one to compute on encrypted data for any desired functions without needing to decrypt the data or knowing the decryption keys. Thi...We propose an unbounded fully homomorphic encryption scheme, i.e. a scheme that allows one to compute on encrypted data for any desired functions without needing to decrypt the data or knowing the decryption keys. This is a rational solution to an old problem proposed by Rivest, Adleman, and Dertouzos [1] in 1978, and to some new problems that appeared in Peikert [2] as open questions 10 and open questions 11 a few years ago. Our scheme is completely different from the breakthrough work [3] of Gentry in 2009. Gentry’s bootstrapping technique constructs a fully homomorphic encryption (FHE) scheme from a somewhat homomorphic one that is powerful enough to evaluate its own decryption function. To date, it remains the only known way of obtaining unbounded FHE. Our construction of an unbounded FHE scheme is straightforward and can handle unbounded homomorphic computation on any refreshed ciphertexts without bootstrapping transformation technique.展开更多
Diophantine equations have always fascinated mathematicians about existence, finitude, and the calculation of possible solutions. Among these equations, one of them will be the object of our research. This is the Pyth...Diophantine equations have always fascinated mathematicians about existence, finitude, and the calculation of possible solutions. Among these equations, one of them will be the object of our research. This is the Pythagoras’- Fermat’s equation defined as follows. (1) when , it is well known that this equation has an infinity of solutions but has none (non-trivial) when . We also know that the last result, named Fermat-Wiles theorem (or FLT) was obtained at great expense and its understanding remains out of reach even for a good fringe of professional mathematicians. The aim of this research is to set up new simple but effective tools in the treatment of Diophantine equations and that of Pythagoras-Fermat. The tools put forward in this research are the properties of the quotients and the Diophantine remainders which we define as follows. Let a non-trivial triplet () solution of Equation (1) such that . and are called the Diophantine quotients and remainders of solution . We compute the remainder and the quotient of b and c by a using the division algorithm. Hence, we have: and et with . We prove the following important results. if and only if and if and only if . Also, we deduce that or for any hypothetical solution . We illustrate these results by effectively computing the Diophantine quotients and remainders in the case of Pythagorean triplets using a Python program. In the end, we apply the previous properties to directly prove a partial result of FLT. .展开更多
文摘Aim To study the Lie symmetries and the consered quantities of the holonomic systems with remainder coordinates. Methods Using the invariance of the ordinary differential equations under the infinitesimal transformations to establish the determining equations and the restriction equations of the Lie symmetries of the systems. Results and Conclusion the structure equation and the form of conserved quantities were obtained. An example was given to illustrate the application of the result.
基金Chinese Science Technology and Industry Foundation for National Defense(FEBG27100001)
文摘Aerospace relay is one kind of electronic components which is used widely in national defense system and aerospace system. The existence of remainder particles induces the reliability declining, which has become a severe problem in the development of aerospace relay. Traditional particle impact noise detection (PIND) method for remainder detection is ineffective for small particles, due to its low precision and involvement of subjective factors. An auto-detection method for PIND output signals is proposed in this paper, which is based on direct wavelet de-noising (DWD), cross-correlation analysis (CCA) and homo-filtering (HF), the method enhances the affectivity of PIND test about the small particles. In the end, some practical PIND output signals are analysed, and the validity of this new method is proved.
基金Supported by the National Natural Science Foundation of China(11171119)Supported by the National Science Foundation of Jiangxi Province(20122BAB211005,2010GQS0103)
文摘In this paper, firstly, the p order and pz order of Dirichlet series which converges in the whole plane are studied. Secondly, the equivalence relation between remainder logarithm In En-1 (f, α), In Rn(f, α) and coefficients logarithm In |an| is discussed respectively. Finally, the theory of applying remainder to estimate ρorder and ρβ order can be obtained by using the equivalence relation.
基金Supported by the National Natural Science Foundation of China under Grant No.60902044Ph.D.Programs Foundation of Ministry of Education of China under Grant No.20090162120070+2 种基金Postdoctoral Science Foundation of China under Grant No.200801341State Key Laboratory of Advanced Optical Communication Systems and Networks under Grant No.2008SH01in part by the Second stage of Brain Korea 21 programs,Chonbuk National University,Korea
文摘A novel quantum secret sharing (QSS) scheme is proposed on the basis of Chinese Remainder Theorem (CRT). In the scheme, the classical messages are mapped to secret sequences according to CRT equations, and distributed to different receivers by different dimensional superdense-coding respectively. CRT's secret sharing function, together with high-dimensional superdense-eoding, provide convenience, security, and large capability quantum channel for secret distribution and recovering. Analysis shows the security of the scheme.
