The generalized Chaplygin equations for nonholonomic systems on time scales are proposed and studied. The Hamil- ton principle for nonholonomic systems on time scales is established, and the corresponding generalized ...The generalized Chaplygin equations for nonholonomic systems on time scales are proposed and studied. The Hamil- ton principle for nonholonomic systems on time scales is established, and the corresponding generalized Chaplygin equa- tions are deduced. The reduced Chaplygin equations are also presented. Two special cases of the generalized Chaplygin equations on time scales, where the time scales are equal to the set of real numbers and the integer set, are discussed. Finally, several examples are given to illustrate the application of the results.展开更多
This paper presents a new method to seek the conserved quantity from a Lie symmetry without using either Lagrangians or Hamiltonians for nonholonomic systems. The differential equations of motion of the systems are es...This paper presents a new method to seek the conserved quantity from a Lie symmetry without using either Lagrangians or Hamiltonians for nonholonomic systems. The differential equations of motion of the systems are established. The definition of the Lie symmetrical transformations of the systems is given, which only depends upon the infinitesimal transformations of groups for the generalized coordinates. The conserved quantity is directly constructed in terms of the Lie symmetry of the systems. The condition under which the Lie symmetry can lead to the conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result.展开更多
The Lie symmetries of nonholonomic mechanical systems are corsidered. Some defmi tions and criteria on the Lie symmetries, and the conservation laws of the systems are given.And some examples to illustrate the applic...The Lie symmetries of nonholonomic mechanical systems are corsidered. Some defmi tions and criteria on the Lie symmetries, and the conservation laws of the systems are given.And some examples to illustrate the application of the results are provided.展开更多
Aimed at the stabilization of the nonholonomic chained system under fixed sample control, two control laws were proposed. The discrete model of the nonholonomic chained system under zero-hold was obtained through the ...Aimed at the stabilization of the nonholonomic chained system under fixed sample control, two control laws were proposed. The discrete model of the nonholonomic chained system under zero-hold was obtained through the integrate method to the continuous model. And the discrete model was transformed to the form with two linear subsystems through coordinate transformation. Two feedback control laws, time-invariant control law and time-varying control law, were proposed; and the local stabilization and global stabilization were realized respectively. The simulation results show the effectiveness of the proposed control laws. The discrete nonholonomic chained system can converge to zero from any initial state exponentially, and the convergence rate can be changed through changing the parameters of the control laws.展开更多
Mei symmetry of Tzenoff equations for nonholonomic systems of non-Chetaev's type under the infinitesimal transformations of groups is studied. Its definitions and discriminant equations of Mei symmetry are given. Suf...Mei symmetry of Tzenoff equations for nonholonomic systems of non-Chetaev's type under the infinitesimal transformations of groups is studied. Its definitions and discriminant equations of Mei symmetry are given. Sufficient and necessary condition of Lie symmetry deduced by the Mei symmetry is also given. Hojman conserved quantity of Tzenoff equations for the systems through Lie symmetry in the condition of special Mei symmetry is obtained.展开更多
In this paper,the parametric equations with multipliers of nonholonomic nonconservative sys- tems in the event space are established,their properties are studied,and their explicit formulation is obtained. And then th...In this paper,the parametric equations with multipliers of nonholonomic nonconservative sys- tems in the event space are established,their properties are studied,and their explicit formulation is obtained. And then the field method for integrating these equations is given.Finally,an example illustrating the appli- cation of the integration method is given.展开更多
This paper studies the symmetry of Lagrangians of nonholonomic systems of non-Chetaev's type. First, the definition and the criterion of the symmetry of the system are given. Secondly, it obtains the condition under ...This paper studies the symmetry of Lagrangians of nonholonomic systems of non-Chetaev's type. First, the definition and the criterion of the symmetry of the system are given. Secondly, it obtains the condition under which there exists a conserved quantity and the form of the conserved quantity. Finally, an example is shown to illustrate the application of the result.展开更多
This paper studies the Mei symmetry and Mei conserved quantity for nonholonomic systems of unilateral Chetaev type in Nielsen style. The differential equations of motion of the system above are established. The defini...This paper studies the Mei symmetry and Mei conserved quantity for nonholonomic systems of unilateral Chetaev type in Nielsen style. The differential equations of motion of the system above are established. The definition and the criteria of Mei symmetry, loosely Mei symmetry, strictly Mei symmetry for the system are given in this paper. The existence condition and the expression of Mei conserved quantity are deduced directly by using Mei symmetry. An example is given to illustrate the application of the results.展开更多
