Let {V(t),t≤0} be the nonhomogeneous Poisson process with cumulative intensituy parameter A(t). |δ,t≥0 the, age process, and y, t≥0} the residual lifetime process. In the present-paper the expressions of n-dimensi...Let {V(t),t≤0} be the nonhomogeneous Poisson process with cumulative intensituy parameter A(t). |δ,t≥0 the, age process, and y, t≥0} the residual lifetime process. In the present-paper the expressions of n-dimensional survival distribution functions of the processes {δ and γ, and their Lebesgue decompositions are derived.展开更多
The degradation process modeling is one of research hotspots of prognostic and health management(PHM),which can be used to estimate system reliability and remaining useful life(RUL).In order to study system degradatio...The degradation process modeling is one of research hotspots of prognostic and health management(PHM),which can be used to estimate system reliability and remaining useful life(RUL).In order to study system degradation process,cumulative damage model is used for degradation modeling.Assuming that damage increment is Gamma distribution,shock counting subjects to a homogeneous Poisson process(HPP)when degradation process is linear,and shock counting is a non-homogeneous Poisson process(NHPP)when degradation process is nonlinear.A two-stage degradation system is considered in this paper,for which the degradation process is linear in the first stage and the degradation process is nonlinear in the second stage.A nonlinear modeling method for considered system is put forward,and reliability model and remaining useful life model are established.A case study is given to validate the veracities of established models.展开更多
The Goel-Okumoto software reliability model, also known as the Exponential Nonhomogeneous Poisson Process,is one of the earliest software reliability models to be proposed. From literature, it is evident that most of ...The Goel-Okumoto software reliability model, also known as the Exponential Nonhomogeneous Poisson Process,is one of the earliest software reliability models to be proposed. From literature, it is evident that most of the study that has been done on the Goel-Okumoto software reliability model is parameter estimation using the MLE method and model fit. It is widely known that predictive analysis is very useful for modifying, debugging and determining when to terminate software development testing process. However, there is a conspicuous absence of literature on both the classical and Bayesian predictive analyses on the model. This paper presents some results about predictive analyses for the Goel-Okumoto software reliability model. Driven by the requirement of highly reliable software used in computers embedded in automotive, mechanical and safety control systems, industrial and quality process control, real-time sensor networks, aircrafts, nuclear reactors among others, we address four issues in single-sample prediction associated closely with software development process. We have adopted Bayesian methods based on non-informative priors to develop explicit solutions to these problems. An example with real data in the form of time between software failures will be used to illustrate the developed methodologies.展开更多
The Goel-Okumoto software reliability model is one of the earliest attempts to use a non-homogeneous Poisson process to model failure times observed during software test interval. The model is known as exponential NHP...The Goel-Okumoto software reliability model is one of the earliest attempts to use a non-homogeneous Poisson process to model failure times observed during software test interval. The model is known as exponential NHPP model as it describes exponential software failure curve. Parameter estimation, model fit and predictive analyses based on one sample have been conducted on the Goel-Okumoto software reliability model. However, predictive analyses based on two samples have not been conducted on the model. In two-sample prediction, the parameters and characteristics of the first sample are used to analyze and to make predictions for the second sample. This helps in saving time and resources during the software development process. This paper presents some results about predictive analyses for the Goel-Okumoto software reliability model based on two samples. We have addressed three issues in two-sample prediction associated closely with software development testing process. Bayesian methods based on non-informative priors have been adopted to develop solutions to these issues. The developed methodologies have been illustrated by two sets of software failure data simulated from the Goel-Okumoto software reliability model.展开更多
Testing-effort(TE) and imperfect debugging(ID) in the reliability modeling process may further improve the fitting and prediction results of software reliability growth models(SRGMs). For describing the S-shaped...Testing-effort(TE) and imperfect debugging(ID) in the reliability modeling process may further improve the fitting and prediction results of software reliability growth models(SRGMs). For describing the S-shaped varying trend of TE increasing rate more accurately, first, two S-shaped testing-effort functions(TEFs), i.e.,delayed S-shaped TEF(DS-TEF) and inflected S-shaped TEF(IS-TEF), are proposed. Then these two TEFs are incorporated into various types(exponential-type, delayed S-shaped and inflected S-shaped) of non-homogeneous Poisson process(NHPP)SRGMs with two forms of ID respectively for obtaining a series of new NHPP SRGMs which consider S-shaped TEFs as well as ID. Finally these new SRGMs and several comparison NHPP SRGMs are applied into four real failure data-sets respectively for investigating the fitting and prediction power of these new SRGMs.The experimental results show that:(i) the proposed IS-TEF is more suitable and flexible for describing the consumption of TE than the previous TEFs;(ii) incorporating TEFs into the inflected S-shaped NHPP SRGM may be more effective and appropriate compared with the exponential-type and the delayed S-shaped NHPP SRGMs;(iii) the inflected S-shaped NHPP SRGM considering both IS-TEF and ID yields the most accurate fitting and prediction results than the other comparison NHPP SRGMs.展开更多