基金The project supported by National Natural Science Foundation of China under Grant No. 10272021 and the Natural Science Foundation of High Education Department of Jiangsu Province under Grant No. 04KJA130135
文摘This paper focuses on studying the relation between a velocity-dependent symmetry and a generalized Lutzky conserved quantity for a holonomic system with remainder coordinates subjected to unilateral constraints. The differential equations of motion of the system are established, and the definition of Lie symmetry for the system is given. The conditions under which a Lie symmetry can directly lead up to a generalized Lutzky conserved quantity and the form of the new conserved quantity are obtained, and an example is given to illustrate the application of the results.
文摘Chinese Remainder Codes are constructed by applying weak block designs and Chinese Remainder Theorem of ring theory. The new type of linear codes take the congruence class in the congruence class ring R/I 1∩I 2∩...∩I n for the information bit, embed R/J i into R/I 1∩I 2∩...∩I n, and asssign the cosets of R/J i as the subring of R/I 1∩I 2∩...∩I n and the cosets of R/J i in R/I 1∩I 2∩...∩I n as check lines. There exist many code classes in Chinese Remainder Codes, which have high code rates. Chinese Remainder Codes are the essential generalization of Sun Zi Codes.
文摘In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.
基金supported by the Fund for Foreign Scholars in University Research and Teaching Programs(the 111 Project)(B18039)
文摘This paper takes further insight into the sparse geometry which offers a larger array aperture than uniform linear array(ULA)with the same number of physical sensors.An efficient method based on closed-form robust Chinese remainder theorem(CFRCRT)is presented to estimate the direction of arrival(DOA)from their wrapped phase with permissible errors.The proposed algorithm has significantly less computational complexity than the searching method while maintaining similar estimation precision.Furthermore,we combine all phase discrete Fourier transfer(APDFT)and the CFRCRT algorithm to achieve a considerably high DOA estimation precision.Both the theoretical analysis and simulation results demonstrate that the proposed algorithm has a higher estimation precision as well as lower computation complexity.
文摘In this paper,some issues concerning the Chinese remaindering representation are discussed.A new converting method is described. An efficient refinement of the division algorithm of Chiu,Davida and Litow is given.
文摘A novel quantum group signature scheme is proposed based on Chinese Remainder Theorem (CRT), in order to improve the security of quantum signature. The generation and verification of the signature can be successfully conducted only if all the participants cooperate with each other and with the message owner's and the arbitrator's help. The quantum parallel algorithm is applied to efficiently compare the restored quantum message to the original quantum message. All the operations in signing and verifying phase can be executed in quantum circuits. It has a wide application to E-payment system, Online contract, Online notarization and etc.
文摘In the present paper two contents are enclosed .First ,the Fourier analysis approach of the dispersion relation and group velocity effect of finite difference schemes is discussed.the defects of the approach is pointed out and the correction is made;Second,a new systematic analysis method -remaider -effect analysis (abbr.REAM)is proposed by means of the modified partial differential equations (abbr MPDE)of finite difference schemes.The analysis is based on the synthetical study of the rational dispersion-and dissipation relations of finite difference schemes.And the method clearly possesses constructivity
文摘We propose an unbounded fully homomorphic encryption scheme, i.e. a scheme that allows one to compute on encrypted data for any desired functions without needing to decrypt the data or knowing the decryption keys. This is a rational solution to an old problem proposed by Rivest, Adleman, and Dertouzos [1] in 1978, and to some new problems that appeared in Peikert [2] as open questions 10 and open questions 11 a few years ago. Our scheme is completely different from the breakthrough work [3] of Gentry in 2009. Gentry’s bootstrapping technique constructs a fully homomorphic encryption (FHE) scheme from a somewhat homomorphic one that is powerful enough to evaluate its own decryption function. To date, it remains the only known way of obtaining unbounded FHE. Our construction of an unbounded FHE scheme is straightforward and can handle unbounded homomorphic computation on any refreshed ciphertexts without bootstrapping transformation technique.
文摘Diophantine equations have always fascinated mathematicians about existence, finitude, and the calculation of possible solutions. Among these equations, one of them will be the object of our research. This is the Pythagoras’- Fermat’s equation defined as follows. (1) when , it is well known that this equation has an infinity of solutions but has none (non-trivial) when . We also know that the last result, named Fermat-Wiles theorem (or FLT) was obtained at great expense and its understanding remains out of reach even for a good fringe of professional mathematicians. The aim of this research is to set up new simple but effective tools in the treatment of Diophantine equations and that of Pythagoras-Fermat. The tools put forward in this research are the properties of the quotients and the Diophantine remainders which we define as follows. Let a non-trivial triplet () solution of Equation (1) such that . and are called the Diophantine quotients and remainders of solution . We compute the remainder and the quotient of b and c by a using the division algorithm. Hence, we have: and et with . We prove the following important results. if and only if and if and only if . Also, we deduce that or for any hypothetical solution . We illustrate these results by effectively computing the Diophantine quotients and remainders in the case of Pythagorean triplets using a Python program. In the end, we apply the previous properties to directly prove a partial result of FLT. .