The invariance of the differential equations under the infinitesimal transformations was used to study the Lie symmetries and conserved quantities of arbitrary order nonholonomic systems. The determining equations, th...The invariance of the differential equations under the infinitesimal transformations was used to study the Lie symmetries and conserved quantities of arbitrary order nonholonomic systems. The determining equations, the restriction equations, the structure equation and the form of the conserved quantities were obtained.展开更多
The exact invariants and the adiabatic invariants of Raitzin's canonical equations of motion for a nonlinear nonholonomic mechanical system are studied. The relations between the invariants and the symmetries of the ...The exact invariants and the adiabatic invariants of Raitzin's canonical equations of motion for a nonlinear nonholonomic mechanical system are studied. The relations between the invariants and the symmetries of the system are established. Based on the concept of higher-order adiabatic invariant of a mechanical system under the action of a small perturbation, the forms of the exact invariants and adiabatic invariants and the conditions for their existence are proved. Finally, the inverse problem of the perturbation to symmetries of the system is studied and an example is also given to illustrate the application of the results.展开更多
In this paper,the field method for solving the equations of motion of holonomic nonconservative systems is extended to nonholonomic systems with constant mass and with variable mass.Two examples are given to illustrat...In this paper,the field method for solving the equations of motion of holonomic nonconservative systems is extended to nonholonomic systems with constant mass and with variable mass.Two examples are given to illustrate its application.展开更多
Based on the total time derivative along the trajectory of the system the definition and the criterion for a unified symmetry of nonholonomic mechanical system with variable mass are presented in this paper. A new con...Based on the total time derivative along the trajectory of the system the definition and the criterion for a unified symmetry of nonholonomic mechanical system with variable mass are presented in this paper. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced from the unified symmetry, are also obtained, An example is given to illustrate the application of the results.展开更多
This paper obtains Lagrange equations of nonholonomic systems with fractional derivatives. First, the exchanging relationships between the isochronous variation and the fractional derivatives are derived. Secondly, ba...This paper obtains Lagrange equations of nonholonomic systems with fractional derivatives. First, the exchanging relationships between the isochronous variation and the fractional derivatives are derived. Secondly, based on these exchanging relationships, the Hamilton's principle is presented for non-conservative systems with fractional derivatives. Thirdly, Lagrange equations of the systems are obtained. Furthermore, the d'Alembert-Lagrange principle with fractional derivatives is presented, and the Lagrange equations of nonholonomic systems with fractional derivatives are studied. An example is designed to illustrate these results.展开更多
This paper concentrates on studying the symmetries and a new type of conserved quantities called Mei conserved quantity. The criterions of the Mei symmetry, the Noether symmetry and the Lie symmetry are given. The con...This paper concentrates on studying the symmetries and a new type of conserved quantities called Mei conserved quantity. The criterions of the Mei symmetry, the Noether symmetry and the Lie symmetry are given. The conditions and the forms of the Mei conserved quantities deduced from these three symmetries are obtained. An example is given to illustrate the application of the result.展开更多
Perturbation to Noether quasi-symmetry and adiabatic invariants for the nonholonomic system on time scales are studied. Firstly, some properties of time scale calculus are reviewed. Secondly, the differential equation...Perturbation to Noether quasi-symmetry and adiabatic invariants for the nonholonomic system on time scales are studied. Firstly, some properties of time scale calculus are reviewed. Secondly, the differential equations of motion for the nonholonomic system on time scales, Noether quasi-symmetry and conserved quantity are given. Thirdly, perturbation to Noether quasi-symmetry and adiabatic invariants, which are the main results of this paper, are investigated. The main results are achieved by two steps, the first step is to obtain adiabatic invariants without transforming the time, and the next is to obtain adiabatic invariants under the infinitesimal transformations of both the time and the coordinates. And in the end, an example is given to illustrate the methods and results.展开更多
