Let E be a real reflexive Banach space which admits a weakly sequentially continuous duality mapping from E to E^*, and C be a nonempty closed convex subset of E. Let {T(t) : t ≥ 0} be a nonexpansive semigroup on...Let E be a real reflexive Banach space which admits a weakly sequentially continuous duality mapping from E to E^*, and C be a nonempty closed convex subset of E. Let {T(t) : t ≥ 0} be a nonexpansive semigroup on C such that F :=∩t≥0 Fix(T(t)) ≠ 0, and f : C → C be a fixed contractive mapping. If {αn}, {βn}, {an}, {bn}, {tn} satisfy certain appropriate conditions, then we suggest and analyze the two modified iterative processes as:{yn=αnxn+(1-αn)T(tn)xn,xn=βnf(xn)+(1-βn)yn{u0∈C,vn=anun+(1-an)T(tn)un,un+1=bnf(un)+(1-bn)vnWe prove that the approximate solutions obtained from these methods converge strongly to q ∈∩t≥0 Fix(T(t)), which is a unique solution in F to the following variational inequality:〈(I-f)q,j(q-u)〉≤0 u∈F Our results extend and improve the corresponding ones of Suzuki [Proc. Amer. Math. Soc., 131, 2133-2136 (2002)], and Kim and XU [Nonlear Analysis, 61, 51-60 (2005)] and Chen and He [Appl. Math. Lett., 20, 751-757 (2007)].展开更多
Under the framework of a real Hilbert space, we introduce a new iterative method for finding a common element of the set of solution of a general equilibrium problem and the set of fixed points of a nonexpansive semig...Under the framework of a real Hilbert space, we introduce a new iterative method for finding a common element of the set of solution of a general equilibrium problem and the set of fixed points of a nonexpansive semigroup. Moreover, a numerical example is presented. This example grantee the main result of the paper.展开更多
In this paper, strong convergence of an iterative sequence is proved, which computes an approximate solution of the set of solutions of split variational inclusion problem, the set of fixed points of a nonexpansive ma...In this paper, strong convergence of an iterative sequence is proved, which computes an approximate solution of the set of solutions of split variational inclusion problem, the set of fixed points of a nonexpansive mapping and the set of common fixed points of a family of generalized asymptotically nonexpansive semigroup. Results obtained in this paper extend and unify the previously known results in the previous literatures.展开更多
K. Nakajo and W. Takahashi in 2003 proved the strong convergence theorems for nonex-pansive mappings, nonexpansive semigroups, and proximal point algorithm for zero point of monotone operators in Hilbert spaces by usi...K. Nakajo and W. Takahashi in 2003 proved the strong convergence theorems for nonex-pansive mappings, nonexpansive semigroups, and proximal point algorithm for zero point of monotone operators in Hilbert spaces by using the hybrid method in mathematical programming. The purpose of this paper is to modify the hybrid iteration method of K. Nakajo and W. Takahashi through the monotone hybrid method, and to prove strong convergence theorems. The convergence rate of iteration process of the monotone hybrid method is faster than that of the iteration process of the hybrid method of K. Nakajo and W. Takahashi. In the proofs in this article, Cauchy sequence method is used to avoid the use of the demiclosedness principle and Opial's condition.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 10771050)supported by the Higher Education Commission, Pakistan, through Research Grant No. 1-29/HEC/HRD/2005/90
文摘Let E be a real reflexive Banach space which admits a weakly sequentially continuous duality mapping from E to E^*, and C be a nonempty closed convex subset of E. Let {T(t) : t ≥ 0} be a nonexpansive semigroup on C such that F :=∩t≥0 Fix(T(t)) ≠ 0, and f : C → C be a fixed contractive mapping. If {αn}, {βn}, {an}, {bn}, {tn} satisfy certain appropriate conditions, then we suggest and analyze the two modified iterative processes as:{yn=αnxn+(1-αn)T(tn)xn,xn=βnf(xn)+(1-βn)yn{u0∈C,vn=anun+(1-an)T(tn)un,un+1=bnf(un)+(1-bn)vnWe prove that the approximate solutions obtained from these methods converge strongly to q ∈∩t≥0 Fix(T(t)), which is a unique solution in F to the following variational inequality:〈(I-f)q,j(q-u)〉≤0 u∈F Our results extend and improve the corresponding ones of Suzuki [Proc. Amer. Math. Soc., 131, 2133-2136 (2002)], and Kim and XU [Nonlear Analysis, 61, 51-60 (2005)] and Chen and He [Appl. Math. Lett., 20, 751-757 (2007)].
基金IKIU,for supporting this research(Grant No.751168-91)
文摘Under the framework of a real Hilbert space, we introduce a new iterative method for finding a common element of the set of solution of a general equilibrium problem and the set of fixed points of a nonexpansive semigroup. Moreover, a numerical example is presented. This example grantee the main result of the paper.
基金supported by the Science and Technology Project of Education Department of Fujian Province under Grant No.JA14365Fujian Nature Science Foundation under Grant No.2014J01008
文摘In this paper, strong convergence of an iterative sequence is proved, which computes an approximate solution of the set of solutions of split variational inclusion problem, the set of fixed points of a nonexpansive mapping and the set of common fixed points of a family of generalized asymptotically nonexpansive semigroup. Results obtained in this paper extend and unify the previously known results in the previous literatures.
基金This research is supported by the National Natural Science Foundation of China under Grant No.10771050
文摘K. Nakajo and W. Takahashi in 2003 proved the strong convergence theorems for nonex-pansive mappings, nonexpansive semigroups, and proximal point algorithm for zero point of monotone operators in Hilbert spaces by using the hybrid method in mathematical programming. The purpose of this paper is to modify the hybrid iteration method of K. Nakajo and W. Takahashi through the monotone hybrid method, and to prove strong convergence theorems. The convergence rate of iteration process of the monotone hybrid method is faster than that of the iteration process of the hybrid method of K. Nakajo and W. Takahashi. In the proofs in this article, Cauchy sequence method is used to avoid the use of the demiclosedness principle and Opial's condition.