Because of the inevitable debugging lag,imperfect debugging process is used to replace perfect debugging process in the analysis of software reliability growth model.Considering neither testing-effort nor testing cove...Because of the inevitable debugging lag,imperfect debugging process is used to replace perfect debugging process in the analysis of software reliability growth model.Considering neither testing-effort nor testing coverage can describe software reliability for imperfect debugging completely,by hybridizing testing-effort with testing coverage under imperfect debugging,this paper proposes a new model named GMW-LO-ID.Under the assumption that the number of faults is proportional to the current number of detected faults,this model combines generalized modified Weibull(GMW)testing-effort function with logistic(LO)testing coverage function,and inherits GMW's amazing flexibility and LO's high fitting precision.Furthermore,the fitting accuracy and predictive power are verified by two series of experiments and we can draw a conclusion that our model fits the actual failure data better and predicts the software future behavior better than other ten traditional models,which only consider one or two points of testing-effort,testing coverage and imperfect debugging.展开更多
In this paper, an improved NHPP model is proposed by replacing constant fault removal time with time-varying fault removal delay in NHPP model, proposed by Daniel R Jeske. In our model, a time-dependent delay function...In this paper, an improved NHPP model is proposed by replacing constant fault removal time with time-varying fault removal delay in NHPP model, proposed by Daniel R Jeske. In our model, a time-dependent delay function is established to fit the fault removal process. By using two sets of practical data, the descriptive and predictive abilities of the improved NHPP model are compared with those of the NHPP model, G-O model, and delayed S-shape model. The results show that the improved model can fit and predict the data better.展开更多
基金Supported partly by Aeronautical Science Foundation of China
文摘Let {V(t),t≤0} be the nonhomogeneous Poisson process with cumulative intensituy parameter A(t). |δ,t≥0 the, age process, and y, t≥0} the residual lifetime process. In the present-paper the expressions of n-dimensional survival distribution functions of the processes {δ and γ, and their Lebesgue decompositions are derived.
基金National Outstanding Youth Science Fund Project,China(No.71401173)
文摘The degradation process modeling is one of research hotspots of prognostic and health management(PHM),which can be used to estimate system reliability and remaining useful life(RUL).In order to study system degradation process,cumulative damage model is used for degradation modeling.Assuming that damage increment is Gamma distribution,shock counting subjects to a homogeneous Poisson process(HPP)when degradation process is linear,and shock counting is a non-homogeneous Poisson process(NHPP)when degradation process is nonlinear.A two-stage degradation system is considered in this paper,for which the degradation process is linear in the first stage and the degradation process is nonlinear in the second stage.A nonlinear modeling method for considered system is put forward,and reliability model and remaining useful life model are established.A case study is given to validate the veracities of established models.
文摘The Goel-Okumoto software reliability model, also known as the Exponential Nonhomogeneous Poisson Process,is one of the earliest software reliability models to be proposed. From literature, it is evident that most of the study that has been done on the Goel-Okumoto software reliability model is parameter estimation using the MLE method and model fit. It is widely known that predictive analysis is very useful for modifying, debugging and determining when to terminate software development testing process. However, there is a conspicuous absence of literature on both the classical and Bayesian predictive analyses on the model. This paper presents some results about predictive analyses for the Goel-Okumoto software reliability model. Driven by the requirement of highly reliable software used in computers embedded in automotive, mechanical and safety control systems, industrial and quality process control, real-time sensor networks, aircrafts, nuclear reactors among others, we address four issues in single-sample prediction associated closely with software development process. We have adopted Bayesian methods based on non-informative priors to develop explicit solutions to these problems. An example with real data in the form of time between software failures will be used to illustrate the developed methodologies.