Based on the theory of Lie symmetries and conserved quantities, the exact invariants and adiabatic invariants of nonholonomic system in terms of quasi-coordinates are studied. The perturbation to symmetries for the no...Based on the theory of Lie symmetries and conserved quantities, the exact invariants and adiabatic invariants of nonholonomic system in terms of quasi-coordinates are studied. The perturbation to symmetries for the nonholonomic system in terms of quasi-coordinates under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the forms of exact invariants and adiabatic invariants as well as the conditions for their existence are given. Then the corresponding inverse problem is studied.展开更多
This paper presents the Mei symmetries and new types of non-Noether conserved quantities for a higher-order nonholonomic constraint mechanical system. On the basis of the form invariance of differential equations of m...This paper presents the Mei symmetries and new types of non-Noether conserved quantities for a higher-order nonholonomic constraint mechanical system. On the basis of the form invariance of differential equations of motion for dynamical functions under general infinitesimal transformation, the determining equations, the constraint restriction equations and the additional restriction equations of Mei symmetries of the system are constructed. The criterions of Mei symmetries, weak Mei symmetries and strong Mei symmetries of the system are given. New types of conserved quantities, i.e. the Mei symmetrical conserved quantities, the weak Mei symmetrical conserved quantities and the strong Mei symmetrical conserved quantities of a higher-order nonholonomic system, are obtained. Then, a deduction of the first-order nonholonomic system is discussed. Finally, two examples are given to illustrate the application of the method and then the results.展开更多
The Lie-form invariance of a nonholonomic mechanaical system is studied. The definition and criterion of the Lie-form invariance of the nonholonomic mechaaical system are given. The Hojman conserved quantity and a new...The Lie-form invariance of a nonholonomic mechanaical system is studied. The definition and criterion of the Lie-form invariance of the nonholonomic mechaaical system are given. The Hojman conserved quantity and a new type of conserved quantity are obtained from the Lie-form invariance. An example is givea to illustrate the application of the results.展开更多
By applying the framework of the tangent bundle geometry to the method of Lagrange multi- pliers,a geometric description of Chetaev's nonholonomic systems subjected to unilateral nonholonomic con- straints trod un...By applying the framework of the tangent bundle geometry to the method of Lagrange multi- pliers,a geometric description of Chetaev's nonholonomic systems subjected to unilateral nonholonomic con- straints trod unilateral holonomic constraints respectively in time-independent circumstances is presented.展开更多
For an in-depth study on the symmetric properties for nonholonomic non-conservative mechanical systems,the fractional action-like Noether symmetries and conserved quantities for nonholonomic mechanical systems are stu...For an in-depth study on the symmetric properties for nonholonomic non-conservative mechanical systems,the fractional action-like Noether symmetries and conserved quantities for nonholonomic mechanical systems are studied,based on the fractional action-like approach for dynamics modeling proposed by El-Nabulsi.Firstly,the fractional action-like variational problem is established,and the fractional action-like Lagrange equations of holonomic system and the fractional action-like differential equations of motion with multiplier for nonholonomic system are given;secondly,according to the invariance of fractional action-like Hamilton action under infinitesimal transformations of group,the definitions and criteria of fractional action-like Noether symmetric transformations and quasi-symmetric transformations are put forward;finally,the fractional action-like Noether theorems for both holonomic system and nonholonomic system are established,and the relationship between the fractional action-like Noether symmetry and the conserved quantity is given.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11572212 and 11272227)the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(Grant No.KYLX16-0414)
文摘The generalized Chaplygin equations for nonholonomic systems on time scales are proposed and studied. The Hamil- ton principle for nonholonomic systems on time scales is established, and the corresponding generalized Chaplygin equa- tions are deduced. The reduced Chaplygin equations are also presented. Two special cases of the generalized Chaplygin equations on time scales, where the time scales are equal to the set of real numbers and the integer set, are discussed. Finally, several examples are given to illustrate the application of the results.
文摘This paper presents a new method to seek the conserved quantity from a Lie symmetry without using either Lagrangians or Hamiltonians for nonholonomic systems. The differential equations of motion of the systems are established. The definition of the Lie symmetrical transformations of the systems is given, which only depends upon the infinitesimal transformations of groups for the generalized coordinates. The conserved quantity is directly constructed in terms of the Lie symmetry of the systems. The condition under which the Lie symmetry can lead to the conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result.