文摘The Goel-Okumoto software reliability model is one of the earliest attempts to use a non-homogeneous Poisson process to model failure times observed during software test interval. The model is known as exponential NHPP model as it describes exponential software failure curve. Parameter estimation, model fit and predictive analyses based on one sample have been conducted on the Goel-Okumoto software reliability model. However, predictive analyses based on two samples have not been conducted on the model. In two-sample prediction, the parameters and characteristics of the first sample are used to analyze and to make predictions for the second sample. This helps in saving time and resources during the software development process. This paper presents some results about predictive analyses for the Goel-Okumoto software reliability model based on two samples. We have addressed three issues in two-sample prediction associated closely with software development testing process. Bayesian methods based on non-informative priors have been adopted to develop solutions to these issues. The developed methodologies have been illustrated by two sets of software failure data simulated from the Goel-Okumoto software reliability model.
基金supported by the Pre-research Foundation of CPLA General Equipment Department
文摘Testing-effort(TE) and imperfect debugging(ID) in the reliability modeling process may further improve the fitting and prediction results of software reliability growth models(SRGMs). For describing the S-shaped varying trend of TE increasing rate more accurately, first, two S-shaped testing-effort functions(TEFs), i.e.,delayed S-shaped TEF(DS-TEF) and inflected S-shaped TEF(IS-TEF), are proposed. Then these two TEFs are incorporated into various types(exponential-type, delayed S-shaped and inflected S-shaped) of non-homogeneous Poisson process(NHPP)SRGMs with two forms of ID respectively for obtaining a series of new NHPP SRGMs which consider S-shaped TEFs as well as ID. Finally these new SRGMs and several comparison NHPP SRGMs are applied into four real failure data-sets respectively for investigating the fitting and prediction power of these new SRGMs.The experimental results show that:(i) the proposed IS-TEF is more suitable and flexible for describing the consumption of TE than the previous TEFs;(ii) incorporating TEFs into the inflected S-shaped NHPP SRGM may be more effective and appropriate compared with the exponential-type and the delayed S-shaped NHPP SRGMs;(iii) the inflected S-shaped NHPP SRGM considering both IS-TEF and ID yields the most accurate fitting and prediction results than the other comparison NHPP SRGMs.
基金supported by the National Natural Science Foundation of China(No.U1433116)the Aviation Science Foundation of China(No.20145752033)
文摘Because of the inevitable debugging lag,imperfect debugging process is used to replace perfect debugging process in the analysis of software reliability growth model.Considering neither testing-effort nor testing coverage can describe software reliability for imperfect debugging completely,by hybridizing testing-effort with testing coverage under imperfect debugging,this paper proposes a new model named GMW-LO-ID.Under the assumption that the number of faults is proportional to the current number of detected faults,this model combines generalized modified Weibull(GMW)testing-effort function with logistic(LO)testing coverage function,and inherits GMW's amazing flexibility and LO's high fitting precision.Furthermore,the fitting accuracy and predictive power are verified by two series of experiments and we can draw a conclusion that our model fits the actual failure data better and predicts the software future behavior better than other ten traditional models,which only consider one or two points of testing-effort,testing coverage and imperfect debugging.
基金the National High Technology Research and Development Program of China (863 Program) under Grant No. 2006AA01Z173.
文摘In this paper, an improved NHPP model is proposed by replacing constant fault removal time with time-varying fault removal delay in NHPP model, proposed by Daniel R Jeske. In our model, a time-dependent delay function is established to fit the fault removal process. By using two sets of practical data, the descriptive and predictive abilities of the improved NHPP model are compared with those of the NHPP model, G-O model, and delayed S-shape model. The results show that the improved model can fit and predict the data better.