文摘The Lie symmetries of nonholonomic mechanical systems are corsidered. Some defmi tions and criteria on the Lie symmetries, and the conservation laws of the systems are given.And some examples to illustrate the application of the results are provided.
文摘Aimed at the stabilization of the nonholonomic chained system under fixed sample control, two control laws were proposed. The discrete model of the nonholonomic chained system under zero-hold was obtained through the integrate method to the continuous model. And the discrete model was transformed to the form with two linear subsystems through coordinate transformation. Two feedback control laws, time-invariant control law and time-varying control law, were proposed; and the local stabilization and global stabilization were realized respectively. The simulation results show the effectiveness of the proposed control laws. The discrete nonholonomic chained system can converge to zero from any initial state exponentially, and the convergence rate can be changed through changing the parameters of the control laws.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10672143 and 10572021
文摘Mei symmetry of Tzenoff equations for nonholonomic systems of non-Chetaev's type under the infinitesimal transformations of groups is studied. Its definitions and discriminant equations of Mei symmetry are given. Sufficient and necessary condition of Lie symmetry deduced by the Mei symmetry is also given. Hojman conserved quantity of Tzenoff equations for the systems through Lie symmetry in the condition of special Mei symmetry is obtained.
基金The Project is supported by the National Natural Science Foundation of China
文摘In this paper,the parametric equations with multipliers of nonholonomic nonconservative sys- tems in the event space are established,their properties are studied,and their explicit formulation is obtained. And then the field method for integrating these equations is given.Finally,an example illustrating the appli- cation of the integration method is given.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10932002 and 10772025)the Fund for Fundamental Research of Beijing Institute of Technology
文摘This paper studies the symmetry of Lagrangians of nonholonomic systems of non-Chetaev's type. First, the definition and the criterion of the symmetry of the system are given. Secondly, it obtains the condition under which there exists a conserved quantity and the form of the conserved quantity. Finally, an example is shown to illustrate the application of the result.
基金supported by the National Natural Science Foundation of China (Grant No 10572021)
文摘This paper studies the Mei symmetry and Mei conserved quantity for nonholonomic systems of unilateral Chetaev type in Nielsen style. The differential equations of motion of the system above are established. The definition and the criteria of Mei symmetry, loosely Mei symmetry, strictly Mei symmetry for the system are given in this paper. The existence condition and the expression of Mei conserved quantity are deduced directly by using Mei symmetry. An example is given to illustrate the application of the results.
文摘The invariance of the differential equations under the infinitesimal transformations was used to study the Lie symmetries and conserved quantities of arbitrary order nonholonomic systems. The determining equations, the restriction equations, the structure equation and the form of the conserved quantities were obtained.
基金Project supported by the Heilongjiang Natural Science Foundation of China (Grant No 9507).
文摘The exact invariants and the adiabatic invariants of Raitzin's canonical equations of motion for a nonlinear nonholonomic mechanical system are studied. The relations between the invariants and the symmetries of the system are established. Based on the concept of higher-order adiabatic invariant of a mechanical system under the action of a small perturbation, the forms of the exact invariants and adiabatic invariants and the conditions for their existence are proved. Finally, the inverse problem of the perturbation to symmetries of the system is studied and an example is also given to illustrate the application of the results.
基金The project supported by the National Natural Science Foundation of China
文摘In this paper,the field method for solving the equations of motion of holonomic nonconservative systems is extended to nonholonomic systems with constant mass and with variable mass.Two examples are given to illustrate its application.
文摘Based on the total time derivative along the trajectory of the system the definition and the criterion for a unified symmetry of nonholonomic mechanical system with variable mass are presented in this paper. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced from the unified symmetry, are also obtained, An example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11072218 and 10672143)
文摘This paper obtains Lagrange equations of nonholonomic systems with fractional derivatives. First, the exchanging relationships between the isochronous variation and the fractional derivatives are derived. Secondly, based on these exchanging relationships, the Hamilton's principle is presented for non-conservative systems with fractional derivatives. Thirdly, Lagrange equations of the systems are obtained. Furthermore, the d'Alembert-Lagrange principle with fractional derivatives is presented, and the Lagrange equations of nonholonomic systems with fractional derivatives are studied. An example is designed to illustrate these results.
基金The project supported by the Graduate Student's Innovative Foundation of China University of Petroleum (East China) under Grant No. S2006-31 .
文摘This paper concentrates on studying the symmetries and a new type of conserved quantities called Mei conserved quantity. The criterions of the Mei symmetry, the Noether symmetry and the Lie symmetry are given. The conditions and the forms of the Mei conserved quantities deduced from these three symmetries are obtained. An example is given to illustrate the application of the result.
基金Supported by the National Natural Science Foundation of China(11802193,11572212)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(18KJB130005)+2 种基金the Jiangsu Government Scholarship for Overseas Studiesthe Science Research Foundation of Suzhou University of Science and Technology(331812137)the Natural Science Foundation of Suzhou University of Science and Technology
文摘Perturbation to Noether quasi-symmetry and adiabatic invariants for the nonholonomic system on time scales are studied. Firstly, some properties of time scale calculus are reviewed. Secondly, the differential equations of motion for the nonholonomic system on time scales, Noether quasi-symmetry and conserved quantity are given. Thirdly, perturbation to Noether quasi-symmetry and adiabatic invariants, which are the main results of this paper, are investigated. The main results are achieved by two steps, the first step is to obtain adiabatic invariants without transforming the time, and the next is to obtain adiabatic invariants under the infinitesimal transformations of both the time and the coordinates. And in the end, an example is given to illustrate the methods and results.
文摘Based on the theory of Lie symmetries and conserved quantities, the exact invariants and adiabatic invariants of nonholonomic system in terms of quasi-coordinates are studied. The perturbation to symmetries for the nonholonomic system in terms of quasi-coordinates under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the forms of exact invariants and adiabatic invariants as well as the conditions for their existence are given. Then the corresponding inverse problem is studied.
基金supported by the National Natural Science Foundation of China (Grant No. 10372053)
文摘This paper presents the Mei symmetries and new types of non-Noether conserved quantities for a higher-order nonholonomic constraint mechanical system. On the basis of the form invariance of differential equations of motion for dynamical functions under general infinitesimal transformation, the determining equations, the constraint restriction equations and the additional restriction equations of Mei symmetries of the system are constructed. The criterions of Mei symmetries, weak Mei symmetries and strong Mei symmetries of the system are given. New types of conserved quantities, i.e. the Mei symmetrical conserved quantities, the weak Mei symmetrical conserved quantities and the strong Mei symmetrical conserved quantities of a higher-order nonholonomic system, are obtained. Then, a deduction of the first-order nonholonomic system is discussed. Finally, two examples are given to illustrate the application of the method and then the results.
文摘The Lie-form invariance of a nonholonomic mechanaical system is studied. The definition and criterion of the Lie-form invariance of the nonholonomic mechaaical system are given. The Hojman conserved quantity and a new type of conserved quantity are obtained from the Lie-form invariance. An example is givea to illustrate the application of the results.
基金the National Natural Science Foundation of China(No.19972010)the Qing Lan Project Foundation of Jiangsu Province of Chinathe Research Foundation of Suzhou Institute of Urban Construction & Environmental Protection of China
文摘By applying the framework of the tangent bundle geometry to the method of Lagrange multi- pliers,a geometric description of Chetaev's nonholonomic systems subjected to unilateral nonholonomic con- straints trod unilateral holonomic constraints respectively in time-independent circumstances is presented.
基金supported by the National Natural Science Foundation of China(No.11272227)
文摘For an in-depth study on the symmetric properties for nonholonomic non-conservative mechanical systems,the fractional action-like Noether symmetries and conserved quantities for nonholonomic mechanical systems are studied,based on the fractional action-like approach for dynamics modeling proposed by El-Nabulsi.Firstly,the fractional action-like variational problem is established,and the fractional action-like Lagrange equations of holonomic system and the fractional action-like differential equations of motion with multiplier for nonholonomic system are given;secondly,according to the invariance of fractional action-like Hamilton action under infinitesimal transformations of group,the definitions and criteria of fractional action-like Noether symmetric transformations and quasi-symmetric transformations are put forward;finally,the fractional action-like Noether theorems for both holonomic system and nonholonomic system are established,and the relationship between the fractional action-like Noether symmetry and the conserved quantity is given.